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CHAPTER TWO

ONE-DIMENSIONAL PROPAGATION

Since the equation
∂2Φ

∂t2
= c2∇2Φ

governs so many physical phenomena in nature and technology, its properties are basic

to the understanding of wave propagation. This chapter is devoted to its analysis when

the extent of the medium is inÞnite and the motion is one dimensional. To be be

speciÞc, physical discussions are made for shallow-water waves in the sea. The results

are however readily tranferable or modiÞed for sound, waves in blood vessels and other

types of waves.

1 General solution to wave equation

Recall that for waves in an artery or over shallow water of constant depth, the governing

equation is of the classical form
∂2Φ

∂t2
= c2

∂2Φ

∂x2
(1.1)

It is easy to verify by direct substitution that the most general solution of the one

dimensional wave equation (1.1) is

Φ(x, t) = F(x− ct) + G(x+ ct) (1.2)

where F and g are arbitrary functions of their arguments. In the x, t (space,time) plane
F(x − ct) is constant along the straight line x − ct = constant. Thus to the observer

(x, t) who moves at the steady speed c along the positivwe x-axis, the function F is

stationary. Thus to an observer moving from left to right at the speed c, the signal

described initially by F(x) at t = 0 remains unchanged in form as t increases, i.e., F is

a wave propagating to the right at the speed c. Similarly G propagates to the left at the
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speed c. The lines x − ct =constant and x + ct = contant are called the characteristic
curves (lines) along which signals propagate. Note that another way of writing (1.2) is

Φ(x, t) = �F(t− x/c) + �G(t+ x/c) (1.3)

Let us illustrates an application of this simple result.

2 Branching of arteries

References: Y C Fung : Biomechanics, Circulation. Springer1997

M.J. Lighthill : Waves in Fluids, Cambridge 1978.

Recall that (1.1) governs both the pressure and the velocity in the blood

∂2p

∂t2
= c2

∂2p

∂x2
(2.1)

∂2u

∂t2
= c2

∂2u

∂x2
(2.2)

The two unknowns are related by the momentum equation

ρ
∂u

∂t
= −∂p

∂x
(2.3)

The general solutions are :

p = p+(x− ct) + p−(x+ ct) (2.4)

u = u+(x− ct) + u−(x+ ct) (2.5)

Since
∂p

∂x
= p0+ + p

0
−,

and

ρ
∂u−
∂t

= −ρcu0+ + ρcu0−
where primes indicated ordinary differentiation with repect to the argument. Equation

(2.3) can be satisÞed if

p+ = ρcu+, p− = −ρcu− (2.6)



2.2 BRANCHING OF ARTERIES 3

Denote the discharge by Q = uA then

Q± = u±A = ±Zp± (2.7)

where

Z =
ρc

A
(2.8)

is the property of the tube and is call the impedance.

Now we examine the effects of branching; Refering to Þgure 1, the parent tube,

characterized by wave speed c and impedance Z, branches into two characterized by c1

and c2 and Z1 and Z2. An incident wave approaching the junction will cause reßection

p = pi(t− x/c) + pr(t+ x/c), x > 0 (2.9)

and transmitted waves in the branches are p1(t − x/c1) and p2(t − x/c2) in x > 0. At
the junction x = 0, continuity of pressure and ßuxes requires

pi(t) + pr(t) = p1(t) = p2(t) (2.10)

and
pi − pr
Z

=
p1
Z1
+
p2
Z2

(2.11)

DeÞne the reßection coefficient R to be the amplitude ratio of reßected wave to incident

wave, then

R =
pr(t)

pi(t)
=

1
Z
−
³
1
Z1
+ 1

Z2

´
1
Z
+
³
1
Z1
+ 1

Z2

´ (2.12)

Similarly the tranmission coefficients are

T =
p1(t)

pi(t)
=
p2(t)

pi(t)
=

2
Z

1
Z
+
³
1
Z1
+ 1

Z2

´ (2.13)

Note that both coefficients are constants depending only on the impedances. Hence the

transmitted waves propagate in the direction of increasing x and are similar in form

to the incident waves except smaller by the factor T . On the incidence side waves the

incident and reßected waves propagate in opposite directions.
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Figure 1: Branching of artieries

3 Shallow water waves in an inÞnite sea due to ini-

tial disturbances

Recall for one-dimensional long waves in a shallow sea of depth h(x), the linearlized

conservation laws of mass and momentum are

∂ζ

∂t
+
∂(uh)

∂x
= 0 (3.1)

and
∂u

∂t
= −g ∂ζ

∂x
(3.2)

where ζ(x, t) is the vertical displacement of the free surface and u(x, t) the horizontal

velocity. The atmospheric pressure over the entire free surface is uniform and constant.

By cross-differentiation, ζ is seen to be governed by

∂2ζ

∂t2
= g

∂

∂x

Ã
h
∂ζ

∂x

!
(3.3)

In the limit of constant depth (h =constant), the above equation reduces to the classical

wave eqaution
∂2ζ

∂t2
= c2

∂2ζ

∂x2
, where c =

q
gh. (3.4)

Consider now a sea of inÞnite extent, −∞ < x <∞. Let the initial surface displace-
ment and velocity be prescribed along the entire surface

ζ(x, 0) = F(x) (3.5)
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∂ζ

∂t
(x, t) = G(x), (3.6)

where F(x) and G(x) are non-zero only in the Þnite domain of x. At inÞnities x→ ±∞,
ζ and ∂ζ/∂t are zero for any Þnite t. In (3.4 ) the highest time derivative is of the second

order and initial data are prescribed for ζ and ∂ζ/∂t. Initial conditions that specify all

derivatives of all orders less than the highest in the differential equation are called the

Cauchy initial conditions. These conditions are best displayed in the space-time diagram

as shown in Figure 2.

2

tt xx

)
t

u =g(x)u=f(x

u  =c u

t

x

Figure 2: Summary of the initial-boundary-value problem

The present initial-boundary-value problem has a famous solution due to d�Alembert,

which can be derived from (1.3), i.e.,

ζ = φ(ξ) + ψ(η) = φ(x+ ct) + ψ(x− ct), (3.7)

where φ and ψ are so far arbitrary functions of the characteristic variables ξ = x − ct
and η = x+ ct respectively.

From the initial conditions we get

ζ(x, 0) = φ(x) + ψ(x) = f(x)

∂ζ

∂t
(x, 0) = cφ0(x)− cψ0(x) = g(x). (3.8)

The last equation may be integrated with respect to x

φ− ψ = 1

c

Z x

x0
g(x0)dx0 +K, (3.9)
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Figure 3: Domain of dependence and range of inßuence

where K is an arbitrary constant. Now φ and ψ can be solved from (3.8) and (3.8 as

functions of x,

φ(x) =
1

2
[f(x) +K]− 1

2c

Z x

x0
g(x0)dx0

ψ(x) =
1

2
[f(x)−K] + 1

2c

Z x

x0
g(x0)dx0,

where K and x0 are some constants. Replacing the arguments of φ by x + ct and of ψ

by x− ct and substituting the results in u, we get

ζ(x, t) =
1

2
f (x− ct)− 1

2c

Z x−ct

x0
g dx0

+
1

2
f (x+ ct) +

1

2c

Z x+ct

x0
g dx0

=
1

2
[f(x− ct) + f(x+ ct)] + 1

2c

Z x+ct

x−ct
g(x0) dx0, (3.10)

which is d�Alembert�s solution to the homogeneous wave equation subject to general

Cauchy initial conditions.

To see the physical meaning, let us draw in the space-time diagram a triangle formed

by two characteristic lines passing through the observer at x, t, as shown in Figure 3.

The base of the triangle along the initial axis t = 0 begins at x− ct and ends at x+ ct.
The solution (3.1.9) depends on the initial displacement at just the two corners x − ct
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O

u, t

x

Figure 4: Waves due to initial displacement

and x + ct, and on the initial velocity only along the segment from x − ct to x + ct.
Nothing outside the triangle matters. Therefore, to the observer at x, t, the domain

of dependence is the base of the characteristic triangle formed by two characteristics

passing through x, t. On the other hand, the data at any point x on the initial line t = 0

must inßuence all observers in the wedge formed by two characteristics drawn from x, 0

into the region of t > 0; this characteristic wedge is called the range of inßuence.

Let us illustrate the physical effects of initial displacement and velocity separately.

Case (i): Initial displacement only: f(x) 6= 0 and g(x) = 0. The solution is

ζ(x, t) =
1

2
f(x− ct) + 1

2
f(x+ ct)

and is shown for a simple f(x) in Figure 4 at successive time steps. Clearly, the initial

disturbance is split into two equal waves propagating in opposite directions at the speed

c. The outgoing waves preserve the initial proÞle, although their amplitudes are reduced

by half.

Case (ii): Initial velocity only: f(x) = 0, and g(x) 6= 0. Consider the simple example
where

g(x) = g0 when |x| < b, and

= 0 when |x| > 0.
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Figure 5: Waves due to initial velocity

Referring to Figure 5, we divide the x ∼ t diagram into six regions by the characteristics
with B and C lying on the x axis at x = −b and +b, respectively. The solution in various
regions is:

ζ = 0

in the wedge ABE;

ζ =
1

2c

Z x+ct

−b
g0 dx

0 =
go
2c
(x+ ct+ b)

in the strip EBIF ;

ζ =
1

2c

Z x+ct

x−ct
godx

0 = got

in the triangle BCI;

ζ =
1

2c

Z b

−b
g0 dx

0 =
gob

c

in the wedge FIG;

ζ =
1

2c

Z b

x−ct
g0 dx

0 =
go
2c
(b− x+ ct)

in the strip GICH; and

ζ = 0

in the wedge HCD. The spatial variation of u is plotted for several instants in Figure

5. Note that the wave fronts in both directions advance at the speed c. In contrast to

Case (i), disturbance persists for all time in the region between the two fronts.
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4 Reßection of shallow water waves from a cliff

Let us use the d�Alembert solution to a problem in a half inÞnite domain x > 0. Let

the sea be on the positive side of a cliff along x = 0 and extend to inÞnity. How do

disturbances generated near the coast propagate as the result of initial displacement

and velocity?

At the left boundary x = 0 must now add the condition of zero horizontal velocity

which implies
∂ζ

∂x
= 0, x = 0, t > 0. (4.1)

In the space-time diagram let us draw two characteristics passing through x, t. For

an observer in the region x > ct, the characteristic triangle does not intersect the time

axis because t is still too small. The observer does not feel the presence of the Þxed end

at x = 0, hence the solution (3.10) for an inÞnite domain applies,

ζ =
1

2
[f(x+ ct) + f(x− ct)] + 1

2c

Z x+ct

x−ct
g(τ )dτ, x > ct. (4.2)

But for x < ct, this result is no longer valid. To ensure that the boundary condition

is satisÞed we employ the idea of mirror reßection. Consider a Þctitious extension of the

sea to −∞ < x ≤ 0. If on the side x < 0 the initial data are imposed such that f(x)
and g(x) are even in x, then ζ(0, t) = 0 is assured by symmetry. We now have initial

conditions stated over the entire x axis

ζ(x, 0) = F (x) and ζt(x, 0) = G(x) −∞ < x <∞,

where

F (x) =

 f(x) if x > 0

f(−x) if x < 0

G(x) =

 g(x) if x > 0

g(−x) if x < 0.

These conditions are summarized in Figure 6. Hence the solution for 0 < x < ct is
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Figure 6: Initial-boundary-value problem and the mirror reßection

ζ =
1

2
[F (x+ ct) + F (x− ct)] + 1

2c

µZ 0

x−ct
+
Z x+ct

0

¶
G(x0)dx0

=
1

2
[f(x+ ct) + f(ct− x)] + 1

2c

µZ ct−x

0
+
Z x+ct

0

¶
g(x0)dx0

=
1

2
[f(x+ ct) + f(ct− x)] + 1

2c

µ
2
Z ct−x

0
g(x0)dx0 +

Z ct+x

ct−x
g(x0)dx0

¶
�. (4.3)

Note that the point (ct− x, 0) on the x axis is the mirror reßection (with respect to the
cliff x = 0) of left tip (x− ct, 0) of the characteristic triangle . The effect of the initial
velocity in the region (0, ct− x) is doubled.

5 Forced waves in an inÞnite domain

If there is a nonuniform distribution of atmopheric pressure P (x, t) on the free surface,

the ßuid pressure is p = P + g(ζ − z) and momentum conservation should read

∂u

∂t
= −g ∂ζ

∂x
− g∂P

∂x
(5.1)

The wave equation is now inhomogeneous

∂2ζ

∂t2
= c2

∂2u

∂x2
+ q(x, t) t > 0, |x| <∞, (5.2)

with the forcing term equaling

q(x, t) = gh
∂P

∂x
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Figure 7: Reßection of long water waves from a cliff

Because of linearity, we can treat the effects of initial data separately. Let us therefore

focus attention only to the effects of persistent forcing and let the initial data be zero,

ζ(x, 0) = 0,

"
∂ζ

∂t

#
t=0

= 0, (5.3)

The boundary conditions are

ζ → 0, |x|→∞. (5.4)

The inhomogeneous initial-boundary-value problem can be solved by Fourier trans-

form. Let the transform of any function f(x) be deÞned by

f̄(α) =
Z ∞

−∞
f(x) e−iαx dx (5.5)

and the inverse transform by

f(x) =
1

2π

Z ∞

−∞
f̄(α) eiαx dα (5.6)

The transformed wave equation is now an ordinary differential equation for u(x, t), i.e.,

ζ̄(α, t),
d2ζ̄

dt2
+ c2α2ζ̄ = q̄ t > 0

where q̄(α, t) denotes the transform of the forcing function. The initial conditions for ζ̄

are:

ζ̄(α, 0) = f̄(α),
dζ̄(α, 0)

dt
= ḡ(α).



2.5. FORCED WAVES IN AN INFINITE DOMAIN 12

Let us hide the parametric dependence on α for the time being. The general solution

to the the inhomogeneous second-order ordinary differential equation is

ζ̄ = C1ζ̄1(t) + C2ζ̄2(t) +
Z t

0

q̄(τ )

W

h
ζ̄1(τ )ζ̄2(t)− ζ̄2(τ)ζ̄2(t)

i
dτ, (5.7)

where ū1 and ū2 are the homogeneous solutions

ζ̄1 = e
−iαct ζ̄2 = e

iαct

and W is the Wronakian

W = ζ̄1ζ̄
0
2 − ζ̄2ζ̄ 01 = 2iαc = constant.

The two initial conditions require that C1 = C2 = 0, hence

ζ̄ =
Z t

0

q̄(α, τ )

2iαc

h
eiαc(t−τ) − e−iαc(t−τ)

i
dτ. (5.8)

To get the inverse transform of the integral in (5.8), observe thatZ b

a
dξ q(ξ, τ ) =

1

2π

Z b

a
dξ
Z ∞

−∞
dα q̄ eiαξ

=
1

2π

Z ∞

−∞
dα q̄(α, τ )

eiαb − eiαa
iα

after changing the order of integration. If we let b = x+ c(t− τ) and a = x− c(t− τ ),
the following

1

2c

Z t

0
dτ

Z x+c(t−τ)

x−c(t−τ)
dξ h(ξ, τ)

is easily seen to be the inverse transform of the double integral. The Þnal result if the

inverse transform is

ζ(x, t) =
1

2c

Z t

0
dτ

Z x+c(t−τ)

x−c(t−τ)
dξ h(ξ, τ), (5.9)

Thus the observer is affected only by the forcing inside the characteristic triangle

deÞned by the two characteristics passing through (x, t).

For non-zero initial data ζ(x, 0) = f(x) and ζt(x, 0) = g(x), we get by linear super-

position the full solution of D�Alambert

ζ(x, t) =
1

2
[f(x+ ct) + f(x− ct)] + 1

2c

Z x+ct

x−ct
dξg(ξ)

+
1

2c

Z t

0
dτ

Z x+c(t−τ)

x−c(t−τ)
dξ q(ξ, τ), (5.10)

The domain of dependence is entirely within the characteristic triangle.

Homework
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6 Scattering of monochromatic waves by an obstacle

If the sea depth changes signiÞcantly, an incoming train of waves will be partly reßected

and partly transmitted. In wave physics the determination of the scattering properties

for a known scatterer is an important task. Various mathematical techniques are needed

for different cases: (i) Strong scatterer if it height is comparable to the sea depth and

the length to the wave length. (ii) Weak scatterers characterized by small amplitude

relative to the wavelength, or slow variation within a wavelength.

Consider an ocean bottom with a step-wise variation of depth.

h =


h1, x < −a;
h2, −a < x < a;

h3 = h1, x > a

(6.1)

If a sinuuoidal wave train of frequency ω arrives from x ∼ −∞, how does the step

change the propagation ?

In each zone of contant depth (i = 1, 2, 3), the shallow water equations read:

∂ζi
∂t
+ hi

∂ui
∂x

= 0 (6.2)

∂ui
∂t
+ g

∂ζi
∂x

= 0 (6.3)

A monochromatic wave of frequency ω can be written in the form

ζi = ηie
−iωt, ui = Uie−iωt (6.4)

therefore,

−iωηi + hi∂Ui
∂x

= 0 (6.5)

−iωUi + g∂ηi
∂x

= 0 (6.6)

which can be combined to

d2ηi
dx2

+ k2i ηi = 0, where k=
ω√
ghi

(6.7)

The most general solution is a linear combination of terms proportional to

eikx and e−ikx,
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Together with the time factor e−iωt, the Þrst term is a wave train propagating from

left to right, while the second from right to left. The free-surface displacement of the

incident wave therefore can be written as

ζI = e
ik1x−iωt (6.8)

where the amplitude is taken to be unity for brevity. At a junction, the pressure and

the ßux must be equal, hence we impose the following boundary consitions,

η1 = η2, and h1
dη1
dx

= h2
dη2
dx
, , x = −a; (6.9)

η2 = η3, and h2
dη2
dx

= h1
dη3
dx
, , x = a. (6.10)

Far from the step, sinusoidal disturbances caused by the presence of the step must be

outgoing waves. Physically, this so-called radiation condition implies that, to the left

of the step, there must be a reßected wavetrain travelling from right to left. To the

right of the step, there must be a transmitted wavetrain travelling from left to right.

Accordingly, the wave heights in each zone of constant depth are:

η1 = e
ik1(x+a) +Re−ik1(x+a), x < −a; (6.11)

η2 = Ae
ik2x +Be−ik2x, − a < x < a (6.12)

η3 = Te
ik1(x−a), x > a (6.13)

The reßection and transmission coefficients R and T as well as A and B are yet unknown.

Applying the matching conditions at the left junction, we get two relations

1 +R = Aeik2a +Beik2a (6.14)

k1h1(1−R) = k2h2(Ae−ik2a − Beik2a). (6.15)

Similarly the matching conditions at x = a gives

Ae−ik2a +Be−ik2a = T (6.16)

k2h2(Ae
−ik2a −Beik2a) = k1h1T. (6.17)
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These four equations can be solved to give

T =
4s

(1 + s)2e2ik2a − (1− s)2e−2ik2a (6.18)

R =
−(1− s)2(e−2ik2a − e2ik2a

(1 + s)2e2ik2a − (1− s)2e−2ik2a (6.19)

A =
T

2
e−ik2a (1 + s) (6.20)

B =
T

2
eik2a (1− s) (6.21)

where

s =
k1h1
k2h2

=

s
h1
h1
=
c1
c2

(6.22)

The energy densities associated with the tranmsitted and reßected waves are :

|T |2 = 4s2

4s2 + (1− s2)2 sin2 2k2a (6.23)

|R|2 = (1− s2) sin2 2k2a
4s2 + (1− s2)2 sin2 2k2a (6.24)

It is evident that |R|2 + |T |2 = 1, meaning that the total energy of the scattered waves
is equal to that of the incident wave.

Over the shelf the free surface is given by

η2 =
2s
h
(1 + s)eik2(x−a) + (1− s)e−ik2(x−a)

i
(1 + s)2e−ik2a − (1− s)2eik2a (6.25)

Recalling the time factor e−iωt, we see that the free surface over the shelf consists of two

wave trains advancing in oppopsite directions. Therefore along the shelf the two waves

can interfere each other constructively, with the crests of one coinciding with the crests

of the other at the same moment. At other places the interference is destructive, with

the crests of one wave train coinciding with the troughs of the other. The envelope of

energy on the shelf is given by

|η|2 =
4s2

h
cos2 k2(x− a) + s2 sin2 k2(x− a)

i
4s2 + (1− s)2 sin2 2k2a (6.26)

At the downwave edge of the shelf, x = a, the envelope is

|η|2 = 4s2

4s2 + (1− s)2 sin2 2k2a (6.27)
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Note that the reßection and transmission coefficients are oscillatory in k2a. In par-

ticular for 2k2a = nπ, n = 1, 2, 3..., that is, 4a/λ = n, |R| = 0 and |T | = 1 ; the shelf
is transparent to the incident waves. It is the largest when 2k2a = nπ, corresponidng

to the most constructive interference and the strongest transmission Mininum transmis-

sion and maximum reßection occur when 2k2a = (n− 1/2)π, or 4a/λ = n− 1/2, when
the interference is the most destructive. The corresponding transimssion and reßection

coefficients are

min|T |2 = 4s2

(1 + s2)2
, max|R|2 = (1− s2)2

(1 + s2)2
. (6.28)

See Þgure 8.

The features of interference can be explained physically. When a crest Þrst strikes

the left edge at x = a, part of the it is transmitted onto the shelf and part is reßected

towards x ∼ −∞. After reaching the right edge at x = a, the tranmitted crest has a
part reßected to the left and re-reßected by the edge x = −a to the right. When the
remaining crest arrives at the right edge the second time, its total travel distance is an

integral multple of the wave length λ2, hence is in phase with all the crests entering

the shelf either before or after. Thus all the crests reinforce one another at the right

edge. This is constructive interference, leading to the strongest tranmission to the right

x ∼ ∞. On the other hand if 2k2a = (n− 1/2)π or 4a/λ = n− 1/2, some crests will be
in opposite phase to some other crests, leading to the most destructive interference at

the right edge, and smallest transmission.

7 Refraction by a slowly varying seabed

For time-harmonic waves over a seabed of variable depth, the governing equation can

be derived from (3.3),
d

dx

Ã
h
dη

dx

!
+
ω2

g
η = 0 (7.1)

Consider a sea depth which varies slowly within a wavelength, i.e.,

1

kh

dh

dx
= O(µ)¿ 1 (7.2)

Earlier analysis suggests that reßection is negligibly small. Thus the solution is expected

to be a locally progressive wave with both the wavenunmber and amplitude varying much
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Figure 8: Scattering coefficients for a step

more slowly than the wave phase in x . Hence we try the solution

η = A(x)eiθ(x) (7.3)

where θ(x)− ωt is the phase function and

k(x) =
dθ

dx
(7.4)

is the local wave number. Let us calculate the Þrst derivative:

dη

dx
=

Ã
ikA+

dA

dx

!
eiθ

and assume
dA
dx

kA
= O(kL)−1 ¿ 1

In fact we shall assume each derivative of h,A or k is µ times smaller than kh, kA or

k2. Futhurmore,

d

dx

Ã
h
dη

dx

!
+
ω2

g
η =

"
ik

Ã
ikh+ h

dA

dx

!
+
d

dx

Ã
h
dA

dx

!
+ i
d(khA)

dx
+
ω2A

g

#
eiθ = 0

Now let us expand

A = A0 +A1 +A2 + · · · (7.5)
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with A1/A0 = O(µ), A2/A0 = O(µ
2), · · ·. From O(µ0) the dispersion relation follows:

ω2 = ghk2, or k =
ω√
gh

(7.6)

Thus the local wave number and the local depth are related to frequency according

to the well known dispersion relation for constant depth. As the depth decreases, the

wavenumber increases. Hence the local phase velocity

c =
ω

k
=
q
gh (7.7)

also decreases.

From O(µ) we get,

ikh
dA0
dx

+ i
d(khA0)

dx
= 0

or
d

dx
(khA20) = 0 (7.8)

which means

khA20 = C
2 = constant

or, q
ghA20 = constant =

q
gh∞A2∞ (7.9)

Since in shallow water the group velocity equals the phase velocity, the above result

means that the rate of energy ßux is the same for all x and is consistent with the

original assumption of unidirectional propagation. Furthermore, the local amplitude

increases with depth as

A0(x)

A∞
=

Ã
h∞
h

!1/4
(7.10)

This result is called Green�s law.

In summary, the leading order solution is

ζ = A∞

Ã
h∞
h

!1/4
eiθ−iωt = A∞

Ã
h∞
h

!1/4
exp

µ
i
Z x

k(x0)dx0 − iω
¶

(7.11)


