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1.2 Kinematics of Fluid Motion -the Eulerian picture

Consider two neighboring stations (not two ßuid particles) ~x and ~x0 at the same instant t,
where δ~x = ~x0 − ~x is small. The ßuid velocity at the two stations are related by

~q(~x0, t) = ~q(~x, t) + (~x0 − ~x) ·∇~q(~x, t) +O(~x0 − ~x)2 (1.2.1)

Hence
δ~q(~x, t) = ~q(~x0, t)− ~q(~x, t) = δ~x ·∇~q(~x, t) +O(δ~x)2 (1.2.2)

Let us introduce the index notation:

q1 = u, q2 = v, q3 = w; x1 = x, x2 = y, x3 = z (1.2.3)

and Einstein�s convention: Repeated indices are summed over the range from 1 to 3, and
the summation symbol is omitted but implied. For example,

3X
i=1

qiqi = qiqi = q
2
1 + q

2
2 + q

3
3 = ~q · ~q

Thus we may write (1.2.2) as

δqi = δxj
∂qi
∂xj

, i = 1, 2, 3. (1.2.4)

Now
∂qi
∂xj

=
1

2

Ã
∂qi
∂xj

+
∂qj
∂xi

!
+
1

2

Ã
∂qi
∂xj

− ∂qj
∂xi

!
(1.2.5)

DeÞne the rate-of -strain tensor by

eij =
1

2

Ã
∂qi
∂xj

+
∂qj
∂xi

!
(1.2.6)

and the vorticity tensor by

Ωij =
1

2

Ã
∂qi
∂xj

− ∂qj
∂xi

!
(1.2.7)

Note that
eij = eji, Ωij = −Ωji (1.2.8)

and (1.2.4) becomes
δqi = δxjeij + δxjΩij (1.2.9)

Let us examine the physics of these terms.
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1.2.1 Rate-of-strain tensor

In matrix form, the rate-of -strain tensor is :

{eij} =

 e11 e12 e13
e21 e22 e23
e31 e32 e33



=


∂q1
∂x1

1
2

³
∂q1
∂x2
+ ∂q2

∂x1

´
1
2

³
∂q1
∂x3
+ ∂q3

∂x1

´
1
2

³
∂q2
∂x1
+ ∂q1

∂x2

´
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∂x2

1
2

³
∂q2
∂x3
+ ∂q3

∂x2

´
1
2

³
∂q3
∂x1
+ ∂q1

∂x3

´
1
2

³
∂q3
∂x2
+ ∂q2

∂x3

´
∂q3
∂x3

 (1.2.10)

=


∂u
∂x

1
2
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∂y
+ ∂v

∂x

´
1
2

³
∂u
∂z
+ ∂w

∂x

´
1
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³
∂v
∂x
+ ∂u

∂y

´
∂v
∂y

1
2

³
∂v
∂z
+ ∂w

∂y

´
1
2

³
∂w
∂x
+ ∂u

∂z

´
1
2

³
∂w
∂y
+ ∂v

∂z

´
∂w
∂z


First, the diagonal terms. It is easy to see that e11 = ∂u/∂x is the rate of stretching per
unit length in the direction of x, e22 = ∂v/∂y is the rate of stretching per unit length in the
direction of y, and e33 = ∂w/∂z is the rate of stretching per unit length in the direction of
z. They are the normal components of the rate of strain tensor.
Note that

e11 + e22 + e33 = ekk =
∂u

∂x
+
∂v

∂y
+
∂w

∂z
= ∇ · ~q (1.2.11)

is the rate of volume dilatation due to ßuid motion. For a proof, let us consider a cube with
sides (x, x+∆x), (y, y +∆y) and (z, z +∆z). After δt, the side along x will lengthen from

∆x to ∆x +∆x∂u
∂x
δt = ∆x

³
1 + ∂u

∂x
δt
´
. Similarly, the side along y will lengthen from ∆y to

∆y
³
1 + ∂v

∂y
δt
´
, and the side along z lengthens from ∆z to ∆z

³
1 + ∂w

∂z
δt
´
. Consequently the

volume V (t) = ∆x∆y∆z will change to

V (t+ δt) = ∆x

Ã
1 +

∂u

∂x
δt

!
∆y

Ã
1 +

∂v

∂y
δt

!
∆z

Ã
1 +

∂w

∂z
δt

!

= V (t)

"
1 +

Ã
∂u

∂x
+
∂v

∂y
+
∂w

∂z

!
δt+O(δt)2

#
Hence, the rate of volume dilatation is

lim
δt=0

1

V

V (t+ δt)− V (t)
δt

=
1

V

dV

dt
=

Ã
∂u

∂x
+
∂v

∂y
+
∂w

∂z

!
= ∇ · ~q (1.2.12)

Next, the off-diagonal terms. Referring to Figure 1.2.1, consider a plane ßow in which ∂u
∂y

and ∂v
∂x
do not vanish. In the time interval δt the side∆x rotates counterclockwise for an angle

δθ1 =
∆vδt
∆x

= ∂v
∂x
δt. The side ∆y rotates counterclockwise for an angle δθ2 = −∆uδt

∆y
= −∂u

∂y
∆t.

The total rate of angular deformation is

δθ1
δt
− δθ2
δt
=
∂v

∂x
+
∂u

∂y
(1.2.13)
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Figure 1.2.1: Rate of strain tensor components

Thus e12 = exy is a rate of angular deformation, called the rate of shear strain. Other
components e13 and e23 can be interpreted similarly.

1.2.2 Vorticity tensor

The matrix form of Ωij is

{Ωij} =

 Ω11 Ω12 Ω13
Ω21 Ω22 Ω23
Ω31 Ω32 Ω33



=


0 1

2

³
∂q1
∂x2
− ∂q2

∂x1

´
1
2

³
∂q1
∂x3
− ∂q3

∂x1

´
1
2

³
∂q2
∂x1
− ∂q1

∂x2

´
0 1

2

³
∂q2
∂x3
− ∂q3

∂x2

´
1
2

³
∂q3
∂x1
− ∂q1

∂x3

´
1
2

³
∂q3
∂x2
− ∂q2

∂x3

´
0

 (1.2.14)

=


0 1

2

³
∂u
∂y
− ∂v

∂x

´
1
2

³
∂u
∂z
− ∂w

∂x

´
1
2

³
∂v
∂x
− ∂u

∂y

´
0 1

2

³
∂v
∂z
− ∂w

∂y

´
1
2

³
∂w
∂x
− ∂u

∂z

´
1
2

³
∂w
∂y
− ∂v

∂z

´
0


Because of the anti-symmetry, there are only three independent components, which can

also be used to deÞne the vorticity vector ~ζ:

~ζ = ∇× ~q =
¯̄̄̄
¯̄̄ ~i ~j ~k
∂
∂x

∂
∂y

∂
∂z

u v w

¯̄̄̄
¯̄̄

= ~i

Ã
∂w

∂y
− ∂v
∂z

!
+~j

Ã
∂u

∂z
− ∂w
∂x

!
+ ~k

Ã
∂v

∂x
− ∂u
∂y

!
(1.2.15)

Hence

{Ωij} = 1

2

 0 −ζ3 ζ2
ζ3 0 −ζ1
−ζ2 ζ1 0

 (1.2.16)
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Figure 1.2.2: Circulation along a closed circle

What is the physical meaning of ~ζ ? Consider a plane circular disc A bounded by the
circle C of radius a, see Figure 1.2.2. By Stokes� theoremZZ

A
(∇× ~q) · ~n dA =

I
C
~q · d~r

Now let a→ 0, then,

(∇× ~q)n
ZZ
A
dA =

I
C
~q · d~r

or,
1

2
ζn =

1

2
(∇× ~q)n = 1

a

∙
1

2πa

I
C
~q · d~r

¸
The quantity ∙

1

2πa

I
C
~q · d~r

¸
is the average tangential velocity along the circle. Hence ζn/2 is the average angular speed
of the ßuid circling along C, i.e., the average rate of rotation. The line integral above is also
known as the circulation.


