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REFLECTION, TRANSMISSION, AND DIFFRACTION

Scope:

Reßection of sound at an interface. ( Reference : Brekhovskikh and Godin §.2.2.)
Diffraction by a circular cylinder, theory and simulation.

Diffraction by a wedge

- Parabolic approximation

- Exact theory and Numerical simulation.

1 Introduction to two dimensional scattering

When waves are intercepted by a physical boundary, reßection and scattering occur.

Since in principle any transient signal can be represented as a Fourier integral of simple

harmonic waves within a wide specrum of frequencies, it is a basic problem to study

scattering of monochromatic waves.

For sound in a homogeneous ßuid, the veloctiy potential deÞned by u = ∇φ satisÞes
1

c2
∂2φ

∂t2
= ∇2φ (1.1)

where c denotes the sound speed. Recall that the ßuid pressure p = −ρo∂φ/∂t also
satisÞes the same equation.

We Þrst generalize the plane sinusoidal wave in three dimensional space

φ(x, t) = φoe
i(k·x−ωt) = φoei(kn·x−ωt) (1.2)

where n is the unit vector in the direction of k. Here the phase function is

θ(x, t) = k · x− ωt (1.3)
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The equation of constant phase θ(x, t) = θo describes a moving surface. The wave

number vector k = kn is deÞned to be

k = kn = ∇θ (1.4)

hence is orthogonal to the surface of constant phase, and represens the direction of wave

propagation. The frequency is deÞned to be

ω = −∂θ
∂t

(1.5)

Is (1.2) a solution? Let us check (2.1).

∇φ =
Ã
∂

∂x
,
∂

∂y
,
∂

∂z

!
φ = ikφ

∇2φ = ∇ ·∇φ = ik · ikφ = −k2φ
∂2φ

∂t2
= −ω2φ

Hence (1.1) is satisÞed if

ω = kc (1.6)

Scattering by an object has been the focus of research in physics, electrical, acousti-

cal and oceanographical engineering for a long time. Depending on the geometry, the

mathematics can be quite involved. Mountains of literatures on analytical and numerical

methods can be found. In this chapter we shall limit our study to two space dimensions.

For a plane sound wave of single frequency scattered by a cylinder whose axis is parallel

to the incident crests, the two-dimensional, time-dependent potential can be written as

Φ(x, y, t) = <
h
φ(x, y)e−iωt

i
(1.7)

where the potential amplitude φ is governed by the Helmholtz equation

∇2φ+ k2φ =
∂2φ

∂x2
+
∂2φ2

∂y2
+ k2φ = 0, k =

ω

c
(1.8)

On the rigid and perfectly reglective boundary B the normal velocity vanishes,

∂φ

∂n
= 0 (1.9)
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Let the total wave be the sum of the incident and scattered waves

φ = φI + φS (1.10)

then the scattered waves must further satisfy the radiation condition at inÞnity, i.e., it

can only radiate energy outward from the scatterer.

Th preceding boundary value problem goeverns wave scattering in a variety of physi-

cal contexts. Elastic shear waves scattered by a cylinderical cavity waves is one example.

The scattering of surface water waves in a sea of constant depth is in principle thee di-

mensional, yet it can be reduced to the same two-dimensional boundary value problem

above, if the scatterer (a breakwater, a storage tank , etc.,) has vertical side walls

extending the entire water depth. Let us explain why.

Conder a vertical cylindrical structure of of arbitrary plan form in a sea of constant

depth h. A train of monochromatic waves is incident from inÞnity at the angle α with

respect the x axis. The still water surface is in the x, y plane.

In the water region deÞned by 0 ≥ z ≥ −h, the velocity potential Φ(r, θ, z, t) must
satisfy the Laplace equation,

∂2Φ

∂r2
+
1

r

∂Φ

∂r
+
1

r2
∂2Φ

∂θ2
+
∂2Φ

∂z2
= 0 (1.11)

and subject to the linearized free surface boundary conditions

∂Φ

∂t
= −gζ (1.12)

∂ζ

∂t
=
∂Φ

∂z
(1.13)

which can be combined to give

∂2Φ

∂t2
+ g

∂Φ

∂z
= 0, z = 0. (1.14)

Along the impermeable bottom and coasts, the no ßux boundary conditions are

∂Φ

∂z
= 0 on z = −h (1.15)

∂Φ

∂θ
= 0 at θ = 0 and νπ (1.16)
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The incident wave train is given by

Φi =
−igA0
ω

cosh k(z + h)

cosh kh
φ(r, θ)e−ikr cos(θ−α)−iωt (1.17)

where k is the real wavenumber satisfying the dispersion relation

ω2 = gk tanh kh, (1.18)

and π + α is the angle of incidence measured from the x axis. A0 is the incident wave

amplitude.

Because of the vertical side-walls, we assume

Φ(r, θ, z, t) = A0φ(x, y, t)
cosh k(z + h)

cosh kh
e−iωt (1.19)

where φ(x, y, t) is the horizontal pattern of the potential normlized for an incident wave

of unit amplitude, and is related to the amplitude of the free surface displacement η(x, y)

by

φ(x, y) = −igη(x, y)
ω

(1.20)

Substituting (1.19) into the Laplace equation and using both the kinematic and

dynamic boundary conditions on the free surface, the Laplace equation in (x, y, z) is

then reduced to the two dimensional Helmholtz equation in (x, y),

∂2φ

∂x2
+
∂2φ

∂y2
+ k2φ = 0, (x, y) in the ßuid. (1.21)

The no normal ßux boundary condition on the rigid vertical wall B becomes

n ·∇η = ∂φ

∂n
= 0, (x, y) ∈ B (1.22)

since the normal to the cylinder wall is horizontal. Therefore the three-dimensional

water-wave problem is mathematically equivalent to the two-dimension sound problem,

2 Sound reßection and transmission across an inter-

face

Consider two semi-inÞnite ßuids separated by the plane interface along z = 0. The sound

speeds in the upper and lower ßuids are c and c1 respectively. Let a plane incident wave
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arive from z > 0 at the incident angle of θ with respect to the z axis,

pi = exp[ik(x sin θ − z cos θ)] (2.1)

implying that

ki = (kix, k
i
z) = k(sin θ,− cos θ) (2.2)

The motion is conÞned in the x, z plane.

On the same (incidence) side of the interface we have the reßected wave

pr = R exp[ik(x sin θ + z cos θ)] (2.3)

where R denotes the reßection coefficient. The wavenumber vector is

kr = (krx, k
r
z) = k(sin θ, cos θ) (2.4)

In the lower medium z < 0 the transmitted wave has the pressure

pt = T exp[ik1(x sin θ1 − z cos θ1)] (2.5)

where T is the transmission coefficient. Along the interface z = 0 we require the

continutiy of pressure and normal velocity, i.e.,

[p] = 0, z = 0 (2.6)

and

[w] = 0 z = 0, (2.7)

where the square brackets signify the jump across the interface:

[f ] ≡ f(z = 0+)− f(z = 0−) (2.8)

We deÞne the impedance of a simple harmonic waves by

Z = − p
w

(2.9)

where w is the vertical component of the ßuid velocity. Because

ρ
∂w

∂t
= −iωρw = −∂p

∂z
, (2.10)
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p

w
= −−iωρp∂p

∂z

(2.11)

It follows from the two continuity requirements that the impedance must be continuous

[Z] = 0 z = 0 (2.12)

Note Þrst that to satisfy the conditions of continuity for all x it is necessary that the y

factors match, so that

k sin θ = k1 sin θ1 (2.13)

or
sin θ

c
=
sin θ1
c1

(2.14)

Eq. (2.13) or (2.14) is the famous Snell�s law of refraction. If c1 < c, waves are incident

from the faster medium, the direction of the refracted (or transmitted) wave is closer to

the normal to the interface. Now (2.6) requires that

1 +R = T (2.15)

The impedance of the incident wave, the reßected wave, and the transmitted waves

are respectively

Zi =
ρc

cos θ
, Zr = − ρc

cos θ
, Z1 =

ρ1c1
cos θ1

(2.16)

which are all constants, and the total impedance on the incidence/reßection side is

Z =
ρc

cos θ

exp(−2ikz cos θ) +R
exp(−2ikz cos θ)−R (2.17)

which is in general a complex function of z. Next we impose (2.6) and get

Z1 =
ρc

cos θ

1 +R

1−R (2.18)

hence

R =
Z1 cos θ − ρc
Z1 cos θ + ρc

(2.19)

This formula is written in a general form where the impedance of the lower medium can

be anything . For the present example it is given by (2.16) and

R =
ρ1c1 cos θ − ρc cos θ1
ρ1c1 cos θ + ρc cos θ1

(2.20)
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Let

m =
ρ1
ρ
, n =

c

c1
(2.21)

where the ratio of sound speeds n is called the index of refraction. We get after using

Snell�s law that

R =
m cos θ − n cos θ1
m cos θ + n cos θ1

=
m cos θ − n

q
1− sin2 θ

n2

m cos θ + n
q
1− sin2 θ

n2

(2.22)

The transmission coefficient follows readily from (2.15),

T = 1 +R =
2m cos θ

m cos θ + n
q
1− sin2 θ

n2

(2.23)

We now examine the physics.

If n = c/c1 > 1, the incidence is from a faster to a slower medium, then R is always

real. If however n < 1 then θ1 > θ. There is a critical incidence angle θc, deÞned by

sin θc = n (2.24)

beyond which (θ > θc) the square roots above become imaginary. We must then take

cos θ1 =

s
1− sin

2 θ

n2
= i

s
sin2 θ

n2
− 1 (2.25)

This means that the reßection coefficient is now complex

R =
m cos θ − in

q
sin2 θ
n2

− 1
m cos θ + in

q
sin2 θ
n2

− 1
(2.26)

with |R| = 1, implying complete reßection. As a check the transmitted wave is now

given by

pt = T exp
∙
k1

µ
ix sin θ1 + z

q
sin2 θ/n2 − 1

¶¸
(2.27)

so the amplitude attenuates exponentially in z as z → −∞. Thus the wave train cannot
penetrate much below the interface.

The dependence of R on various parameters is best displayed in the complex plane

R = <R+ i=R.
Case 1: n > 1. Here R is always real.



REFELCTION AND TRANSMISSION ACROSS AN INTERFACE 8

For normal incidence θ = 0,

R =
m− n
m+ n

(2.28)

R > 0 if n < m and R < 0 if n > m. In either case |R| < 1 For glancing incidence

θ = π/2, R = −1. For any intermediate incidence angles, R falls in the segment of the
real axis as shown in Þgure 1.a. and 1.b.

Case 2. n < 1 then R is real only if θ < θc, otherwise R becomes complex and has

the unit amplitude. It is clear from (2.26 ) that =R < 0 so that R falls on the half circle
in the lower half of the complex plane as shown in Þgure 1.c and 1.d.
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Figure 1: Complex reßection coefficient

3 Scattering by a circular cylnder

3.1 Solution in polar coordinates

We study a cylindrical scatter of circular cross section with radius a. The boundary

condition on the cylinder surface is

∂φ

∂r
= 0, r = a (3.1)

It is convenient to employ polar coordinates r, θ where

x = r cos θ, y = r sin θ. (3.2)

The governing equation then reads

1

r

∂

∂r

Ã
r
∂φ

∂r

!
+
1

r2
∂2φ

∂θ2
+ k2φ = 0 (3.3)
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Since φI satisÞes the preceding equation, so does φS.

Let the incident wave φI be a plane wave inclined at the angle of incidence θo with

respect to the positive x axis. In polar coordinates we write

k = k(cos θo, sin θo), x = r(cos θ, sin θ) (3.4)

φI = A exp [ikr(cos θo cos θ + sin θo sin θ)] = Ae
ikr cos(θ−θo) (3.5)

It can be shown (see Appendix A) that the plane wave can be expanded in Fourier-Bessel

series :

eikr cos(θ−θo) =
∞X
n=0

²ni
nJn(kr) cosn(θ − θo) (3.6)

where ²n is the Jacobi symbol:

²0 = 0, ²n = 2, n = 1, 2, 3, . . . (3.7)

Each term in the series (3.6) is called a partial wave.

By the method of separation of variables,

φS(r, θ) = R(r)Θ(θ)

we Þnd

r2R00 + rR0 + (k2r2 − n2)R = 0, and Θ00 + n2Θ = 0

where n = 0, 1, 2, . . . are eigenvalues in order that Θ is periodic in θ with period 2π. For

each eigenvalue n the possible solutions are

Θn = (sinnθ, cosnθ),

Rn =
³
H(1)
n (kr), H

(2)
n (kr)

´
,

where H(1)
n (kr), H

(2)
n (kr) are Hankel functions of the Þrst and second kind, related to

the Bessel and Weber functions by

H(1)
n (kr) = Jn(kr) + iYn(kr), H

(2)
n (kr) = Jn(kr)− iYn(kr) (3.8)

The most general solution to the Helmholtz equation is

φS = A
∞X
n=0

(An sinnθ +Bn cosnθ)
h
CnH

(1)
n (kr) +DnH

(2)
n (kr)

i
, (3.9)
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For large radius the asymptotic form of the Hankel functions behave as

H(1)
n ∼

s
2

πkr
ei(kr−

π
4
−nπ

2
), H(2)

n ∼
s
2

πkr
e−i(kr−

π
4
−nπ

2
) (3.10)

In conjunction with the time factor exp(−iωt), H(1)
n gives outgoing wavew while H(2)

n

give incoming waves. To satisfy the radiation condition, we must discard all terms

involving H(2)
n . From here on we shall abbreviate H(1)

n simply by Hn. The scattered

wave is now

φS = A
∞X
n=0

(An sinnθ +Bn cosnθ)Hn(kr) (3.11)

The expansion coefficients (An, Bn) must be chosen to satisfy the boundary condition

on the cylinder surface. Without loss of generality we can take θo = 0. On the surface

of the cylindrical cavity r = a, we impose

∂φI
∂r

+
∂φS
∂r

= 0, r = a

It follows that An = 0 and

²ninAJ 0n(ka) +BnkH
0
n(ka) = 0, n = 0, 1, 2, 3, . . . n

where prinmes denote differentiation with respect to the argument. Hence

Bn = −A²nin J
0
n(ka)

H 0
n(ka)

The sum of incident and scattered waves is

φ = A
∞X
n=0

eni
n

"
Jn(kr)− J 0n(ka)

H 0
n(ka)

Hn(kr)

#
cosnθ (3.12)

and

Φ = Ae−iωt
∞X
n=0

eni
n

"
Jn(kr)− J 0n(ka)

H 0
n(ka)

Hn(kr)

#
cosnθ (3.13)

The numerical simulations can be seen for a wide range of ka on the web (give web

link).

Of practical interest is the angular variation of pressure on the surface of the cylinder

r = a. Figure 2 shows that for small ka the pressure is relatively uniform in all directions.

For increasingly large ka, waves become stronger on the reßection side (reaching 2 at

the back θ = π). On the shadow side the wave intensity is weak.
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Figure 2: Polar distribution of run-up on a circular cylinder
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It is also interesting to examine certain limits. For very long long waves ka¿ 1 the

expansions for Bessel functions for small argument may be used,

Jn(x) ∼ xn

2nn!
, Yn(x) ∼ 2

π
log x, Yn(x) ∼ 2n(n− 1)!

πxn
(3.14)

Then the scattered wave has the potential

φS
A
∼ −H0(kr)J�0)(ka)

H 0
0)(ka)

− 2iH1(kr)J�1)(ka)
H 0
1)(ka)

cos θ +O(ka)3

=
π

2
(ka)2

µ
− i
2
H0(kr)−H1(kr) cos θ

¶
+O(ka)3 (3.15)

The term H0(kr) coresponds to an oscillating source which sends istropic waves in all

directions. The second term is a dipole sending scattered waves mostly in forward and

backward directions.

For large kr, the angular variation can be obtained by using the asymptotic formulas

to get

φS ∼ A
∞X
n=0

(An sinnθ +Bn cosnθ) e
−inπ/2

s
2

πkr
eikr−iπ/4 (3.16)

Let us deÞne the dimensionless directivity factor

A(θ) =
∞X
n=0

(An sinnθ +Bn cosnθ) e
−inπ/2 (3.17)

which indicates the angular variation of the far-Þeld amplitude, then

φS ∼ AA(θ)
s
2

πkr
eikr−iπ/4 (3.18)

This expression exhibits clearly the asymptotic behaviour of φS as an outgoing wave.

By differentiation, we readily see that

lim
kr→∞

√
r

Ã
∂φS
∂r

− φS
!
= 0 (3.19)

which is one way of stating the radiation condition for two dimensional scattered waves.

The far Þeld pattern of |A(θ)|2 for various ka can be numerically computed as shown in
Þg (3.1).
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Figure 3: Far-Þeld energy intensity as a function of direction
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4 Energy conservation and a general theorem

At any radius r the sound pressure and radial ßuid velocity are respectively,

p = −ρo∂φ
∂t
, and =

∂φ

∂r
(4.1)

The total rate of energy outßux by the scattered wave is

r
Z 2π

0
dθτrz

∂uz
∂t

= r
Z 2π

0
dθ<

"
−k2∂φ

∂r
e−iωt

#
< [iωk2φe−iωt]

= −µωk
4r

2

Z 2π

0
dθ<

"
iφ∗
∂φ

∂r

#
= −µωk

4r

2
=
Z 2π

0
dθ

"
φ∗
∂φ

∂r

#
(4.2)

where overline indicates time averaging over a wave period 2π/ω.

The energy scattering rate is therefore

r
Z ∞

0
dθpur =

ωρor

2
<
Z
C
dθ

Ã
−iφ∗∂φ

∂r

!
= −ωρor

2
=
Z
C
dθ

Ã
φ∗
∂φ

∂r

!
(4.3)

We now derive a general theorm for this quantity.

For the same scatterer and the same frequency ω, different angles of incidence θj

deÞne different scattering problems φj . In particular at inÞnty, we have

φj ∼ Aj
eikr cos(θ−θj) +Aj(θ)

s
2

πkr
eikr−iπ/4

 (4.4)

Let us apply Green�s formula to φ1 and φ2 over a closed area bounded by a closed

contour C,ZZ
S

³
φ2∇2φ1 − φ1∇2φ2

´
dA =

Z
B

Ã
φ2
∂φ1
∂n

− φ1∂φ2
∂n

!
ds+

Z
C
ds

Ã
φ2
∂φ1
∂n

− φ1∂φ1
∂n

!
ds

where n refers to the unit normal vector pointing out of S. The surface integral vanishes

on account of the Helmholtz equation, while the line integral along the cavity surface

vanishes by virture of the boundary condition, henceZ
C
ds

Ã
φ2
∂φ1
∂n

− φ1∂φ2
∂n

!
ds = 0 (4.5)

By similar reasioning, we getZ
C
ds

Ã
φ2
∂φ∗1
∂n

− φ∗1
∂φ2
∂n

!
ds = 0 (4.6)
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where φ∗1 denotes the complex conjugate of φ1.

Let us choose φ1 = φ2 = φo in (4.6), and getZ
C
ds

Ã
φ
∂φ∗

∂n
− φ∗∂φ

∂n

!
ds = 2=

ÃZ
C
dsφ

∂φ∗

∂n

!
= 0 (4.7)

This mathematical result implies the conservation of energy. Physically, across any circle

the net rate of energy ßux vanishes, i.e., the scattered power must be balanced by the

incident power.

Making use of (4.4) we get

0 = =
Z 2π

0
rdθ

eikr cos(θ−θo) +
s
2

πkr
Ao(θ)eikr−iπ/4


·
−ik cos(θ − θo)eikr cos(θ−θo) − ik

s
2

πkr
A∗o(θ)eikr−iπ/4


= =

Z 2π

0
rdθ

½
−ik cos(θ − θo) + 2

πkr
(−ik)|Ao|2

+eikr[cos θ−θo)−1]+iπ/4(−ik)
s
2

πkr
A∗o

+ e−ikr[cos θ−θo)−1]−iπ/4(−ik) cos(θ − θo)
s
2

πkr
Ao


The Þrst term in the integrand gives no contribution to the integral above because of

periodicity. Since =(if) = =(if ∗), we get

0 = −2
π

Z 2π

0
|Ao(θ)|2dθ

+=
Z 2π

0
rdθ

Ao(−ik)
s
2

πkr
[1 + cos(θ − θo)]eiπ/4eikr(1−cos(θ−θo))


= − 2

π

Z 2π

0
|Ao(θ)|2dθ

−<
e−iπ/4

Ao(k)r
s
2

πkr

Z 2π

0
dθ[1 + cos(θ − θo)]eikr(1−cos(θ−θo))


For large kr the remaining integral can be found approximately by the method of sta-

tionary phase (see Appendix B), with the result

Z 2π

0
dθ[1 + cos(θ − θo)]eikr(1−cos(θ−θo)) ∼

s
2π

kr
eiπ/4 (4.8)
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We get Þnally Z 2π

0
|A|2dθ = −2<A(θo) (4.9)

Thus the total scattered energy in all directions is related to the amplitude of the

scattered wave in the forward direction. In atomic physics, where this theorem was

originated (by Niels Bohr), measurement of the scattering amplitude in all directions is

not easy. This theorem suggests an econmical alternative.

Homework For the same scatterer, consider two scattering problems φ1 and φ2.

Show that

A1(θ2) = A2(θ1) (4.10)

For general elastic waves, see Mei (1978) : Extensions of some identities in elastody-

namics with rigid inclusions. J . Acoust. Soc. Am. 64(5), 1514-1522.

5 Diffraction by a thin barrier- parabolic approxi-

mation

References

Morse & Ingard, Theoretical Acoustics Series expansions.

Born &Wolf, Principle of Optics Fourier Transform and the method of steepest descent.

B. Noble. The Wiener-Hopf Technique.

If the obstacle is large, there is always a shadow behind where the incident wave

cannot penetrate deeply. The phenomenon of scattering by large obstacles is usually

referred to as diffraction.

Diffraction of plane incident waves by a thin barrier is not only of interest to sound,

but also to water waves scattered by a breakwater, and to elastic shear waves by a crack,

ete. The exact solution by Sommerfeld is ammilestone in mathematicl physics. Here

we shall give an approximate solution which reveals much of the physics. The method

of approximation, due to V. Fock is of the boundary layer type called the parabolic

approximation, and has been extended for modern applications in recent decades.

Referring to Þgure (5) let us make a crude division of the entire Þeld. The illuminated

zone I is dominated by the incident wave alone, the reßection zone II by the sum of the
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Figure 4: Wave zones near a thin barrier

incident and the reßected wave, and the shadow zone III. The boundaries of these zones

are the rays touching the barrier tip. According to this crude picture of geometrical

optics the solution is

φ =


Ao exp(ik cos θx+ ik sin θy), I;

Ao[exp(ik cos θx+ ik sin θy) + exp(ik cos θx− ik sin θy)], II
0, III

(5.1)

Clearly (5.1) is inadquate because the potential cannot be discontinuous across the

boundaries. A remedy to ensure smooth transition is needed.

Consider the shadow boundary Ox0. Let us introduce a new cartesian coordinate

system so that x0 axis is along, while the y0 axis is normal to, the shadow boundary.

The relations between (x, y) and (x0, y0) are

x0 = x cos θ + y sin θ, y0 = y cos θ − x sin θ (5.2)

Thus the incident wave is simply

φI = Aoe
ikx! (5.3)

Following the chain rule of differentiation,

∂φ

∂x
=
∂φ

∂x0
∂x0

∂x
+
∂φ

∂y0
∂y0

∂x
= cos θ

∂φ

∂x0
− sin θ ∂φ

∂y0

∂φ

∂y
=
∂φ

∂x0
∂x0

∂y
+
∂φ

∂y0
∂y0

∂y
= sin θ

∂φ

∂x0
+ cos θ

∂φ

∂y0



THIN BARRIER AND PARABOLIC APPROXIMATION 23

we can show straightforwardly that

∂2φ

∂x2
+
∂2φ

∂y2
=
∂2φ

∂x02
+
∂2φ

∂y02

so that the Helmholtz equation is unchanged in form in the x0, y0 system.

We try to Þt a boundary layer along the x� axis and expect the potential to be almost

like a plane wave

φ(x,0 , y0) = A(x0, y0)eikx
!

(5.4)

, but the amplitude is slowly modulated in both x0 and y0 directions. Substituting (5.4

into the Helmholtz equation, we get

eikx
!
(
∂2A

∂x02
+ 2ik

∂A

∂x0
− k2A+ ∂

2A

∂y02
+ k2A

)
= 0 (5.5)

Expecting that the characteristic scale Lx of A along x
0 is much longer than a wavelength,

kLx À 1, we have

2ik
∂A

∂x0
À ∂2A

∂x02

Hence we get as the Þrst approximation the Schródinger equation

2ik
∂A

∂x0
+
∂2A

∂y02
≈ 0 (5.6)

In this transition zone where the remaining terms are of comparable importance, hence

the length scales must be related by

k

x0
∼ 1

y02
, implying ky0 ∼

√
kx0

Thus the transition zone is the interior of a parabola.

Equation (5.6) is of the parabolic type. The boundary conditions are

A(x,∞) = 0 (5.7)

A(x,−∞) = Ao (5.8)

The initial condition is

A(0, y0) = 0, ∀y0 (5.9)

Now the initial-boundary value for A has no intrinsic length scales except x0, y0 them-

selves. Therefore the condition kLx À 1 means kx0 À 1 i.e., far away from the tip. This
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problem is somwhat analogous to the problem of one-dimensional heat diffusion across

a boundary. A convenient way of solution is the method of similarity.

Assume the solution

A = Aof(γ) (5.10)

where

γ =
−ky0√
πkx0

(5.11)

is the similarity variable. We Þnd upon subsitution that f satisÞes the ordinary differ-

ential equation

f 00 − iπγf 0 = 0 (5.12)

subject to the boundary conditions that

f → 0, γ → −∞; f → 1, γ →∞. (5.13)

Rewriting (5.12) as
f 00

f 0
= iπγ

we get

log f 0 = iπγ/2 + constant.

One more integration gives

f = C
Z γ

−∞
exp

Ã
iπu2

2

!
du

Since Z ∞

0
exp

Ã
iπu2

2

!
du =

eiπ/4√
2

we get

C =
e−iπ/4√
2

and

f =
A

Ao
=
e−iπ/4√
2

Z γ

−∞
exp

Ã
iπu2

2

!
du =

e−iπ/4√
2

(
eiπ/4√
2
+
Z γ

0
exp

Ã
iπu2

2

!
du

)
(5.14)

DeÞning the cosine and sine Fresnel integrals by

C(γ) =
Z γ

0
cos

Ã
πv2

2

!
dv, S(γ) =

Z γ

0
sin

Ã
πv2

2

!
dv (5.15)
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Figure 5: Ciornu�s spiral as a function of γ.

we can then write
e−iπ/4√
2

½∙
1

2
+ C(γ)

¸
+ i

∙
1

2
+ S(γ)

¸¾
(5.16)

In the complex plane the plot of C(γ)+ iS(γ) vs. γ is the famous Cornu�s spiral, shown

in Þgure (5).

The wave intensity is given by

|A|2
A2o

=
1

2

(∙
1

2
+ C(γ)

¸2
+
∙
1

2
+ S(γ)

¸2)
(5.17)

Since C, S → 0 as γ → −∞, the wave intensity diminshes to zero gradually into the
shadow. However, C, S → 1/2 as γ → ∞ in an oscillatory manner. Hence the wave

intensity oscillates while approaching to unity asymptotically, as shown in Þgure 5. In

optics these oscillations show up as alternately light and dark diffraction bands.

In more complex propagation problems, the parabolic approximation can simplify the

numerical task in that an elliptic boundary value problem involving an inÞnite domain
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Figure 6: Wave intensity variation near the shadow boundary

is reduced to an initial boundary value problem. One can use Crank-Nicholson scheme

to march in �time�, i.e., x0.

Homework Find by the parabolic approximation the transition solution along the

edge of the reßection zone.

6 Diffraction by a Wedge � An Exact Theory

Refs. Stoker:

In the preceding section we gave an approximate theory by parabolic approximation.

Extending the theory of Sommerfeld, Peters and Stoker (1954) have given an exact

theory for the general case of a wedge, see Stoker (1957). In the original work a series

solution was Þrst obtained by Þnite Fourier transform. The resulting series was then

summed in terms of integrals from which approximate informtation was then extracted

by some intricate asymptotic analysis. With the power of the modern computer, it is
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Figure 7: Waves scattering by a wedge

more straightforward to get quantitative results from direct numerical calculation of the

series, as exempliÞed by Chen (1982). To facilitate the understanding of the physics,

these results are presented in animated form in �link-simulations�. The exact theory

will then be compared with the parabolic approximation.

Refering to Figure 6 the entire ßuid region can be divided into three zones according

to the crude picture of geometrical optics. I: the zone of incident and reßected waves,

II : the zone of incident waves and III ; the shadow. To ensure smooth transition in

all zones there is also the diffracted (or scattered) waves. The total potential can be

expressed in a compact form by

φ = φo(r, θ) + φs(r, θ), for all 0 < θ < νπ (6.18)

where φo is deÞned by

φo(r, θ) =


φi + φr π − α > θ > 0, in I;
φi π + α > θ > π − α, in II;
0 θ0 > θ > π + α, in III.

(6.19)

and φs is the scattered (or diffracted) waves. Both the incident wave

φi = e
−ikr cos(θ−α) (6.20)

and the reßected wave

φr = e
−ikr cos(θ+α) (6.21)
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are known, where α denotes the angle of incidence. The unknown scattered wave φs

must satisfy the radiation condition and behaves as an outgoing wave at inÞnity, i.e.,

lim
r→0

√
r(
∂φs
∂r

− ikφs) = 0 (6.22)

or

φs ∼ A(θ)eikr√
kr

at r→∞ (6.23)

6.1 Solution by Þnite Fourier Transform

Let us introduce the Þnite cosine transform of φ deÞned by

φ̄(kr, n) =
Z νπ

0
φ(kr, θ) cos

nθ

ν
dθ (6.24)

where n=0, 1, 2, ... are integers. the inverse transform is

φ(r, θ) =
1

νπ
φ̄(r, 0) +

2

νπ

∞X
n=1

φ̄(r, n) cos
nθ

ν
(6.25)

It is easily recognized that the transform is equivalent to expansion in cosine series.

Applying the Þnite cosine transform and using the boundary conditions on the walls,

∂2φ

∂θ2
=
Z νπ

0

∂2φ

∂θ2
cos

nθ

ν
dθ

=

"
∂φ

∂θ
cos

nθ

ν

#θ=νπ
θ=0

+
n

ν

Z νπ

0

∂φ

∂θ
sin
nθ

ν
dθ

=

"
n

ν
φ sin

nθ

ν

#θ=νπ
θ=0

− n
2

ν2

Z νπ

0
φ cos

nθ

ν
dθ

= −n
2

ν2

Z νπ

0
φ cos

nθ

ν
dθ (6.26)

Eq. (1.21) becomes

r2
∂2φ̄

∂r2
+ r

∂φ̄

∂r
+

"
(kr)2 −

µ
n

ν

¶2#
φ̄ = 0 (6.27)

The general solution Þnite at the origin is

φ̄(kr, n) = anJn/ν(kr) (6.28)

where the coefficient�s an, n = 0, 1, 2, 3, ... are to be determined.
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The Þnite cosine transform of (6.18) reads

anJn/ν(kr) =
Z νπ

0
φs cos

nθ

ν
dθ +

Z νπ

0
φo cos

nθ

ν
dθ (6.29)

or

φ̄s = anJn/ν(kr)− φ̄0 (6.30)

Applying the operator limr→∞
√
r(∂/∂r − ik) to both sides of (6.29), and using the

Sommerfeld radiation condition (6.22), we have

lim
r→∞

√
r

Ã
∂

∂r
− ik

! "
anJn/ν(kr)−

Z νπ

0
φ0 cos

nθ

ν
dθ

#
= 0 (6.31)

We now perform some asymptotic analysis to evaluate an.

First, for large kr we have

Jn/ν(kr) ∼
s
2

πkr
cos

µ
kr − nπ

2ν
− π
4

¶
(6.32)

It follows that

lim
r→∞

√
r

Ã
∂

∂r
− ik

!
Jn/ν(kr) =

s
2k

π
e−i(kr−

nπ
2ν
+π
4 ) (6.33)

Second, we substitute φo from (6.20) and (6.21) to rewrite the integral of φo as

Z νπ

0
φ0 cos

nθ

ν
dθ =

1z }| {Z π−α

0
e−ikr cos(θ−α) cos

nθ

ν
dθ+

2z }| {Z π−α

0
e−ikr cos(θ+α) cos

nθ

ν
dθ

+

3z }| {Z π+α

π−α
e−ikr cos(θ−α) cos

nθ

ν
dθ (6.34)

Each of the integrals above scan be evaluated for large kr by the method of stationary

phase. The details are given in the appendix C; only the results are cited below.

The Þrst integral is approximately

I1(θ) = cos
µ
nα

ν

¶
e−ikr+

iπ
4

∙
2π

kr

¸ 1
2

+O
µ
1

kr

¶
(6.35)

from which

lim
r→∞

√
r

Ã
∂

∂r
− ik

! Z π−α

0
e−ikr cos(θ−α) cos

nθ

ν
dθ

= lim
r→∞

√
r

Ã
∂

∂r
− ik

!cos
µ
nα

ν

¶
e−ikr+

iπ
4

∙
2π

kr

¸ 1
2


= 2

√
2πk cos

µ
nα

ν

¶
e−ikr−

iπ
4 (6.36)
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where we have used i = eiπ/2. By similar analysis the second integral is found to be

I2(θ) ≈ 1

2
cos

Ã
n(π − α)

ν

!
eikr−

iπ
4

∙
2π

kr

¸ 1
2

(6.37)

It follows that

lim
r→∞

√
r

Ã
∂

∂r
− ik

!Z π−α

0
e−ikr cos(θ+α) cos

nθ

ν
dθ

= lim
r→∞

√
r

Ã
∂

∂r
− ik

!12 cos(n(π − α)ν
)eikr−

iπ
4

∙
2π

kr

¸ 1
2


= 0 (6.38)

Finally the third integral is approximately

I3(θ) ≈ 1

2
cos(

n(π + α)

ν
)eikr−

iπ
4

∙
2π

kr

¸ 1
2

(6.39)

hence

lim
r→∞

√
r

Ã
∂

∂r
− ik

! Z π+α

0
e−ikr cos(θ+α) cos

nθ

ν
dθ

= lim
r→∞

√
r

Ã
∂

∂r
− ik

!12 cos(n(π + α)ν
)eikr−

iπ
4

∙
2π

kr

¸ 1
2


= 0 (6.40)

In summary, only the Þrst integral associated with the incident wave furnishes a

nonvanishing contribution to the expansion coefficients, i.e.,

lim
r→∞

√
r

Ã
∂

∂r
− ik

!Z νπ

0
φ0 cos

nθ

ν
dθ ∼ 2

√
2πk cos

nα

ν
e−i(kr+

π
4 ) (6.41)

With this result we get by substituting (6.33) and (6.41) into (6.31), the coefficients an

are found

an = 2π cos
nα

ν
e−i

nπ
2ν (6.42)

By inverse transform, (6.25), we get the exact solution,

φ(r, θ) =
2

ν

"
J0(kr) + 2

∞X
n=1

e−i
nπ
2ν Jn/ν(kr) cos

nα

ν
cos

nθ

ν

#
(6.43)
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6.2 Two limiting cases

(1) A thin barrier. Let the wedge angle be 0 by setting ν = 2. Equation (6.43) then

becomes

φ(r, θ) = J0(kr) + 2
∞X
n=1

e−i
nπ
4 Jn/2(kr) cos

nα

2
cos

nθ

2
(6.44)

(see Stoker (1957)).

(2) An inÞnite wall extending from x = −∞ to ∞. Water occupying only the half
plane of y ≥ 0 and the wedge angle is 180 degrees. The diffracted wave is absent from
the solution, and the total wave is only the sum of the incident and reßected waves :

φ(r, θ) = e−ikr cos(θ−α) + e−ikr cos(θ+α) (6.45)

By employing the partial-wave expansion theorm, (Abramowitz and Stegun 1964), the

preceding equaion becomes

φ(r, θ) = 2

"
J0(kr) + 2

∞X
n=1

(−i)nJn(kr) cosnα cosnθ
#

(6.46)

which agree with (6.43) for ν = 1.

For sample results, click website.

6.3 Comparison with Parabolic Approximation

to be written

A Partial wave expansion

A useful result in wave theory is the expansion of the plane wave in a Fourier series

of the polar angle θ. In polar coordinates the spatial factor of a plane wave of unit

amplitude is

eikx = eikr cos θ.

Consider the following product of exponential functions

ezt/2e−z/2t =

" ∞X
n=0

1

n!

µ
zt

2

¶n# " ∞X
n=0

1

n!

µ−z
2t

¶n#
∞X
−∞
tn
"
(z/2)n

n!
− (z/2)n+2

1!(n+ 1)!
+
(z/2)n+4

2!(n+ 2)!
+ · · ·+ (−1)r (z/2)

n+2r

r!(n+ r)!
+ · · ·

#
.

http://web.mit.edu/fluids-modules/waves/www/w-index.html
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The coefficient of tn is nothing but Jn(z), hence

exp
∙
z

2

µ
t− 1

t

¶¸
=

∞X
−∞
tnJn(z).

Now we set

t = ieiθ z = kr.

The plane wave then becomes

eikx =
∞X

N=−∞
ein(θ+π/2Jn(z).

Using the fact that J−n = (−1)nJn, we Þnally get

eikx = eikr cos θ =
∞X
n=0

²ni
nJn(kr) cosnθ, (A.1)

where ²n is the Jacobi symbol. The above result may be viewed as the Fourier expan-

sion of the plane wave with Bessel functions being the expansion coefficients. In wave

propagation theories, each term in the series represents a distinct angular variation and

is called a partial wave.

Using the orthogonality of cosnθ, we may evaluate the Fourier coefficient

Jn(kr) =
2

²ninπ

Z π

0
eikr cos θ cosnθdθ, (A.2)

which is one of a host of integral representations of Bessel functions.

B Approximation of an integral

Consider the integral Z 2π

0
dθ[1 + cos(θ − θo)]eikr(1−cos(θ−θo))

For large kr the stationary phase points are found from

∂

∂θ
[1− cos(θ − θo)] = sin(θ − θo) = 0

or θ = θo, θo + π within the range [0, 2π]. Near the Þrst stationary point the integrand

is dominated by

2A(θo)eikt(θ−θo)2/2.
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When the limits are approximated by (−∞,∞), the inegral can be evaluated to give

A(θo)
Z ∞

−∞
eikrθ

2/2dθ =

s
2π

kr
eiπ/4A(θo)

Near the second stationary point the integral vanishes since 1+cos(θ−θo) == 1−1 = 0.
Hence the result (4.8) follows.

C Asymptotic evaluation of integrals

For the Þrst integral I1, we take the phase to be f1(θ) = k cos(θ − α). The points of
stationary phase must be found from

f 01(θ) = −k sin(θ − α) = 0, (C.1)

hence θ = α,α ± π. Only the Þrst at θ1 = α lies in the range of integration (0, π − α)
and is the stationary point. Since

f 001 (θ1) = −k cos(θ1 − α) = −k < 0 (C.2)

the integral is approximately

I1(θ) ≈ cos(nθ1
ν
)e−ikr cos(θ1−α)+

iπ
4

∙
2π

kr

¸ 1
2

= cos(
nα

ν
)e−ikr+

iπ
4

∙
2π

kr

¸ 1
2

(C.3)

For the second integral I2, we take the phase to be f2(θ) = k cos(θ + α). The

stationary phase point must be the root of

f 02(θ) = −k sin(θ + α) = 0 (C.4)

or θ = −α,−α ± õ. The stationary point is at θ2 = π − α which is the the upper limit
of integration. Since

f 002 (θ2) = −k cos(θ2 + α) = k > 0 (C.5)

I2 is approximately

I2(θ) ≈ 1

2
cos(

nθ2
ν
)e−ikr cos(θ2+α)−

iπ
4

∙
2π

kr

¸ 1
2

=
1

2
cos(

n(π − α)
ν

)eikr−
iπ
4

∙
2π

kr

¸ 1
2

(C.6)
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Lastly for the third integral I3, the phase is f3(θ) = k cos(θ − α). The point of
stationary phase is found from

f 03(θ) = −k sin(θ − α) = 0 (C.7)

or θ = π,±π+α. Only the point θ3 = π+α is acceptable and coincides with the upper
limit of integration. Since

f 003 (θ3) = −k cos(θ3 − α) = k > 0, (C.8)

I3 is approximately

I3(θ) ≈ 1

2
cos(

n(π + α)

ν
)eikr−

iπ
4

∙
2π

kr

¸ 1
2

(C.9)


