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1.2 Kinematics of Fluid Motion -the Eulerian picture

Consider two neighboring stations (not two fluid particles) ¥ and &’ at the same instant ¢,
where 02 = &' — Z is small. The fluid velocity at the two stations are related by

q@,t) = q(@,t) + (7' — ©) - V@@, t) + O(F — 7)* (1.2.1)
Hence
5q(7,t) = (@, t) — q(@,t) = 6% - V(& t) + O(0T)? (1.2.2)
Let us introduce the index notation:
G1=U, @@=0, 3=W;, T1=2T, Ta=1Y, T3=2 (1.2.3)

and Einstein’s convention: Repeated indices are summed over the range from 1 to 3, and
the summation symbol is omitted but implied. For example,

—

3
Nati=at=d+6G+6G=04
=1

Thus we may write (1.2.2) as

0y .
0q; = 5@6—%, i=1,2,3. (1.2.4)
Now 0 0 0 0 0
¢ 1 (0q g 1 [ 0gi qj
==—|—+= — | =—= = 1.2.5
Define the rate-of -strain tensor by
1 6% 6(]]'
== 1.2.
=3 <8xj+8337; (1.2.6)
and the vorticity tensor by
1 (0q; Og
Qi = = i 1.2.7
Note that
eij = 6ji, Qij = —jS (128)
and (1.2.4) becomes
5(]7; = 51‘j67;j + 51’]'97;3' (129)

Let us examine the physics of these terms.



1.2.1 Rate-of-strain tensor
In matrix form, the rate-of -strain tensor is :

€11 €12 €13

{eij} = €21 €22 €23
€31 €32 €33
9q1 1 (9 4 992\ 1 (0q1 y 9g3
ox1 2 ( T2 + zl) 2 3 + ox1
— 1(0q2 | Oqu Ogq2 1 (0 | Og3
- 2 \ Oz Oxo Oxo 2 \ Oz3 + Oxo (1210)
1(0gq3 091\ 1 (045 4 Og2 g3
2 \ 0z1 Oxs 2 \ Oz2 Oxs Oxs
ou 1(0u | ) 1(0u | ouw
ox 2 ( Yy + z) 2 \ 0z + oz
_ | 1o ou v 1 (v, ow
- 2 (8&0 + Ay Oy 2 \ 9z + Oy
1 (0w ou 1 (0w v ow
2<8x+8z) 2<8y+8z) 0z

First, the diagonal terms. It is easy to see that e;; = Ju/Ox is the rate of stretching per
unit length in the direction of x, sy = Jv/dy is the rate of stretching per unit length in the
direction of y, and e33 = Ow/0z is the rate of stretching per unit length in the direction of
z. They are the normal components of the rate of strain tensor.

Note that 5 9 9
u (% w N
%—Fa—y—FE—V'q (1.2.11)

is the rate of volume dilatation due to fluid motion. For a proof, let us consider a cube with
sides (z,z + Az), (y,y + Ay) and (2, z + Az). After dt, the side along z will lengthen from
Azx to Az + Aa:%ét = Az (1 + %575). Similarly, the side along y will lengthen from Ay to

Ay (1 + 3—2575), and the side along z lengthens from Az to Az (1 + %—1;’575). Consequently the
volume V() = AzAyAz will change to

e11 + €22 + €33 = € =

ou ov ow
V(t+ ot) = Ax (1 + %&) Ay (1 - a—y&t) Az (1 + 5&)

B ou Ov Ow 9
=V(t) [1+<8x+8y+ 8Z)éHO(ét)]

Hence, the rate of volume dilatation is

1V(t+dt)—V(t) 14V ou Ov Ow .
m — ==—7—=|g+tx+5|=V-¢q
Oor Oy 0z

li

= 1.2.12
st=0V ot V dt ( )

Next, the off-diagonal terms. Referring to Figure 1.2.1, consider a plane flow in which g—z

and % do not vanish. In the time interval 6t the side Ax rotates counterclockwise for an angle
00, = % = %575. The side Ay rotates counterclockwise for an angle 66, = —AAL;% = —g—ZAt.
The total rate of angular deformation is

00 40, Ov  Ou

5t 5t —%4-8—34 (1.2.13)
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Figure 1.2.1: Rate of strain tensor components

Thus e;2 = e,y is a rate of angular deformation, called the rate of shear strain. Other
components ez and esz can be interpreted similarly.

1.2.2 Vorticity tensor

The matrix form of €);; is

Qll 912 Ql3
{Qij} = Qo1 Qoo Qo3
Q31 Q32 Q33
0 1(0¢n _ 9¢) 1 (9q _ 9g3
2 \ Oz2 Or1 2 \ Oz3 01
_ 1(0q2 _ a1 1 (02 _ Ogs
- 2 \ 9z 22 0 2 \ Oz3 Oza (1214)
1(0qs _ Oq1\ 1 (0g3 _ 9g2 0
2 \ Oz Oz3 2 \ Ox2 Ozs
0 1(0u __0v) 1(0u_ dw
2 \ 0y i 2 \ 0z oz
| 1 o 0 10w ow
o 2 \ 0z oy 2 \ 0z Oy

1(ow _ Ou) 1 (0w _ Ov 0
ox 0z 2 \ 9y 0z

Because of the anti-symmetry, there are only three independent components, which can
also be used to define the vorticity vector (:

) i 7k
¢ = Vxi=|& & %
u v ow
(0w Ov - (0u Ow - (0v Ou
= il=—-= — = 1.2.1
Z(@y 8z> ‘]<8z 8x> (8:13 8y> ( 5)
Hence
1 0 _CB C2
Q=51 & 0 -G (1.2.16)
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Figure 1.2.2: Circulation along a closed circle

What is the physical meaning of 5 ? Consider a plane circular disc A bounded by the
circle C' of radius a, see Figure 1.2.2. By Stokes’ theorem

. —}dA:% —}‘d—)
//A(Vx@ 7 > - df
Now let a — 0, then,

(qu“)n//AdA:]g@d'F

1 1 171 o

36 =5V X = [ £, 007
1
L 74
27raj{0q "

a
is the average tangential velocity along the circle. Hence (,/2 is the average angular speed
of the fluid circling along C i.e., the average rate of rotation. The line integral above is also
known as the circulation.

or,

The quantity




