
3.2 PROGRESSIVE WAVES OVER CONSTANT DEPTH 1

I-campus project

School-wide Program on Fluid Mechanics

Modules on Waves in ßuids

T. R. Akylas & C. C. Mei

CHAPTER THREE

DISPERSION OF SURFACE WATER WAVES

Except in very shallow water, one of the most outstanding physical properties of

sea surface waves is dispersion in that waves of different wavelengths propagate at

different speeds. If the waves are sufficiently steep, nonlinearity is also important. The

interplay of dispersion and nonlinearity gives rise to a host of new phenomena unfamiliar

in classical physics and makes surface water waves a perenial subject of fascination and

challenge. In this module, only dispersion of inÞnitesimal waves will be discussed.

1 Progressive waves on a sea of constant depth

1.1 The velocity potential

We shall based our study on the govering equations of §1.4, and consider the simplest
case of constant depth and sinusoidal waves with inÞnitely long crests parallel to the y

axis. The motion is in the vertical plane (x, z). Let us seek a solution representing a

wavetrain advancing along the x direction with frequency ω and wave number k,

Φ = f(z)eikx−iωt (1.1)

In order to satisfy (??), (2.4) and (??) we need

f 00 + k2f = 0, − h < z < 0 (1.2)

−ω2f + gf 0 + T
ρ
k2f 0 = 0, z = 0, (1.3)

f 0 = 0, z = −h (1.4)

Clearly solution to (1.2) and (1.4) is

f(z) = B cosh k(z + h)
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implying

Φ = B cosh k(z + h)eikx−iωt (1.5)

In order to satisfy (1.3) we require

ω2 =

Ã
gk +

T

ρ
k3
!
tanh kh (1.6)

This eigenvalue condition relates ω and k. From (??) we get

∂ζ

∂t
=
∂Φ

∂z

¯̄̄̄
¯
z=0

= (Bk sinh kh)eikx−iωt (1.7)

Upon integration,

ζ = Aeikx−iωt =
Bk sinh kh

−iω eikx−iωt (1.8)

where A denotes the surface wave amkplitude, it follows that

B =
−iωA
k sinh kh

and

Φ =
−iωA
k sinh kh

cosh k(z + h)eikx−iωt

=
−igA
ω

Ã
1 +

Tk2

gρ

!
cosh k(z + h)

cosh kh
eikx−iωt (1.9)

1.2 The dispersion relation

Let us Þrst examine the relation (1.6) between frequency and wavenumber. Here three

lengths are present : the depth h, the wavelength λ = 2π/k, and the length λm = 2π/km

with

km =

r
gρ

T
, λm =

2π

km
= 2π

s
T

gρ
(1.10)

For reference we note that on the air-water interface, T/ρ = 74 cm3/s2, g = 980 cm/s2,

so that λm = 1.73cm. The depth of oceanographic interest ranges from a tens of

centimeters to thousand of meters. The wavelength ranges from a few centimeters to

hundreds or thousands of meters.

Let us introduce

ω2m = 2gkm = 2g

r
gρ

T
(1.11)
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then (1.6) is normalized to

ω2

ω2m
=
1

2

k

km

Ã
1 +

k2

k2m

!
tanh kh (1.12)

Consider Þrst waves of length of the order of λm. For depths of oceanographic

interest, hÀ λ, or khÀ 1, tanh kh ≈ 1. Hence
ω2

ω2m
=
1

2

k

km

Ã
1 +

k2

k2m

!
(1.13)

or, in dimensional form,

ω2 = gk +
Tk3

ρ
(1.14)

The phase velocity is

c =
ω

k
=

vuutg
k

Ã
1 +

Tk2

gρ

!
(1.15)

DeÞning

cm =
ωm
km

(1.16)

the preceding equation takes the normalzed form

c

cm
=

vuut1
2

Ã
km
k
+
k

km

!
(1.17)

Clearly

c ≈
s
Tk

ρ
, if k/km À 1, or λ/λm ¿ 1 (1.18)

Thus for wavelengths much shorter than 1.7 cm, capillarity alone is important, These

are called the capillary waves. On the other hand

c ≈
r
g

k
, if k/km ¿ 1, or λ/λm ¿ 1 (1.19)

Thus for wavelength much longer than 1.73 cm, gravity alone is important; these are

called the gravity waves. Since in both limits, c beocmes large, there must be a minimum

for some intermediate k. From

dc2

dk
= − g

k2
+
T

ρ
= 0

the minmum c occurs when

k =

r
gρ

T
= km, or λ = λm (1.20)
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Figure 1: Phase speed of capillary-gravity waves in inÞnitely deep water

The smallest value of c is cm. For the intermediate range where both capillarity and

gravity are of comparble importance; the dispersion relation is plotted in Þgure (1).

Next we consider longer gravity waves where the depth effects are essential.

ω =
q
gk tanh kh (1.21)

For gravity waves on deep water, khÀ 1, tanh kh→ 1. Hence

ω ≈
q
gk, c ≈

r
g

k
(1.22)

These are also called short gravity waves. In this category the longer waves travel

faster. Any initial disturbance may be regarded as the superposition of waves of a

broad spectrum of lengths. The above relation then says that waves of different lengths

will eventually separate, i.e., disperse. This phenomenon is called dispersion, hence

(1.14) or (1.15) is known as the dispersion relation.

If however the waves are very long in comparison to the depth so that kh¿ 1, then

tanh kh ∼ kh and
ω ≈ k

q
gh, c ≈

q
gh (1.23)

For intermediate values of kh, the phase speed decreases monotonically with increasing

kh. All long waves with kh ¿ 1 travel at the same maximum speed limited by the
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Figure 2: Phase speed of capillary-gravity waves in water of Þnite depth

depth,
√
gh, hence they are non-dispersive. The dispersion relation is plotted in Þgure

(2) for a wide range of wavelengths.

1.3 The ßow Þeld

For arbitrary k/km and kh, the velocities and dynamic pressure are easily found from

the potential (1.9) as follows

u =
∂Φ

∂x
=
gkA

ω

Ã
1 +

Tk2

gρ

!
cosh k(z + h)

cosh kh
eikx−iωt (1.24)

w =
∂Φ

∂z
=
−igkA
ω

Ã
1 +

Tk2

gρ

!
sinh k(z + h)

cosh kh
eikx−iωt (1.25)

p = −ρ∂Φ
∂t
= ρgA

Ã
1 +

Tk2

gρ

!
cosh k(z + h)

cosh kh
eikx−iωt (1.26)

Note that all these quantities decay monotonically in depth.

In deep water, khÀ 1,

u =
gkA

ω

Ã
1 +

Tk2

gρ

!
ekzeikx−iωt (1.27)

w =
∂Φ

∂z
=
−igkA
ω

Ã
1 +

Tk2

gρ

!
ekzeikx−iωt (1.28)

p = −ρ∂Φ
∂t
= ρgA

Ã
1 +

Tk2

gρ

!
ekzeikx−iωt (1.29)
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All dynamical quantities diminish exponentially to zero as kz → −∞. Thus the ßuid
motion is limited to the surface layer of depth O(λ). Gravity and capillary-gravity waves

are therefore surface waves.

For pure gravity waves in shallow water, T = 0 and kh¿ 1, we get

u =
gkA

ω
eikx−iωt (1.30)

w = 0, (1.31)

p = −ρ∂Φ
∂t
= ρgAeikx−iωt = ρgζ (1.32)

Note that the horizontal velocity is uniform in depth while the vertical velocity is neg-

ligible. Thus the ßuid motion is essentially horizontal. The total pressure

P = po + p = ρg(ζ − z) (1.33)

is hydrostatic and increases linearly with depth from the free surface.

1.4 The particle orbit

In ßuid mechanics there are two ways of describing ßuid motion. In the Lagrangian

scheme, one follows the trajectory x, z of all ßuid particles as functions of time. Each

ßuid particle is identiÞed by its static or intital position xo, zo. Therefore the instan-

taneous position at time t depends parametrically on xo, zo. In the Eulerian scheme,

the ßuid motion at any instant t is described by the velocity Þeld at all Þxed positions

x, z. As the ßuid moves, the point x, z is occupied by different ßuid particles at different

times. At a particular time t, a ßuid particle originally at (xo, zo) arrives at x, z, hence

its particle velocity must coincide with the ßuid velocity there,

dx

dt
= u(x, z, t),

dz

dt
= w(x, z, t) (1.34)

Once u, w are known for all x, z, t, we can in principle integrate the above equations to

get the particle trajectory. This Euler-Lagrange problem is in general very difficult.

In small amplitude waves, the ßuid particle oscillates about its mean or initial posi-

tion by a small distance. Integration of (1.34) is relatively easy. Let

x(xo, zo, t) = xo + x
0(xo, zo, t), andz(xo, zo, t) = zo + x

0(xo, zo, t) (1.35)
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then x0 ¿ x, z0 ¿ z in general. Equation (1.34) can be approximated by

dx0

dt
= u(xo, zo, t),

dz0

dt
= w(xo, zo, t) (1.36)

From (1.24) and (1.25), we get by integration,

x0 =
gkA

−iω2
Ã
1 +

Tk2

gρ

!
cosh k(zo + h)

cosh kh
eikxo−iωt

= −gkA
ω2

Ã
1 +

Tk2

gρ

!
cosh k(zo + h)

cosh kh
sin(kxo − ωt) (1.37)

(1.38)

z0 =
gkA

ω2

Ã
1 +

Tk2

gρ

!
sinh k(zo + h)

cosh kh
eikxo−iωt

=
gkA

ω2

Ã
1 +

Tk2

gρ

!
sinh k(zo + h)

cosh kh
cos(kxo − ωt) (1.39)

(1.40)

Letting  a

b

 = gkA

ω2 cosh kh

Ã
1 +

Tk2

gρ

! cosh k(zo + h)

sinh k(zo + h)

 (1.41)

we get
x02

a2
+
z02

b2
= 1 (1.42)

The particle trajectory at any depth is an ellipse. Both horizontal (major) and vertical

(minor) axes of the ellipse decrease monotonically in depth. The minor axis diminshes

to zero at the seaebed, hence the ellipse collapses to a horizontal line segment. In deep

water, the major and minor axes are equal

a = b =
gkA

ω2

Ã
1 +

Tk2

gρ

!
ekzo , (1.43)

therefore the orbits are circles with the radius diminishing exponentially with depth.

Also we can rewrite the trajectory as

x0 =
gkA

ω2

Ã
1 +

Tk2

gρ

!
cosh k(zo + h)

cosh kh
sin(ωt− kxo) (1.44)

z0 =
gkA

ω2

Ã
1 +

Tk2

gρ

!
sinh k(zo + h)

cosh kh
sin(ωt− kxo − π

2
) (1.45)

When ωt − kxo = 0, x0 = 0 and z0 = b. A quarter period later, ωt − ko = π/2, x0 = a
and z0 = 0. Hence as time passes, the particle traces the ellptical orbit in the clockwise

direction.
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1.5 Energy and Energy transport

Beneath a unit length of the free surface, the time-averaged kinetic energy density is

Ēk =
ρ

2

Z 0

−h
dz
³
u2 + w2

´
(1.46)

whereas the instantaneous potential energydensity is

Ep =
1

2
ρgζ2 + T

(ds− dx)
dx

=
1

2
ρgζ2 + T

µq
1 + ζ2x − 1

¶
=
1

2
ρgζ2 + Tζ2x (1.47)

Hence the time-average is

Ēp =
1

2
ρgζ2 +

T

2
ζ2x (1.48)

Let us rewrite (1.24) and (1.25) in (1.48):

u = <
(
gkA

ω

Ã
1 +

Tk2

gρ

!
cosh k(z + h)

cosh kh
eikx

)
e−iωt (1.49)

w = <
(−igkA

ω

Ã
1 +

Tk2

gρ

!
sinh k(z + h)

cosh kh
eikx

)
e−iωt (1.50)

Then

Ēk =
ρ

4

Ã
gkA

ω

!2 Ã
1 +

Tk2

gρ

!2
1

cosh2 kh

Z 0

−h
dz
h
cosh2 k(z + h) + sinh2 k(z + h)

i

=
ρ

4

Ã
gkA

ω

!2 Ã
1 +

Tk2

gρ

!2
sinh 2kh

2k cosh2 kh
=
ρ

4

Ã
gkA

ω

!2 Ã
1 +

Tk2

gρ

!2
sinh kh

k cosh kh

=
ρgA2

4

Ã
1 +

Tk2

gρ

!2
gk tanh kh

ω2
=
ρgA2

4

Ã
1 +

Tk2

gρ

!
(1.51)

after using the dispersion relation. On the other hand,

Ēp =
ρgA2

4

Ã
1 +

Tk2

ρg

!
(1.52)

Hence the total enegy density is

Ē = Ēk + Ēp =
ρgA2

2

Ã
1 +

Tk2

ρg

!
=
ρgA2

2

Ã
1 +

k2

k2m

!
=
ρgA2

2

Ã
1 +

λ2m
λ2

!
(1.53)

Note that the total energy is equally divided between kinetic and potential energies; this

is called the equipartition of energy.
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We leave it as an exercise to show that the power ßux (rate of energy ßux) across a

station x is

dĒ

dt
=
Z 0

−h
pu dz − Tζxζt = −ρ

Z 0

−h
ΦtΦx dz − T ζxζt = Ēcg (1.54)

where cg is the speed of energy transport , or the group velocity

cg =
dω

dk
=
c

2


k2m
k2
+ 3

k2m
k2
+ 1

+
2kh

sinh 2kh

 = c

2


λ2

λ2m
+ 3

λ2

λ2m
+ 1

+
2kh

sinh 2kh

 (1.55)

For pure gravity waves, k/km ¿ 1 so that

cg =
c

2

Ã
1 +

2kh

sinh 2kh

!
(1.56)

where the phase velocity is

c =

r
g

k
tanh kh (1.57)

In very deep water khÀ 1, we have

cg =
c

2
=
1

2

r
g

k
(1.58)

The shorter the waves the smaller the phase and group velocities. In shallow water

kh¿ 1,

cg = c =
q
gh (1.59)

Long waves are the fastest and no longer dispersive.

For capillary-gravity waves with khÀ 1, we have

cg =
c

2


k2m
k2
+ 3

k2m
k2
+ 1

 = c

2


λ2

λ2m
+ 3

λ2

λ2m
+ 1

 , km =
2π

λm

r
ρg

T
(1.60)

where

c =

s
g

k
+
Tk3

ρ
(1.61)

Note that cg = c when k = km, and

cg
>
< c, if k

>
< km (1.62)

In the limit of pure capillary waves of k À km, cg = 3c/2. For pure gravity waves

cg = c/2 as in (1.58).
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2 Dispersion of transient disturbance

The solution for monochromatic waves already suggests that waves of different wave-

lengths disperse by travelling at different velocities. Let us examine in more detail

the consequence of an initial disturbance which is represented by the sum of inÞnitely

many sinusoids with a wide spectrum. To this end we shall employ the tool of Fourier

transform.

Let us consider two dimensional capillary-gravity waves in very deep water. Recall

from §1.4 for convenience that the velocity potential satisÞes the Laplace equation

Φxx + Φzz = 0, −∞ < z < 0. (2.1)

On the free surface the dynamical boundary condition requires

−ρgζ − ρ∂Φ
∂t
+ T

∂2ζ

∂x2
= 0, z = 0. (2.2)

The kinematic condition requires

ζt = Φz, z = 0. (2.3)

Combination of the two yields

∂2Φ

∂t2
+ g

∂Φ

∂z
− T
ρ

∂3Φ

∂x2∂z
= 0, z = 0 (2.4)

At great depth, the velocity vanishes

Φx,Φz → 0, z → −∞. (2.5)

Since conditions (2.3) and (2.2) involve Þrst-order time derivatives, we must prescribe

the initial data for Φ(x, 0, 0) and ζ(x, 0) on the free surface. Physically Φ(x, 0, 0) is

equivalent to an impulsive pressure applied on the free surface. Here we shall only

illustrate the effects of a prescribed initial displacement of the free surface,

Φ(x, 0, 0) = 0, ζ(x, 0) = ζo(x) = given. (2.6)
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2.1 Solution by Fourier transform

Let us deÞne the Fourier transform of f(x) and its inverse f(k) by

f̄(k) =
Z ∞

−∞
e−ikxf(x) dx, f(x) =

1

2π

Z ∞

−∞
e−ikxf̄(k) dk (2.7)

Then it is possible to show that the solution for the surface displacement is

ζ(x, t) =
1

2π

Z ∞

−∞
dk ζo(k) cosωt (2.8)

where ζ̄(k, t) is the Fourier transform of ζ(x, 0), and the potential is

Φ(k, z, t) = − 1

2π

Z ∞

−∞
dk ζo(k)

Ã
g +

Tk2

ρ

!
sinωt

ω
e|k|z (2.9)

with

ω =

"
|k|

Ã
g +

Tk2

ρ

!#1/2
(2.10)

Detailed derivation is as follows.

The transform of Laplace equation is

Φzz − k2Φ = 0, z < 0 (2.11)

From the combined free surface condition, we get

Φtt +

Ã
g +

Tk2

ρ

!
Φz = 0 (2.12)

From the dynamical condition on the free surface

Φt = −
Ã
g +

Tk2

ρ

!
ζ (2.13)

At great depth

Φ,Φz → 0, z → −∞ (2.14)

The initial conditions on the free surface are

ζ(k, 0) = ζo(k) (2.15)

Φ(k, 0, 0) = 0 (2.16)

The solution of (2.11) is

Φ(k, z, t) = A(k, t)e|k|z
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From (2.12), A must satisfy

Att + |k|
Ã
g +

Tk2

ρ

!
A = 0, t > 0

From (2.16) and (2.15), the initial conditions for A are

A(k, 0) = 0,

At(k, 0) = −ζ(k, 0)
Ã
g +

Tk2

ρ

!
= −ζo(k)

Ã
g +

Tk2

ρ

!
Hence

A = −ζo(k)
Ã
g +

Tk2

ρ

!
sinωt

ω

The solution for the tranformed potential is

Φ(k, z, t) = −ζo(k)
Ã
g +

Tk2

ρ

!
sinωt

ω
e|k|z (2.17)

The transform of the surface displacement is

ζ(x, t) = −Φt(k, 0, t)
g + Tk2

ρ

= ζo(k) cosωt (2.18)

By Fourier inversion the solutions are given by (2.8) and (2.9).

To be concrete we shall take

ζo(x) =
Sb

π(x3 + b2

which is a hump of area S; the Fourier transform is

ζo(k) = Se
−|k|b

which is even in k. It follows that

ζ(x, t) =
S

π

Z ∞

0
dke−kb cos kx cosωt

which can be manipulated to

ζ(x, t) =
S

2π
<
Z ∞

0
dke−kb

³
eikx−iωt + eikx+iωt

´
dk (2.19)

The Þrst term in the integrand represents the right-going wave while the second, left-

going. Each part correponds to a superposition of sinusoidal wave trains over the entire

range of wave numbers, within the small range (k, k + dk) the spectral amplitude is

Se−kb. In general explicit evaluation of the Fourier integrals is not feasible. We shall

therefore only seek approximate information.
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2.2 Method of stationary phase

The method of stationary phase is particularly useful for asymptotic approximation of

Fourier integrals,

I(t) =
Z b

a
F (k)eitf(k) dk (2.20)

for real f and very large t. Let us Þrst give a quick derivation of the mathematical

result.

If t is large, then as k increases along the path of integration both the real and

imaginary parts of the exponential function

cos(tf(k)) + i sin(tf(k))

oscillates rapidly between -1 to +1, resulting in cancellations unless there is a point of

stationary phase ko within (a,b) so that

df(ko)

dk
= f 0(ko) = 0, a < ko < b. (2.21)

Then

f(k) = f(ko) +
1

2
(k − ko)2f 00(ko) + · · ·

and

eitf(k) ≈ eitf(ko) exp [it(f(k)− f(ko))]
≈ eitf(ko) {cos [t(f(k)− f(ko))] + i sin [t(f(k)− f(ko))]}

As sketched in Figure 3, contribution to the Fourier integral is dominated by the cosine

part in the neighborhood of ko. The integral can be approximated by

I(t) ≈ F (ko)eitf(ko)
Z b

a
exp

µ
it

2
(k − ko)2f 00(ko)

¶
dk

With an error of O(1/t), we also replace the limits of the last integral by ±∞; the
justiÞcation is omitted here. Now it is known thatZ ∞

−∞
e±itk

2

dk =
r
π

t
e±iπ/4
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Figure 3: Neighborhood of the point of stationary phase

It follows that

I(t) =
Z b

a
F (k)eitf(k) dk ≈ F (ko)eitf(ko)±iπ/4

"
2π

t|f 00(ko)|
#1/2

+O
µ
1

t

¶
, if ko ∈ (a, b),

(2.22)

where the sign is + (or −) if f 00(ko) is positive (or negative). It can be shown that if
ther is no stationary point in the range(a,b), then the integral I(t) is small

I(t) = O
µ
1

t

¶
, if ko /∈ (a, b). (2.23)

2.3 Wave dispersion at large x and t.

Let us apply this result to the right-going wave

ζ+(x, t) =
1

2π
<
Z ∞

0
dkζ̄(k, 0)eit(kx/t−iω)dk (2.24)

where

ω =

"
|k|

Ã
g +

Tk2

ρ

!#1/2
(2.25)

For an observer travelling at a given speed, x/t =constant. We have

f(k) = kx/t− ω(k), (2.26)

There is a stationary point ko at the root of

x/t = ω0(k) = cg =
g + 3Tk2

ρ

2
³
gk + Tk3

ρ

´1/2 (2.27)
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Figure 4: Group velocity as function of k of capillary-gravity waves in deep water

which is plotted in Figure 4. Note that cg(k) is large for both small and large k :

cg ∼ 1

2

r
g

k
, for small k,

and

cg ∼ 1

2

s
Tk

ρ
, for large k,

Hence there is a minimum cg occuring at ko where ω
00(ko) = 0.

For any speed x/t > min cg, eq. (2.27) has two roots (stationary points). At the

smaller root k1 < ko, ω
00(ko) < 0; at the larger one k2 > ko, ω00(ko) > 0 . Adding the

contributions from both we get the Þnal result for the right-going wave

ζ+(x, t) ∼ 1

2π
e−k1b

s
2π

t|ω00(k1)| cos (k1x− ω(k1)t− π/4)

+
1

2π
e−k2b

s
2π

t|ω00(k2)| cos (k2x− ω(k2)t+ π/4) (2.28)

Physically an observer travelling at the speed x/t sees two trains of simple harmonic

waves with wavenumbers k1 and k2, corresponding respectively to gravity (longer) and

capillary (shorter) waves. The local wavelengths are such that their group velocities

match the speed of the observer. The faster the observer, the shorter the capillary

waves and the longer the gravity waves. If a snapshot is taken for all x > 0, then the

longer gravity waves are at the very front, followed by shorter and shorter gravity waves.

However the shortest capillary waves lead the longer ones, see Þgure 5. Because e−kb
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Figure 5: Large-time dispersion of capillary-gravity waves in deep water

is is the greatest at k = 0, the longest waves are the biggest. The entire disturbance

attenuates in time as t−1/2.

Note also that for x/t ≈ min cg, the second derivative f 00(ko) = −ω00(ko) = 0. Hence
the asymptotic formula breaks down. A better approximation is needed, and is left as

an exercise.

Homework Show by expanding

ω(k) = ω(ko) + (k − ko)ω0(ko) + 1
6
(k − ko)3ω000(ko) + · · · (2.29)

that for large x and t,

ζ+(x, t) ≈
Ã

2

tω00(ko)

!1/3
e−kobAi(Z) cos(ω(ko)− kox) (2.30)

where Ai(Z) is the Airy function with the argument

Z =

Ã
2

ω000(ko)t

!1/3
(cg(ko)t− x))

It can be deÞned by the integral

Ai(−Z) = 1

π

Z ∞

0
cos

Ã
−Zα+ α

3

3

!
dα (2.31)

and is related to Bessel function of order ±1/3,

Ai(−Z) = Z1/2

3

J 1
3

Ã
2
√
Z

3
Z3/2

!
+ J− 1

3

2
q
(Z)

3
Z3/2

 (2.32)

Discuss the physical picture.
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2.4 Energy propagation

Finally we examine the propagation of wave energy in this transient problem. It sufficies

to examine the gravity wave part. Using (2.28) the local energy density of the gravity

wave is:

E =
1

2
ρω2|A|2 = ρω2

8πt

ζ̄(k1)
2

(ω00(k1))2

At any given t, the waves between two observers moving at slightly different speeds,

cg(k
0
1) and cg(k

00
1), i.e., between two rays x/t = cg(k

0
1) and x/t = cg(k

00
1) are essentially

simple harmonic so that the total energy is

Z x2

x1
dxE =

Z x2

x1
dx
ρω2

8πt

(ζ̄(ko))
2

ω00(k1)

Since x = ω0(k)t for Þxed t, we have

dx

t
= ω00(k1)dk1

Now for x2 > x1, k
00
1 > k

0
1, it follows thatZ x2

x1
dxE =

Z k!!1

k!1
dk1
ρω2

8π
(ζ̄(k1))

2 = constant

Therefore the total energy between two observers moving at the local group velocity

remains the same for all time. In other words, waves are transported by the local group

velocity even in transient dispersion.

3 Narrow-banded dispersive waves in general

In this section let us discuss the superposition of progressive sinusoidal waves with the

amplitudes spread over a narrow spectrum of wave numbers

ζ(x, t) =
Z ∞

0
|A(k)| cos(kx− ωt− θA)dk = <

Z ∞

0
A(k)eikx−iωtdk (3.1)

whereA(k) is complex denotes the dimensionless amplitude spectrum of dimension

(length)2. The component waves are dispersive with a general nonlinear relation ω(k).

Let A(k) be different from zero only within a narrow band of wave numbers centered at
ko. Thus the integrand is of signiÞcance only in a small neighborhood of ko. We then



3.3. DISPERSION OF TRANSIENT DISTURBANCE 18

approximate the integral by expanding for small ∆k = k − ko and denote ωo = ω(ko),
ω0o = ω

0(ko), and ω00o = ω
00(ko),

ζ = <
½
eikox−iωot

Z ∞

0
A(k) ei∆kx−i(ω−ωo)tdk

¾
= <

½
eikox−iωot

Z ∞

0
dkA(k) exp

∙
i∆kx− i

µ
ω0o∆k +

1

2
ω00o (∆k)

2
¶
t+ · · ·

¸¾
= <

n
A(x, t)eikox−iωot

o
(3.2)

where

A(x, t) =
Z ∞

0
dkA(k) exp

∙
i∆kx− i

µ
ω0o∆k +

1

2
ω00o (∆k)

2
¶
t+ · · ·

¸
(3.3)

Although the integration is formally extends from 0 to ∞, the effective range is only
from ko − (∆k)m to ko + (∆k)m, i,.e., the total range is O((∆k)m), where (∆k)m is the
bandwidth. Thus the total wave is almost a sinusoidal wavetrain with frequency ωo and

wave number ko, and amplitude A(x, t) whose local value is slowly varying in space and

time. A(x, t) is also called the envelope. How slow is its variation?

If we ignore terms of (∆k)2 in the integrand, (3.3) reduces to

A(x, t) =
Z ∞

0
dkA(k) exp [i∆k(x− ω0ot)] (3.4)

Clearly A = A(x − ω0ot). Thus the envelope itself is a wave traveling at the speed ω0o.
This speed is called the group velocity,

cg(ko) =
dω

dk

¯̄̄̄
¯
ko

(3.5)

Note that the characteristic length and time scales are (∆km)
−1 and (ω0o∆km)

−1 respec-

tively, therefore much longer than those of the component waves : k−1o and ω−1o . In other

words, (3.3) is adequate for the slow variation of Ae in the spatial range of ∆km x = O(1)

and the time range of ω0o∆km t = O(1).

As a speciÞc example we let the amplitude spectrum be a real constant within the

narrow band of ko − κ, ko + κ,

ζ = A
Z ko+κ

ko−κ
eikx−iω(k)tdk, κ¿ ko (3.6)

then

ζ = koAeikox−iωot
Z κ

−κ
dξeikoξ(x−cgt) + · · ·

=
2A sinκ(x− cgt)

x− cgt eikox−iωot = Aeikox−iωot (3.7)
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Figure 6: Envelope of waves with a rectangular band of wavenumbers

where ξ = k − ko/ko and
A =

2A sinκ(x− cgt)
(x− cgt) (3.8)

as plotted in Þgure (6).

By differentiation, it can be veriÞed that

∂A

∂t
+ cg

∂A

∂x
= 0, (3.9)

Multiplying (3.9) by A∗,

A∗
∂A

∂t
+ cgA

∗∂A
∂x

= 0,

and adding the result to its complex conjugate,

A
∂A∗

∂t
+ cgA

∂A∗

∂x
= 0,

we get
∂|A|2
∂t

+ cg
∂|A|2
∂x

= 0 (3.10)

We have seen that for a monochromatic wave train the energy density is proportional

to |A|2. Thus the time rate of change of the local energy density is balanced by the net
ßux of energy by the group velocity.

Now let us examine the more accurate approximation (3.3). By straightforward

differentiation, we Þnd

∂A

∂t
=

Z ∞

0

"
−iω0(ko)∆k − iω

00(ko)
2

(∆k)2
#
A(k)eiSdk
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∂A

∂x
=

Z ∞

0
(i∆k)A(k)eiSdk

∂2A

∂x2
=

Z ∞

0

³
−(∆k)2

´
A(k)eiSdk

where

S = ∆k x− ω0o∆k t−
1

2
ω00o (∆k)

2 t (3.11)

is the phase function. It can be easily veriÞed that

∂A

∂t
+ ω0o

∂A

∂x
=
iω00o
2

∂2A

∂x2
(3.12)

By keeping the quadratic term in the expansion, (3.12) is now valid for a larger spatial

range of (∆k)2x = O(1). In the coordinate system moving at the group velocity, ξ =

x− cgt, τ = t, we easily Þnd
∂A(ξ, τ)

∂t
=
∂A

∂τ
− cg ∂A

∂ξ
,

∂A(ξ, τ )

∂x
=
∂A

∂x

so that (3.12) simpliÞes to the Schrödinger equation:

∂A

∂τ
=
iω00o
2

∂2A

∂ξ2
(3.13)

By manipulations similar to those leading to (3.10), we get

∂|A|2
∂τ

=
iω00o
2

∂

∂ξ

Ã
A∗
∂A

∂ξ
− A∂A

∗

∂ξ

!
(3.14)

Thus the local energy density is not conserved over a long distance of propagation.

Higher order effects of dispersion redistribute energy to other parts of the envelope.

For either a wave packet whose envelope has a Þnite length ( A(±∞) = 0), or for a

periodically modulated envelope (A(x) = A(x+ L)), we can integrate (3.14) to give

∂

∂τ

Z
|A|2dξ = 0 (3.15)

where the integration extends over the entire wave packet or the group period. Thus

the total energy in the entire wave packet or in a group period is conserved.


