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Abstract

Ship drivers have long understood that powerful interaction forces exist when ships operate
in close proximity to rigid boundaries or other vessels. Controlling the effects of these forces
has been traditionally handled by experienced helmsmen. The purpose of this study is to apply
modern optimal control theory to such maneuvering scenarios in order to show that helmsmen
may some day be replaced by modern controllers. The maneuvering equations of motion are cast
in a linear state space framework, permitting the design of a linear quadratic (LQ) controller.
The hydrodynamic effects are modelled using potential flow theory in order to simulate the
interaction forces and test the performance of the controller. This study demonstrates that the
linear quadratic regulator effectively controls ship motions due to the presence of a boundary or
other vessel over a broad range of speeds and separation distances. Viscous effects are modelled
by equivalent linearization and when compared to the effective damping introduced by the
controller, are shown to be insignificant.

1 Introduction

The problem of controlling ships during their passages at sea has a history as old as human maritime
endeavors. The past century saw great advances in control theory. The age old marine problems
were among the first applications to benefit from these innovations. Notably marine autopilots were
a primary test bed as feedback control systems were beginning to be formalized in a mathematical
setting during the early 1900s. In today’s age of ever faster paced, higher efficiency operations, a
strong focus on optimal routing and collision avoidance has emerged and the current control theory
literature has numerous examples of the sophisticated work going on in this area. Research however
appears to be less extensive on the effect of inter-vessel interaction forces and their use in the design
of robust controllers. This is the subject of the present study.

1.1 The Hydrodynamic Problem

The interaction forces that develop between ships and banks in restricted waters have been under-
stood on a practical level by mariners for centuries. Masters of large vessels take pains to keep
prudent distances between vessels in order to moderate these forces.

In contrast to the wealth of practical knowledge of these phenomena and how best to control
them, quantitative approaches are still relatively scarce. Model tests and full scale analyses have
been conducted on a limited basis, and Principles of Naval Architecture [3], treats the subject
in some detail. More recently model tests have been reported on by Vantorre et al [8] for a
variety of overtaking scenarios by ships of differing geometries. This work was primarily intended
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for improving the accuracy of training simulators, however its application to the control problem
could be significant. Analytically, the most general work on this subject was undertaken by Tuck
and Newman in 1974 [7]. Using slender body theory they propose a set of equations to evaluate
the hydrodynamic forces and moments between two slender bodies on parallel courses but with
arbitrary speed, separation, and stagger. This model although only in moderate agreement with
empirical results, can be useful in formulating and simulating control problems involving ship-ship
interactions.

1.2 The Control Problem

The ship maneuvering problem contains strongly coupled dynamics of the ship sway and yaw
modes of motion. This coupling requires a multiple-input multiple-output (MIMO) approach to
the control problem. Modern state-space methods provide such a method. These state space
methods minimize some cost, typically the deviation from a desired state and control usage, while
subject to the constraints of the dynamics of the system. The popular linear quadratic (LQ) family
of controllers, take their name from the linearity of their state equation and the quadratic form of
their cost function. One particular advantage of the LQ optimal control framework used here is
that the existence of a solution to the problem guarantees both optimality and stable control. The
robustness properties of LQ controllers are favorable enough to make them popular in a variety of
applications, notably aircraft control.

This paper will address the specific maneuvering problem of a ship travelling next to a bank or its
image. It will be shown that this problem generates a sway force and yaw moment in general, which
make the system unstable. Ships typically control their motions by altering speed and rudder angle.
For the bank suction problem it will be shown with an appropriate potential flow model that the
magnitudes of the interaction forces are dependent on forward speed. Completely eliminating the
effect of the bank through speed change means stopping completely which is clearly not reasonable.
Alternatively, applying a rudder angle generates both a sway force and yaw moment. For a ship
proceeding parallel to a wall, a heuristic argument can be made that steady motion with constant
separation requires that the force and moment generated by a constant rudder must exactly balance
the interaction force and moment. This is not possible in the general case and so an LQ controller
design has been developed. The benefit of the using optimal control theory in this case is that
the system’s dynamical properties are central to the controller design process. The controller’s
‘knowledge’ of this dynamics allows it to find an equilibrium between control, hydrodynamic and
interaction forces. This equilibrium is demonstrated with a numerical simulation. In addition the
relative importance of viscous forces has been addressed. Equivalent linearization for small sway and
yaw motions allows viscous damping terms to be applied to the controlled system. The simulation
demonstrates that the viscous damping terms are much smaller than the damping introduced by
the controller and are thus negligible.

2 The Hydrodynamic Model

2.1 Overview

The goal of this hydrodynamic model is to determine the steady and unsteady hydrodynamic
forces and moments exerted on a vessel due to the presence of another vessel or a vertical wall.
The method of images is used to simulate the case where a ship is travelling parallel to a vertical
boundary.
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Figure 1: SWAN Domain Mesh (Asymmetric Body)

In the present study the 3D Rankine panel method SWAN (Ship Wave ANalysis) developed at
MIT’s Laboratory for Ship and Platform Flows was used to evaluate the appropriate hydrodynamic
quantities. More details on SWAN are presented in [5]

2.2 The Mathematical Model

The 3D potential flow problem is commonly expressed as a boundary value problem for the velocity
potential φ. In the present analysis the free surface is considered rigid. This approximation leads
to the classic “double body” flow.

The steady pressure distribution and resulting suction sway force and yaw moment follow from
Bernoulli’s equation in terms of the steady double-flow potential φ1 arising from the ship forward
motion:

p = −1
2
ρ (∇φ1 · ∇φ1) + ρUφ1x (1)

#»

F =
∫∫

SB

p #»ndS (2)

# »

M =
∫∫

SB

p ( #»x × #»n) dS (3)

The added mass tensor follows from the classical expression

mij = ρ

∫∫

SB

φinjdS (4)

where φi is the unit double-body potential due to the i-th mode of motion of the vessel next to a
vertical wall and nj , j = 1, ..., 6 are the unit vectors on the ship boundary pointing out of the fluid
domain.
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Figure 2: SWAN Results for the Attraction Force and Bow-Out Moment for an Asymmetric Body

2.3 Numerical Results for A Ship-Like Body

Figure 1 displays a fore-aft asymmetric hull geometry with semi-circular cross sections. For this
body a yawing moment will result due to the longitudinal asymmetry of the flow. In addition, the
sway-yaw cross-coupling added-mass coefficient m26 will be non-zero.

Figure 2 displays the steady sway suction force and yaw moment as a function of the ship dis-
tance from the wall computed by SWAN. As expected both force and moment decrease rapidly with
increasing distance from the wall. Figure 3 plots the sway-yaw added mass coefficients computed
by SWAN illustrating their dependence on the ship distance from the wall.

3 Maneuvering Equations

3.1 Ship Maneuvering Fundamentals

We begin with the purely inertial properties of the ship, with ∆ being its displacement and Iz its
yaw moment of inertia. The hydrodynamic sway force (F2) and yaw moment (M3) arising from the
ship sway and yaw velocity and acceleration U2, U̇2 and Ω3, Ω̇3 follow from Newton’s law as follows

F2(U2, U̇2, Ω3, Ω̇3) = ∆(U̇2 − U1ψ̇) (5)

M3(U2, U̇2, Ω3, Ω̇3) = IzΩ̈3

Assuming small sway-yaw perturbation velocities and accelerations around the mean ship tra-
jectory, the above equations may be approximated by linear expressions using Taylor’s theorem.
Ignoring the coupling between the surge and sway-yaw modes, the following expression follows:

∆(U̇2 − U1Ω3) = U2
∂F2

∂U2
+ U̇2

∂F2

∂U̇2

+ Ω3
∂F2

∂Ω3
+ Ω̇3

∂F2

∂Ω̇3

(6)

IzΩ̇3 = U2
∂M3

∂U2
+ U̇2

∂M3

∂U̇2

+ Ω3
∂M3

∂Ω3
+ Ω̇3

∂M3

∂Ω̇3
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Figure 3: SWAN Results for the Added Mass and Moments for an Asymmetric Body

Figure 4: Coordinate System
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Assuming that a small rudder angle δR is applied, the linear sway and yaw force and moment
generated may be included. Now the equations for the sway and yaw perturbation displacements
are governed by the matrix equation

[
− ∂F2

∂U̇2
+ ∆ − ∂F2

∂Ω̇3

−∂M3

∂U̇2
−∂M3

∂Ω̇3
+ Iz

] [
U̇2

Ω̇3

]
=

[
∂F2
∂U2

( ∂F2
∂Ω3

−∆U1)
∂M3
∂U2

∂M3
∂Ω3

][
U2

Ω3

]
+

[
∂F3
∂δR
∂M3
∂δR

]
[δR] (7)

In the present context, small deviations of the ship from its mean course are assumed. Therefore,
the linear form of the equations 7 is acceptable for our purposes.

3.2 Hydrodynamic Derivatives

In order to estimate the hydrodynamic derivatives present in equation 7 we turn to classic potential
flow theory. In the equations for the force and moment on a moving body in an infinite and inviscid
fluid and irrotational flow are presented by Newman [4]:

Fj = −U̇imji − εjklUiΩkmli

Mj = −U̇imj+3,i − εjklUiΩkml+3,i − εjklUiUkmli (8)

In these equations the index i goes from 1,. . .,6, while j, k, l can only take values 1,2,3. Ui is the
velocity in the three rectilinear modes of motion, Ωk are the three angular velocities, and εjkl is
the alternating tensor. In our case, only the sway (U2), yaw (U6,Ω3) and surge (U1) modes are
of interest, as all other velocities are assumed to be zero. In addition, the perturbation surge
force (F1) is assumed negligible compared to the propeller thrust required to maintain the steady
forward velocity of the ship. Based on these assumptions we may now determine the sway and yaw
perturbation hydrodynamic force and moment F2 and M3:

F2 = −U̇2m22 − Ω̇3m26 − U1Ω3m11

M3 = −U̇2m62 − Ω̇3m66 + U1U2(m11 −m22)− Ω3U1m26 (9)

If the ship forward velocity U1 in the x-direction is assumed constant, these two equations provide
desired expressions for the hydrodynamic derivatives required in the maneuvering equations. It
follows that

∂F2

∂U2
= 0

∂M3

∂U2
= U1(m11 −m22)

∂F2

∂Ω3
= −U1m11

∂M3

∂Ω3
= −U1m26

∂F2

∂U̇2

= −m22
∂M3

∂U̇2

= −m62

∂F2

∂Ω̇3

= −m26
∂M3

∂Ω̇3

= −m66 (10)

With the derivatives so defined, equation 7 may be rewritten in terms of the known added mass
coefficients.

[
m22 + ∆ m26

m62 m66 + Iz

] [
U̇2

Ω̇3

]
=

[
0 −U1(m11 + ∆)

−U1(m22 −m11) −U1m26

] [
U2

Ω3

]
+

[
FR

MR

]
[δR]

(11)
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4 Control

4.1 Optimal Control Problem

Stengel [6] covers the derivation of the Linear Quadratic Regulator (LQR) and that derivation will
not be repeated here. However, the basic problem is to minimize some quadratic cost function
J constrained by the dynamics of the system. The system dynamics are contained in the state
equation:

ẋ = Ax + Bu + D (12)

In this equation x is the state vector, u is the control vector, and D is a matrix containing dis-
turbances to the system. A is the plant matrix obtained from the derivation of the equations of
motion. B is an input matrix, stating the linear law that states the effect of the control parameters
u upon the state vector x.

The quadratic cost function takes the form:

J =
1
2

∫ T

0

(
xTQx + uTRu

)
dt (13)

Here Q is a positive semi-definite matrix containing the costs associated with deviations from the
desired mean value of the state. R is a positive definite matrix containing the costs associated with
the control usage.

With the problem defined as above, the linear quadratic regulator now states that u(t) is the
optimal control trajectory provided that:

u(t) = −R−1BPx(t) (14)

Where P is the solution to the algebraic matrix Riccati equation.

0 = PA + ATP−PBR−1BTP + Q (15)

Conventionally, the control law is stated in a compact matrix form as follows:

u(t) = −Kx(t) (16)

where
R−1BP = K (17)

K is known as the gain matrix, and is constant for constant time-invariant A and B matrices.
Therefore, K may be calculated a priori and used throughout the system’s operation.

4.2 The State Equation for the Steady Case

Now the equations of motion from the previous section may be rewritten for the steady case where
U1 is considered to be a constant. The unsteady case where the forward speed is allowed to vary
slowly in time and used as a control will be treated later. For compactness we introduce the
following definitions:

mij =
[

∆ + m22 M26 + m26

M26 + m26 Iz + m66

]
(18)

bij =
[ −U1m22(xT ) U1(xT m22(xT )−∆)
−U1(m22 + xT m22(xT )) U1(M26 + m26 − x2

T m22(xT ))

]
(19)

FR =

[
1
2ρU2

1 S ∂CL
∂δR

1
2ρU2

1 S ∂CL
∂δR

xT

]
(20)
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The state equation follows in the form:



U̇2

Ω̇3

ψ̇
ẏ


 =




m−1
ij ·bij

0
0

0
0

0 1 0 0
1 0 U1 0







U2

Ω3

ψ
y


 +

[
m−1

ij ·FR

]
[δR] (21)

where ψ is the ship yaw angular displacement and y its sway displacement from their zero mean
values.

4.3 Forward Speed as a Control

The control problem is now extended to the more realistic scenario where speed is also allowed
to vary. For large vessels, speed changes occur very slowly due to their large inertia. However
small changes in speed may have significant effects on the forces and moments and shouldn’t
be neglected. The attraction force and moment generated by the presence of another vessel or
boundary are dependent on both separation distance and forward speed. These forces and moments
are expressed in the form:

F2 =
1
2
Cs(d)ρBTU2

M3 =
1
2
Cm(d)ρBTLU2 (22)

Here L, B, and T are the length, beam and draft of the vessel, respectively. Now if U is considered
to be the sum of the initial forward velocity and a small perturbation (U1 + δu) then the equations
become:

F2 =
1
2
Cs(d)ρBT (U2

1 + 2U1δu + δ2
u)

M3 =
1
2
Cm(d)ρBTL(U2

1 + 2U1δu + δ2
u) (23)

The final term in this expression is of second order and can be neglected, however, the second term
directly shows the effect of the perturbation velocity (δu) on the the suction force and moment.
Keeping only leading order terms in the perturbation:

F2 = Cs(d)ρBTU1δu

M3 = Cm(d)ρBTLU1δu (24)

These equations contain the effect of the forward speed variation on the side force and moment of
interest.

Looking now at the effect of the perturbation velocity on the rudder forces and moments, we
see that the same analysis may be applied.

FR =
1
2
ρS

∂CL

∂δR
δR(U2

1 + 2U1δu + δ2
u)

MR =
1
2
ρSxT

∂CL

∂δR
δR(U2

1 + 2U1δu + δ2
u) (25)

Since both δR and δu are small, there exist no first order terms containing δu and so to leading
order, small speed changes will not affect the performance of the rudder.
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With all of the above taken into account, the state equation may be stated in its complete form:

ẋ = Ax + Bu + D (26)

Where,

A =




m−1
ij ·bij

0
0

0
0

0 1 0 0
1 0 U1 0


 B = m−1

ij

[
1
2ρU2

1 S ∂CL
∂δR

Cs(d)ρBTU1
1
2ρU2

1 S ∂CL
∂δR

xT Cm(d)ρBTLU1

]
(27)

with mij and bij as defined in equations 18 and 19. The state and control vectors respectively are:

x =




U2

Ω3

ψ
y


 u =

[
δR

δu

]
(28)

This set of state equations does not contain the body’s forward speed, U1, as a state variable. In
order to remove this state variable we have made certain assumptions. First it is assumed that
surge is not coupled to sway and yaw. Second it is also assumed that because the body is slender,
(B/L ≈ 0.15), the surge added mass m11 is small compared to the ship mass. Finally, the main
propulsive force is significantly greater than external hydrodynamic effects in surge.

4.4 Equivalent Linear Damping

Frequently viscous drag is approximated by a quadratic expression that is modelled by Morison’s
equation. In order to incorporate the quadratic force expressions into the linear model, drag must be
linearized. It is here assumed that the ship sway and yaw motions may be expressed as oscillations
about the ship mean path,

ξ2 = |Ξ2| cos(ωt + ϕ)
ξ6 = |Ξ6| cos(ωt + ϕ) (29)

The goal is to develop an equivalent linear damping mechanism B22V isc ξ̇2 which dissipates the same
amount of energy per cycle as the quadratic damping obtained from the application of Morison’s
equation. The resulting expressions for the linear sway and yaw damping coefficients are:

B22V isc =
4ρCDAP

3π
ω|Ξ2| (30)

and similarly for yaw:

B66V isc =
4ρCDMP

3π
ω|Ξ6| (31)

The definition of the frequency ω, drag coefficient CD, sway projected area AP and yaw projected
area second moment MP are discussed below.
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Table 1: Symmetric Body Characteristics
Length(L) 100m
Beam(B) 15m
Draft(T) 7.5m

Cb 0.52
Rudder Area (S) 18.75 m2

∂CL
∂δR

4.71

5 Control System Simulation

5.1 Overview

In order to test the viability of the control system under consideration, a numerical simulation of
the maneuvering problem was carried out. Namely, a vessel was modelled travelling next to a solid
boundary in infinite depth. Utilizing the linear equations of motion derived previously and the
hydrodynamic properties calculated by SWAN, the motion of the body was calculated for a variety
of scenarios.

The simulation program, written with MATLAB, uses the state equation and the hydrodynamic
properties generated by the hydrodynamic model to calculate the gain matrix K. Through the
control law the controller specifies the control vector u in terms of the contemporaneous value of
the state vector x. The force model sums the control, attraction and disturbance forces and applies
them to the right hand side of the maneuvering equations of motion.

5.2 Rudder Modelling

While rudder sizes and shapes vary greatly with the purpose of the vessel, a rudder planform area
(S) equal to 2.5% of the area of a rectangle formed by the vessel’s length and draft is a good baseline
estimate. If the rudder is modelled as a flat plate with a maximum span equal to the draft, in
three dimensions the lift coefficient as a function of rudder angle (δR) may be approximated by the
classical expression:

CL =
2πAe

Ae + 2
δR (32)

Here Ae is the effective aspect ratio. Because the free surface has been modelled as a rigid plane,
it acts as a plane of symmetry. Thus the aspect ratio of the rudder is effectively doubled to twice
its conventional definition. The fundamental dimensions and rudder properties for the symmetric
body are listed in Table 1

5.3 Inherent System Instability

Prior to applying the control, it is important to understand the system behavior in the absence of
controls. Without the application of any controls the state equation simply becomes:

ẋ = Ax (33)

If the solution to this equation may be cast in the form:

x(t) = c1e
λt (34)

the differential equation becomes,
λ c1e

λt = Ac1e
λt (35)
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xi max

U2 = 0.1 m/s
Ω3 = 0.57 ◦/s
ψ = 5.7 ◦

y = 0.1 m
yi = 0.5 m·s

ui max
δR = 2.5◦

δu = 0.25 m/s

Table 2: Maximum State and Control Values

where by cancelling the eλt term it can be seen that λ are the eigenvalues of A. From equation
34 it can be seen that in order for the solution to decay from an initial displacement to its initial
value x0 the real parts of all eigenvalues λ must be negative.

For both symmetric and asymmetric vessel geometries, there exists an eigenvalue of A which
has a positive real part. As a result, any perturbation will lead to unbounded deviation from the
initial state.

5.4 The Cost Matrices Q and R

Prior to using the simulation, suitable values for the state cost and control cost matrices must be
determined. Bryson [1] gives a general rule for the diagonal cost matrices. If each state and control
variable has a maximum desired value of xi max and ui max respectively, then:

Qii =
1

ximax2
Rii =

1
uimax2

(36)

Typical values for ximax and uimax are displayed in Table 2.

5.5 Integral Feedback

Initial simulations indicate that the model achieves a stable steady state result with a constant
rudder angle and speed offsetting the constant attraction force and moment from the wall. When it
reaches a steady state however the vessel has an offset from its initial separation distance. In order
to minimize this steady state drift error an additional state variable is added. Stengel [6] discusses
the addition of an integral feedback state variable in order to overcome steady state errors.

If y is the cross track error in the state equation as displayed in equation 26, we can add an
additional state variable.

yi =
∫ t

0
y(τ)dτ ẏi(t) = y(t) (37)
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Figure 5: Integral Feedback Control History Comparison (Fn = 0.16, d = 15 m)

With the addition of this state variable the state equation now becomes:




U̇2

Ω̇3

ψ̇
ẏ
ẏi




=




m−1
ij ·bij

0
0

0
0

0
0

0 1 0 0 0
1 0 U1 0 0
0 0 0 1 0







U2

Ω3

ψ
y
yi




+




m−1
ij ·

[
1
2

∂CL
∂δR

ρSU2
1 Cs(d)ρBTU1

1
2

∂CL
∂δR

ρSU2
1 xT Cm(d)ρBTLU1

]

0 0
0 0
0 0




[
δR

δu

]
(38)

Implementing this new state equation eliminates the steady state error as may be seen in figure 5.

5.6 Significance of Viscous Effects

Having developed linear expressions for viscous damping in both sway and yaw, the relative impor-
tance of these effects may be determined. B22V isc and B66V isc may be added to the state equation.
This yields a new controller which has an A matrix and gain affected by the presence of the
equivalent linear viscous terms.

ẋ = [A−BK]Viscx (39)

If the controlled system is thought of as a classical mechanical oscillator, the controller provides
both a damping effect when acting on the U2 and Ω3 state variables, as well as restoring effect when
acting on the integral state variables y and ψ. The damping and restoring effects, with or without
viscous effects, may be seen though the classical analysis of such systems. The general solution to
the homogeneous equation 39 is:

x(t) = c1e
λ1t + c2e

λ2t (40)
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Figure 6: Damping Increase Dependence on Assumed Sway and Yaw Amplitude

In general the eigenvalues (λ) may be complex of the form (a + bi) so that the general solution
becomes

x(t) = d1e
at cos bt + d2e

at cos bt (41)

x is considered to be a vector of oscillations about the nominal state, with frequency b and amplitude
eat. The eigenvalue of [A−BK]Visc with the greatest real part, a, will control the damping or
stability of the entire system. The viscous terms must always take energy out of the system, so
viscous effects increase damping and decrease a. In order to determine the significance of this
increase, the real parts of the largest (least negative) eigenvalue of [A−BK] and [A−BK]Visc are
compared.

Quantifying the damping terms in equations 30 and 31 requires a suitable selection of |Ξ2|, |Ξ6|, ω
and CD. A CD of 1 was selected for bluff body cross sections. For ω, the imaginary parts of the
eigenvalues of [A−BK] provide a reasonable value of 0.15 rad/sec (see figure). The magnitudes of
|Ξ2|, |Ξ6| and forward speed are varied. Figure 6 shows that as the sway and yaw amplitudes are
allowed to increase, there is a linear increase in the damping of the controlled system. The figure
also indicates that the sway amplitude has a far greater effect on damping than yaw.

Since forward speed plays a vital role in the effectiveness of the controls, the relative effect
of viscous damping at various speeds was also calculated. Figure 7 shows the increase in the
controlled system damping when viscous effects are added over a range of speeds for two different
sway amplitudes. The lower the sway amplitude (represented by the solid line) the more realistic
the controller performance. Even when less realistic sway amplitudes are considered at a low speed,
the viscous effects only contribute a 5% increase in the total system damping. At more relevant
amplitudes and speeds, viscous effects contribute only 1% to the total damping. These results
demonstrate that control forces dominate the system performance, while viscous effects are quite
small by comparison.

5.7 Controlled System Stability

Simulations indicate stable behavior over a range of separation distances and speeds. Speeds ranged
from Froude numbers of 0.064 to 0.255. Centerline to wall separation distances ranged from 10 to
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Figure 7: Damping-Increase Dependence on Forward Speed

60 meters. With the controller on, the stability of the system may be determined by examining the
eigenvalues of [A−BK]. For the entire range of scenarios tested, the real parts of the eigenvalues
for the controlled state equation, [A−BK], are all negative, indicating stable behavior of the
controlled system. Figure 8 is a plot of the eigenvalues and associated control history for the
controlled system operating at two different speeds. As these figures show, changes to the initial
simulation parameters of speed and separation alter the position of eigenvalues on the complex
plane and thus the response of the controller. Reducing the initial forward speed and increasing
the separation distance both bring the eigenvalues closer to the imaginary axis, reducing stability,
and increasing the time required to reach steady state.

5.7.1 The Controller’s Use of Speed

In every case the control system chooses to reduce speed in reaching steady state. Some limitations
of the controller simulation and design become clear when looking at the speed changes called for
by the controller. For the minimum separation (d/L = 0.1), the speed reduction is greater than
10% at all initial speeds and should not be considered small.

5.7.2 The Controller’s Use of Rudder

For every scenario simulated the controller achieves a steady state rudder angle. In general, this
steady state rudder angle is negative. A rudder angle which should turn the vessel towards the wall
is perhaps counter intuitive at first.

Looking back to equation 8, there is a term in the moment equation that when taken alone
becomes:

M3 = U1U2(m11 −m22) (42)
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Figure 8: [A−BK] Eigenvalues and Associated Control History

Considering the heading angle ψ the equation becomes:

M3 = −U2sin(ψ)cos(ψ)(m11 −m22) (43)

For long slender bodies (m11 − m22) < 0 so the moment is positive in sign and destabilizing in
general. This effect is known as the“Munk Moment”.

In order to overcome the suction due to the wall on the starboard side, the control system turns
the ship to port a small amount, known generally as a crab angle. With the small but steady
negative heading angle, a negative Munk moment is present and so the controller must counteract
this with a negative rudder angle. Here again, as separation grows large the required rudder angle
diminishes. An analogous study involving the seakeeping, motion control and stability of high-speed
hydrofoil vessels using a similar LQ controller is presented in [2].

6 Conclusion

Applying modern optimal control theory it has been shown that the hydrodynamic interaction
effects of a ship with a vertical wall or similar vessel on a parallel course may be mitigated. The
controller strikes a careful balance between interaction, control and maneuvering forces in order to
reach a stable steady state. Viscous forces have been estimated through equivalent linearization.
When the damping effects of these viscous terms are compared to the damping effects induced by
the controller, it is clear that the physical viscous effects are insignificant and may be neglected.
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