
1

Notes on
1.63 Advanced Environmental Fluid Mechanics

Instructor: C. C. Mei, 2002
ccmei@mit.edu, 1 617 253 2994

December 2, 2002

7.6 Transient longshore wind

[Ref]: Chapter 14, p. 195 ff, Cushman-Roisin
Csanady: Circulation in the Coastal Ocean

Figure 7.6.1: Longshore wind

In view of the last section, we ignore the bottom stress. Assume that the wind is uniform
in space but transient in time, so that ∂/∂y = 0, The flux equations are

∂η

∂t
+
∂U

∂x
= 0 (7.6.1)

∂U

∂t
− fV = −gh

∂η

∂x
(7.6.2)

∂v

∂t
+ fU =

τSy
ρ
. (7.6.3)

The boundary condition on the coast x = 0 : U = 0.
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7.6.1 Sudden long-shore wind

Let the wind stress be

τSy =

(
0, t � 0,
T, t > 0.

(7.6.4)

the initial conditions are
η, U, V = 0, t = 0, ∀x. (7.6.5)

This initial-boundary value problem can be solved by Laplace transform (Crépon, 1967).
The solution consists of two parts: one part is oscillatory and decays with time; the other
part increases monotonically with time. To avoid the complex mathematics we only examine
the latter which is the dominant part for large time,

U = Ū(x), V = tV̄ (x), η = tη̄(x) (7.6.6)

The oscillatory part is needed to ensure the initial condition on U .
It is easy to see from (7.6.1) to (7.6.3) that

η̄ +
dŪ

dx
= 0 (7.6.7)

fV̄ = gh
dη̄

dx
(7.6.8)

V̄ + fŪ = T/ρ (7.6.9)

These three equations can be combined into one :

d2Ū

dx2
−
f 2

gh
Ū = −

fT

ρgh
(7.6.10)

The solution satisfies no flux on the coast is

Ū =
T

ρf

³
1− e−x/Ro

´
(7.6.11)

where

Ro =

√
gh

f
(7.6.12)

is called the Rossby radius of deformation. Since f = 10−4 1/s, in a shallow sea of h = 10 m
the Rossby radius is about 105 m = 100 km.
It is easy to find that

η = tη̄ = −t
T

ρgh
e−x/Ro (7.6.13)

and

V = tV̄ = t
T

ρf
e−x/Ro (7.6.14)

Clearly when x/Ro À 1, the coast line has no influence. The flux is U = T/ρf, V = 0, and
is inclined to the right of the wind by 90 degrees, as predicted by the Ekman layer theory.
The sea surface sinks near the coast if T > 0 (coast is on the left of wind) and rises if T < 0
(coast is on the right of wind).
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7.6.2 Sinusoidal wind stress

We now consider

τSy = <
³
τ0e
−iωt´ = τo sinωt (7.6.15)

Let

(η, U, V ) = <
h
(η0, U0, V0) e

−iωti (7.6.16)

The symbol < (real part of) will be omitted for brevity.

Let us calculate the total flux (The boundary layers can be studied later.),

−iωη0 +
dU0
dx

= 0 (7.6.17)

−iωU0 − fV0 = −gH
dη0
dx

(7.6.18)

−iωV0 + fU0 = i
τ0
ρ
. (7.6.19)

An equation for a single variable can be obtained. For example by solving Eqns. (7.6.18)
and (7.6.19) for U0 and V0, we get

U0 =

¯̄̄̄
¯ −gH dη0

dx
−f

iτ0 −iω

¯̄̄̄
¯¯̄̄̄

¯ −iω −f
f −iω

¯̄̄̄
¯

=
iωgh dη0

dx
+ iτ0f

−ω2 + f2

U0 =
iωgh

f2 − ω2

Ã
dη0
dx

+
τ0f

ρωgh

!
(7.6.20)

Differentiate Eqn. (7.6.20) and use Eqn. (7.6.17)

−iωη0 +
iωgh

f2 − ω2
d2η0
dx2

= 0

or
d2η0
dx2

−
f2 − ω2

gh
η0 = 0 (7.6.21)

We now distinguish two cases.
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Low frequency: ω < f

The solution to (7.6.21) bounded at infinity is

η0 = Ae
−x/R0 (7.6.22)

where

R0 =

s
gh

f 2 − ω2
. (7.6.23)

is the modified Rossby radius.
Applying the B.C. on the coast: U0 = 0, we get from (7.6.20),

dη0
dx

=
−f

ρgH

τ0
ω

(7.6.22)
=

−A

R0
.

and,

A =
τ0
ω

f

ρgH
R0

Hence

η0 =
fτ0
ρωgH

R0 e
−x/Ro

and finally

η =
fτ0
ρωgH

R0 e
−x/R0 e−iωt (7.6.24)

Now

ηt = −
ifτ0
ρgH

R0 e
−x/Ro e−iωt = −Ux.

from Eqn. (7.6.1). Integrating with respect to x,

U =
ifτoR

2
0

ρgh

³
1− e−x/R0

´
e−iωt. (7.6.25)

From Eqn. (7.6.20)

−iωV0 = −fU0 + iτ0/ρ

=
−if2τ0R20
ρgH

³
1− e−x/R0

´
+
iτ0
ρ

=
iτ0
ρ

"
1−

f 2

gh
R20

³
1− e−x/R0

´#

V0 = −
τ0
ρω

"
1−

f2

f 2 − ω2

³
1− e−x/R0

´#
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= −
τ0
ρω

f2

f 2 − ω2

"
f2 − ω2

f 2
− 1 + e−x/R0

#

=
τ0
ρω

ω2

f2
f 2

f2 − ω2

"
1−

f2

ω2
e−x/R0

#

=
τ0ω/ρ0
f2 − ω2

"
1−

f 2

ω2
e−x/R0

#
.

Let us summarize the results in real form,

τSy = τ0 sinωt (7.6.26)

η =
fτ0
ρωgh

R0 e
−x/R0 cos ωt (7.6.27)

U =
fτoR

2
0

ρgh

³
1− e−x/R0

´
sin ωt (7.6.28)

V =
τ0ω

ρ (f 2 − ω2)

Ã
1−

f2

ω2
e−x/R0

!
cos ωt. (7.6.29)

If τ0 < 0 (or > 0), i.e., the coast is on the right (left) of wind, the sea level near the coast
rises (sinks).

High frequency : ω > f

Of the two possible oscillatory solutions to (7.6.21), we must choose the one that represents
outgoing waves at infinty (the radiation condition),

η0 = Ae
ikx, (7.6.30)

where the wavenumber is the inverse of the modified Rossby radius of deformation,

k =

s
ω2 − f2

gh
(7.6.31)

We leave it to the reader to show that, in complex form,

η =
iτ0f

ρghωk
eikx−iωt (7.6.32)

U = −
iτ0f

ρ(ω2 − f2)

³
1− eikx

´
e−iωt (7.6.33)

V = = −
τ0
ρω

"
1 +

f2

ω2 − f 2

³
1− eikx

´#
e−iωt (7.6.34)

or, in real form,

η = −
τ0f

ρghωk
sin(kx− ωt), (7.6.35)
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U = −
τ0f

ρ(ω2 − f 2)
(sinωt+ sin(kx− ωt)) (7.6.36)

V = = −
τ0
ρω

"
1 +

f 2

ω2 − f2
(cosωt− cos(kx− ωt))

#
(7.6.37)


