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7.5 Cyclonic current forced by a swirling wind

Of practical interest is the case of nonuniform wind stress on the surface. As an extremely
simplified model we consider a vortical wind stress over a large sea1. See Figure 7.5.1.

Figure 7.5.1: Steady cyclonic flow in a shallow sea forced by swirling wind

Let us restricting to a low Rossby number flow for simplicity. Continuity requires:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (7.5.1)

The momentum equations are

−fv = −1
ρ

∂p

∂x
+ ν∇2u (7.5.2)

fu = −1
ρ

∂p

∂y
+ ν∇2v (7.5.3)

0 = −1
ρ

∂p

∂z
+ ν∇2w (7.5.4)

1Acheson demonstrated a very similar problem of a circular layer of water bounded above and below by
two horizontal planes. While the bottom plane rotates about the vertical axis at the rate Ω the top cover
rotates steadily at a different rate (1 + ²)Ω.
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The boundary conditions are : no slip on the bottom:

u = v = w = 0, z = 0 (7.5.5)

and given wind stress on the top:

τSθz = ρTr/2, τSrz = 0, z = H. (7.5.6)

The wind stress is cyclonic, where T is the curl of the wind sress vector:

∇× ~τS = ~k
Ã
1

r

∂

∂r
(rτSθz −

1

r

∂τSrz
∂θ

!
= ρT~k. (7.5.7)

In cartesian coordinates the wind stress components are:

τSxz = −τSθz sin θ = −
ρT

2
r sin θ = −ρT

2
y, (7.5.8)

τSyz = τSθz cos θ =
ρT

2
r cos θ =

ρT

2
x, (7.5.9)

Kinematically we assume that
w = 0, z = H. (7.5.10)

7.5.1 Inviscid core

Outside the surface an bottom boundary layers, we have

−fvI = −1
ρ

∂p

∂x
(7.5.11)

fuI = −1
ρ

∂p

∂y
(7.5.12)

This is clearly the state of geostrophyic balance. Momentum balence in the vertical direction
is trivial,

0 = −1
ρ

∂p

∂z

Consequently uI and vI must be independent of z. in accordance with the Taylor-Proudman
theorem. Note that conservation of mass is automatically satisfied,

∂uI
∂x

+
∂vI
∂y

= 0

and the vorticity is
∂vI
∂x
− ∂uI

∂y
= − 1

f

Ã
∂2p

∂x2
+
∂2p

∂y2

!
The horizontal components uI(x, y), vI(x, y) are not determined yet. The vertical velocity

wI can at best be a contant in z.
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7.5.2 Bottom boundary layer

Let us keep the dominant viscous stress terms in the momentum equations,

−f (v − vI) = ν
∂2 (u− uI)

∂z2
(7.5.13)

f (u− uI) = ν
∂2 (v − vI)

∂z2
(7.5.14)

The boundary conditions are

u− uI = −uI v − vI = −vI z = 0
u− uI → 0 v − vI → 0 z À δ

where

δ =

s
2ν

f
(7.5.15)

is the Ekman boundary layer thickness.
The solution is left to the reader as an exercise

u− uI = −e−z/δ
µ
uI cos

z

δ
+ vI sin

z

δ

¶
(7.5.16)

v − vI = −e−z/δ
µ
vI cos

z

δ
− uI cos z

δ

¶
. (7.5.17)

From continuity, the vertical component can be computed. Let ζ = z/δ,

∂w

∂z
=

1

δ

∂w

∂ζ
= −

Ã
∂u

∂x
+
∂v

∂y

!
(7.5.18)

=

Ã
∂vI
∂x
− ∂uI

∂y

!
e−ζ sin ζ +

Ã
∂uI
∂x

+
∂vI
∂y

! ³
e−ζ cos ζ

´
.

The second term vanishes, hence,

w = δ
Z ζ

0
dζ

Ã
∂vI
∂x
− ∂uI

∂y

!
e−ζ sin ζ

= δ

Ã
∂vI
∂x
− ∂uI

∂y

!
e−ζ

2
(− sin ζ − cos ζ)

¯̄̄̄
¯
ζ

0

=
δ

2

Ã
∂vI
∂x
− ∂uI

∂y

! h
1− e−ζ (cos ζ + sin ζ)

i
.

At the outer edge of the bottom boundary layer, ζ = z/δ À 1

w(∞) ≡ δ

2

Ã
∂vI
∂x
− ∂uI

∂y

!
=
δ

2
ωI (7.5.19)

where ωI is the vorticity in the geostrophic interior. Thus there is vertical flux from the
bottom boundary layer when the interior flow is horizontally nonuniform; this is called the
Ekman pumping!
We still don’t know the geostrophic flow field.
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7.5.3 Surface boundary layer

The momentum equations are

−f (v − vI) = ν
∂2 (u− uI)

∂z2
(7.5.20)

f (u− uI) = ν
∂2 (v − vI)

∂z2
.

On z = H the boundary conditions are

ν
∂u

∂z
= −T

2
y, ν

∂v

∂z
=
T

2
x, z = H (7.5.21)

Far beneath the surface
u→ uI , v → vI ; (H − z)À δ (7.5.22)

Let us introduce the boundary-layer coordinate

η =
H − z
δ

0 < η <∞. (7.5.23)

so that
∂

∂z
→ −1

δ

∂

∂η
(7.5.24)

The solution satisfies the momentum equations and (7.5.22) is of the form

u− uI = e−η (A cos η +B sin η) (7.5.25)

v − vI = e−η (B cos η −A sin η) . (7.5.26)

In order to satisfy (7.5.21), we first note that

∂u

∂η
= e−η ((−A+B) cos η + (−A−B) sin η) (7.5.27)

∂v

∂η
= e−η ((−A−B) cos η + (A− B) sin η) . (7.5.28)

Applying (7.5.21), we get

−ν
δ
(−A+B) = −Ty

2
, − ν

δ
(−A− B) = Tx

2
(7.5.29)

with the results,

A =
T δ

4ν
(x− y), B =

T δ

4ν
(x+ y) (7.5.30)

Hence the horizontal velocities are

u− uI =
T δ

4ν
e−η ((x− y) cos η + (x+ y) sin η) (7.5.31)

v − vI =
T δ

4ν
e−η ((x+ y) cos η − (x− y) sin η) . (7.5.32)
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By continuity

∂w

∂z
= −1

δ

∂w

∂η
= −

Ã
∂u

∂x
+
∂u

∂y

!

=
T δ

4ν
e−η(2 cos η + 2 sin η)

the vertrical velocity can be found,

w(η) =
T δ

2ν

Z η

0
dη e−η (cos η + sin η)

=
T δ

2ν

h
e−η (− cos η + sin η) + e−η (− cos η − sin η)

i
=

T δ

2ν

h
(1− e−η cos η)

i
(7.5.33)

At the outer edge of the surface boundary layer η À 1

w(∞) = wT = T δ

2ν
(7.5.34)

By Taylor-Proudman theorem, w(z) = wB = wT . Therefore

wB =
δ

2
ωI =

T δ

2ν
= wT (7.5.35)

and the interior vorticity is

ωI =
T

ν
. (7.5.36)

What are uI and vI? In cylindrical polar coordinates

ωI =
1

r

∂

∂r
(r uIθ)−

1

r

∂uIr
∂θ

==
1

r

∂

∂r
(r uIθ) .

Since ∂/∂θ = 0, we have ,

ωI =
1

r

d

dr
(r uIθ)

d

dr
(r uIθ) =

T

ν
r

which implies

uIθ =
T

2ν
r.

Since
1

r

∂

∂r
(r uIr) +

1

r

∂uθ
∂θ

= 0

which leads to
uIr = 0.
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The interior flow is geostrophic and cyclonic.
In cartesian form we have

uI = −uIθ sin θ = −
T

2ν
r sin θ, (7.5.37)

vI = uIθ cos θ =
T

2ν
r cos θ (7.5.38)

Now the radial component inside the bottom boundary layer is

ur = ur − uIr
since uIr = 0. The latter is

ur − uIr = −e−ζ [(uI cos ζ + vI sin ζ) cos θ + (vI cos ζ − uI sin ζ) sin θ]
= −e−ζ [cos ζ(uI cos θ + vI sin θ) + sin ζ(vI cos θ − uI sin θ)]
= −e−ζ sin ζ(vI cos θ − uI sin θ)
= −Tr

2ν
e−ζ sin ζ(cos2 θ + sin2 θ)

= −Tr
2ν
e−ζ sin ζ

and is negative in most of the boundary layer. Hence the flow spirals inward towards the
z axis in the bottom boundary layer. Similarly one can show that the flow in the surface
boundary layer has an outward radial component.
In summary, the swirling wind induces a vorticity T/ν in the geostrophic interior. The

flow in the bottom Ekman layer spirals inward, rises vertically at a uniform velocity while
spiralling at the angular velocity T/ν and maintaining a constant vorticity in the geotrophic
interior, then spirals outward in the surface Ekman layer. The flow is therefore cyclonic.


