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INTERNAL WAVES IN A STRATIFIED FLUID
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1 Two-dimensional Internal waves in inviscid strat-

iÞed ßuid

Due to seaonal changes of temperature, the density of water or atmosphere can have

signiÞcant variations in the vertical direction. Variation of salt content can also lead to

density stratiÞcation. Freshwater from rivers can rest on top of the sea water. Due to

the small diffusivity, the density contrast remains for a long time.

Consider a calm and stratiÞed ßuid with a static density distribution ρo(z) which

decreases with height (z). If a ßuid parcel is moved from the level z upward to z + ζ , it

is surrounded by lighter ßuid of density ρ(z+ dz). The upward buoyancy force per unit

volume is

g(ρ(z + ζ)− ρ(z)) ≈ gdρ
dz
ζ

and is negative. Applying Newton�s law to the ßuid parcel of unit volume

ρ
d2ζ

dt2
= g

dρ

dz
ζ

or
d2ζ

dt2
+N2ζ = 0 (1.1)
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where

N =

Ã
−g
ρ

dρ

dz

!1/2
(1.2)

is called the Brunt-Väisälä frequency. Ths elementary consideration shows that once

a ßuid is displaced from its equilibrium position, gravity and density gradient provides

restoring force to enable oscillations. In general ther must be horizontal nonunifomities,

hence waves are possible.

We start from the exact equations for an inviscid and incompressible ßuid with

variable density.

For an imincompuresibel ßuid the density remains constant as the ßuid moves,

ρt + q ·∇ρ = 0 (1.3)

where q = (u,w) is the velocity vector in the vertical plane of (x, z). Conservation of

mass requires that

∇ · q = 0 (1.4)

The law of momentum conservation reads

ρ(qt + q ·∇q) = ∇p− ρgez (1.5)

and ez is the unit vector in the upward vertical direction.

1.1 Linearized equations

Consider small disturbances

p = p+ p0, ρ = ρ(z) + ρ0, ~q = (u0, w0) (1.6)

with

ρÀ ρ0, pÀ p0 (1.7)

and u0, v0, w0 are small. Linearizing by omitting quadratically small terms associated

with the ßuid motion, we get

ρ0t + w
0dρ
dz
= 0. (1.8)

u0x + w
0
z = 0 (1.9)
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ρu0t = −p0x (1.10)

ρw0t = −pz − p0z − gρ− gρ0 (1.11)

In the last equation the static part must be in balance

0 = −pz − gρ, (1.12)

hence

p(z) =
Z z

0
ρ̄(z)dz. (1.13)

The remaining dynamically part must satisfy

ρw0t = −p0z − gρ0 (1.14)

Upon elminating p0 from the two momentum equations we get

dρ

dz
u0t + ρ(u

0
z − w0x)t = gρ0x (1.15)

Eliminating ρ0 from (1.8) and (1.15) we get

dρ

dz
u0tt + ρ(u

0
z − w0x)tt = gρ0xt = −g

dρ

dz
w0x (1.16)

Let us introduce the disturbance stream function ψ:

u0 = ψz, w0 = −ψx (1.17)

It follows from (1.16) that

ρ (ψxx + ψzz)tt =
dρ

dz
(gψxx − ψztt) (1.18)

by virture of Eqns. (1.8) and (1.17). Note that

N =

s
−g
ρ

dρ

dz
(1.19)

is the Brunt-Väisälä frequency. In the ocean, density gradient is usally very small (

N ∼ 5 × 10−3 rad/sec). Hence ρ can be approximated by a constant reference value,
say, ρ0 = ρ(0) in (1.10) and (1.14) without much error in the inertia terms. However

density variation must be kept in the buoyancy term associated with gravity, which is

the only restoring force responsible for wave motion. This is called the Boussinesq
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approximation and amounts to taking ρ to be contant in (Eq:17.1) only. With it

(1.18) reduces to

(ψxx + ψzz)tt +N
2(z)ψxx = 0.

(1.20)

Note that because of linearity, u0 and w0 satisfy Eqn. (1.20) also, i.e.,

(w0xx + w
0
zz)tt +N

2w0xx = 0 (1.21)

etc.

1.2 Linearized Boundary conditions on the sea surface

Dynamic boundary condition : Total pressure is equal to the atmospheric pressure

(p+ p0)z=ζ = 0. (1.22)

On the free surface z = ζ, we have

p ≈ −g
Z ζ

0
ρ(0)dz = −gρ(0)ζ

Therefore,

−ρgζ + p0 = 0, z = 0, (1.23)

implying

−ρgζxxt + p0xxt = 0, z = 0. (1.24)

Kinematic condition :

ζt = w, z = 0. (1.25)

The left-hand-side of (1.24) can be written as

−ρgζxxt = −ρg w0xx

Using 1.10, the right-hand-side of 1.24 may be written,

−pxxt = ρu0xtt = −ρw0ztt

hence

w0ztt − gw0xx = 0, on z = 0. (1.26)
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Since w0 = −ψx, ψ also satisÞes the same boundary conditon

ψztt − gψxx = 0, on z = 0. (1.27)

On the seabed, z = −h(x) the normal velocity vanishes. For a horizontal bottom we

have

ψ(x,−h, t) = 0. (1.28)

1.3 Simple harmonic waves for Þnite N

Consider a horizontally propagating wave beneath the sea surface. Let

ψ = F (z) e±ikxe−iωt. (1.29)

From Eqn. (1.21),

−ω2
Ã
d2F

dz2
− k2F

!
+N2

³
−k2

´
F = 0

or,
d2F

dz2
+
N2 − ω2
ω2

k2F = 0 z < 0. (1.30)

On the (horizontal) sea bottom

F = 0 z = −h. (1.31)

From Eqn. (1.27),
dF

dz
− g k

2

ω2
F = 0 z = 0. (1.32)

Equations (1.30), (1.31) and (1.32) consititute an eigenvalue condition.

If ω2 < N2, then F is oscillatory in z within the thermocline. Away from the

thermocline, ω2 > N2, W must decay exponentially. Therefore, the thermocline is a

waveguide within which waves are trapped. Waves that have the greatest amplitude

beneath the free surface is called internal waves.

Since for internal waves, ω < N while N is very small in oceans, oceanic internal

waves have very low natural frequencies. For most wavelengths of practical interests

ω2 ¿ gk so that

F ∼= 0 on z = 0. (1.33)
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Figure 1: From Phillips, 1977

This is called the rigid lid approximation, which will be adopted in the following for

simplicity.

With the rigid-lid approximation, the solution for F is

F = A sin

Ã
k(z + h)

√
N2 − ω2
ω

!
(1.34)

where

kh

√
N2 − ω2
ω

= nπ, n = 1, 2, 3... (1.35)

This is an eigen-value condition. For a Þxed wave number k, it gives the eigen-frequencies,

ωn =
Nr

1 +
³
nπ
kh

´2 (1.36)

For a given wavenumber k, this dispersion relation gives the eigen-frequency ωn. For a

given frequency ω, it gives the eigen-wavenumbers kn,

kn =
nπ

h

ω√
N2 − ω2 (1.37)

For a simple lake with vertical banks and length L, 0 < x < L, we must impose the

conditions :

u0 = 0, hence ψ = 0, x = 0, L (1.38)

The solution is

ψ = A sin kmx exp(−iωnmt) sin
km(z + h)

q
N2 − ω2nm
ωnm

 . (1.39)
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with

kmL = mπ, m = 1, 2, 3, ... (1.40)

The eigen-frequencies are:

ωnm =
Nr

1 +
³
nL
mh

´2 (1.41)

1.4 Internal waves in a vertically unbounded ßuid

Consider N = constant, and denote by (α, β) the (x, z) components of the wave num-

berector ~k Let the solution be a plane wave in the vertical plane

ψ = ψ0 e
i(αx+βz−ωt)

Then

ω2 = N2 α2

α2 + β2

or

ω = ±N α

k
(1.42)

k2 = α2 + β2 (1.43)

For a given frequency, there are two possible signs for α. Since the above relation is

also even in β, there are four possible inclinations for the wave crests and troughs with

respect to the vertical; the angle of inclination is

|θ| = cos−1 ω
N

(1.44)

For ω < N , |θ| < π/2. There is no vertically propagating internal wave. This unique
property of anisotropy has been veriÞed in dramatic experiments by Mowbray and

Stevenson. By oscillating a long cylinder at various frrequencies vertically in a stratiÞed

ßuid, equal phase lines are only found along four beams forming �St Andrew�s Cross�,

see Þgure (??) for ω/N = 0.7, 0.9. It can be veriÞed that angles are |θ| = 45◦ for

ω/N = 0.7, and |θ| = 26◦ for ω/N = 0.9, in close accordance with the condition 1.44).

Comparison between measured and predicted angles is plotted in Figure (3) for a wide

range of ω/N To under the physics better we note Þrst that the phase velocity is

~C = ± ω
k2
(α,β) (1.45)
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Figure 2: St Andrew�s Cross in a stratiÞed ßuid

8



Figure 3: Comparison of measured and predicted angles of internal waves

while the group velocity components are

Cgx =
∂ω

∂α
= ±N

µ
1

k
− α

k2
α

k

¶
= ±N

k

Ã
1− α

2

k2

!
= ±N

k3
β2

Cgz =
∂ω

∂β
= ∓αβ

k3
. (1.46)

Thus

~Cg = ±N β

k2

Ã
β

k
,
−α
k

!
. (1.47)

Therefore, the group velocity is perpendicular to the phase velocity,

~Cg · ~C = 0. (1.48)

Since

~C + ~Cg = ±N
k3

³
α2 + β2, 0

´
= ±N

k2
(k, 0) (1.49)

the sum of ~C and ~Cg is a horizontal vector, as shown by any of the sketches in Figure

3. Note that when tkhe phase velocity as an upward component, the group velocity has
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a downward component, and vice versa. Now let us consider energy transport. from

Figure 4: Phase and group velocities

(1.10) we get

−p0x = ρψzt = ρωβψoei(αx+βz−ωt)

hence the dynamic pressure is

p0 = iωρ
β

k
ψoe

i(αx+βz−ωt) (1.50)

The ßiud velocity is easily calculated

~q0 = (u0, v0) = (ψz,−ψx) = iρ(β,−α)ψoei(αx+βz−ωt) (1.51)

The averaged rate of energy transport is therefore

~E =
1

2
ρ2|ψ|2β

α
(β,α) (1.52)

which is in the same direction of the group velocity.

Now returnning to the St. Andrews cross in Þgure (2). Energy must radiate outward

from the oscillating source, hence the group velocity vectors must all be outward. The

crests in the beam in the Þrst quadrant must be in the south-easterly direction. Simlarly

the crests in all four beams must be outward and toward the horizontal axis. Movie
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records indeed conÞrm this prediction. Within each of the four beams which have widths

comparable to the cylinder diameter, only one or two wave lengths can be seen.

For another interesting feature, consider the reßection of an internal wave from a

slope.

Recall that θ = ± cos−1 ω
N
, i.e., for a Þxed frequency there are only two allowable

directions with respect to the horizon. Relative to the sloping bottom inclined at θo the

inclinations of the incident and reßected waves must be different, and are respectively

θ + θo and θ − θo, see Þgure.
Let ξ be along, and η be normal to the slope. Since the slope must be a streamline,

ψi + ψr must vanish along η = 0 and be proportional to ei(αξ−ωt); the total stream

function must be of the form

ψi e
i(k

(i)
t ξ−ωt) + ψr ei(k

(r)
t ξ−ωt) ∝ sinβηei(αξ−ωt).

In particular the wavenumber component along the slope must be equal,

k
(i)
t = k

(r)
t = α

Therefore

k(i) cos(θ + θo) = k
(r) cos(θ − θo),

which implies that

k(i) 6= k(r). (1.53)

as sketched in Figure 5. The incident wave and the reßected wave have different wave-

lengths! If θ < θo, there is no reßection; refraction takes place instead.

11



Figure 5: Internal wave reßected by in inclined surface
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