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1.3 Kinematic transport theorem

In particle mechanics, Newton�s second law requires the balance between the rate of change of
particle momentum and the applied forces. In continuum mechanics, one needs to calculate
the rate of change in a volume of ßuid. Now different choices can be made for the control
volume, such as a geometric volume Þxed in space, or moving in a prescribed manner, or
a material volume consisting of the same body of ßuid. Calculation of the rate can be
facilitated by the so-called kinematic transport theorem. We Þrst derive a theorem for any
moving volume V (t) bounded by S(t), see Figure 1.3.1.

Theorem 1 Let G(x, t) be some ßuid property per unit volume, then
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where Un is the normal component of the velocity of a point on S.
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Figure 1.3.1: A moving volume in the ßuid

=
ZZZ

V (t)
G(x, t)dV +

"ZZZ
V (t)

∂G

∂t
dV +

ZZ
S(t)
Un dS G(x, t)

#
dt+O(dt)2

Since
d

dt

ZZZ
V
GdV =

∙ZZZ
V
G(x, t) dV

¸
t+dt

−
ZZZ

V (t)
G(x, t)dt

(1.3.1) is proven.
If V (t) is a material volume containing the same moving ßuid particles, then, Un = q · n

and d/dt is the material derivative. We then have as a corollary, the following

Theorem 2 If V (t) is a material volume,
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This is the kinematic transport theorem.
Let us apply this theorem to derive certain differential conservation laws.

1.3.1 Transport of Mass

Let G = ρ = density and V (t) be a material volume within which there are no mass sources
or sinks, then by mass conservation,
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by mass conservation. Using (1.3.2) we getZZZ
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Because V is arbitrary the integrand must vanish identically :

∂ρ

∂t
+∇ · (ρq) = 0 (1.3.4)
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This is the differential form of mass conservation law, valid at any point inside the ßuid. As
an alternate form we may write

∂ρ

∂t
+ q ·∇ρ+ ρ∇ · q = dρ

dt
+ ρ∇ · q = 0 (1.3.5)

For the special case of an incompressible but non homogeneous ßuid:

Dρ
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+ q ·∇ρ = 0 (1.3.6)

It follows that
∇ · q = 0 (1.3.7)

which is also known as the continuity equation. If the incompressible ßuid is also homoge-
neous, then (1.3.7) holds and

ρ = constant (1.3.8)

replaces (1.3.6). Do avoid the common error of assuming incompressible ßuid as being
homogeneous.

1.3.2 Transport of any dynamical property

Let G = ρF where F is some ßuid-dynamic property per unit mass, and V is a material
volume, then,
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Thus, the total derivative can pass through the integral sign and ρ. From (1.3.2)
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after using the law of mass conservation (1.3.5).
As a special case the rate of momentum transport in a ßuid volume V is found by taking

G = ρq, then,
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which will be used later.


