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Abstract 
In this paper we validate a numerical model for water-wave-body interaction by comparing 
the numerical results with laboratory data. The numerical model is based on the Euler’s 
equation without considering the effects of energy dissipation. The Euler’s equations are 
solved by a two-step projection finite volume scheme and the free surface displacements are 
tracked by the volume of fluid method. The numerical model is used to simulate solitary wave 
as well as periodic waves and their interaction with a vertical slender pile. A very good 
agreement between the experimental data and numerical results is observed for the time 
history of free surface displacement, fluid particle velocity, and dynamic pressure on the pile. 

 
1. Introduction 
 

Cylindrical piles are among the most commonly used structures in coastal and offshore 
engineering. In the nearshore region they are used for jetties or piers and in deepwater for 
offshore platforms (see Figure 1). In designing coastal and offshore structures, it is essential to 
accurately estimate wave forces acting on the piles. In the case of a slender pile, where the 
diameter of the pile (D) is small in comparison with the design wave length ( λ ), the Morison 
equation [1] represents a good approximation for calculating the wave forces. On the other hand, 
if the diameter of the pile is not sufficiently small, the presence of the pile will generate 
significant scattered waves and the wave forces can be accurately calculated only if the 
interaction between waves and cylinder is fully considered [2].  

 
Regardless the size of the pile, 

information on wave forces can be 
obtained by means of experimental 
approaches. Even when the Morison 
equation approach is taken, the 
dependency of two coefficients, CD 
(drag coefficient) and CM (mass 
coefficient), on the wave conditions and 
the geometry of the pile needs to be 
determined empirically. Because of 
considerable costs and time required by 
laboratory experiments it is not very 

often feasible to perform extensive parameter studies (e.g., variation of water depth, diameter and 
inclination of piles, wave parameters, breaker type, and configuration of piles in a group). The 
alternative is to use numerical simulations as supplements to laboratory experiments. Moreover, 
an accurate numerical simulation might provide much more detailed insights into the physical 
processes that could hardly be achieved by experimental approach. 

 
Figure 1:  Slender cylindrical structures in coastal 
and offshore engineering 

Modeling the wave-pile interaction faces many challenges. First of all, the flow of 
interest is a complex three-dimensional free surface flow with moving runup boundaries on the 
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pile. For large incident waves, they might break in front of the pile and flow separation might 
occur on the lee side of the pile. Therefore, local, but strong, turbulence in the vicinity of the pile 
and near the free surface need to be considered. So far, most of the numerical simulation models 
developed for three-dimensional wave propagation have been built upon the potential flow theory. 
Using integral equation methods, highly accurate numerical models have been developed for 
wave propagation over varying bathymetry in shallow water and for wave-body 
interaction in deep water [3, 4, 5]. However, the potential flow assumption limits these models’ 
applications to irrotational flow. 

Relaxing the potential flow assumption, the three-dimensional Navier-Stokes (N-S) 
equations can be employed to describe flow motions. Theoretically, the direct numerical 
simulation (DNS) can always be performed to resolve the entire spectrum of motions ranging 
from large eddy motions to the smallest turbulence (Kolmogorov) scale motions. Clearly, the 
DNS requires very fine spatial and temporal resolutions and most of DNS applications can only 
be applied to relatively low Reynolds number flows within a small computational domain [6]. 
With the currently available computing resources, the DNS is still not a feasible approach for 
investigating wave-body interaction problems if wave breaking and flow separation are important.   

The alternatives to the DNS approach for computing the turbulent flow characteristics 
include the Reynolds Averaged Navier-Stokes (RANS) equations method and the Large Eddy 
Simulation (LES) method. In the RANS equations method, only the ensemble-averaged (mean) 
flow motion is resolved. The turbulence effects appear in the momentum equations for the mean 
flow and are represented by the Reynolds stresses, which are often modeled by an eddy viscosity 
model. The eddy viscosity can be further modeled in several different closures [7].  For example 
in the k  closure model, the eddy viscosity is hypothesized as a function of the turbulence 
kinetic energy ( ) and the turbulence dissipation rate ( ), for which balance equations are 
constructed semi-empirically. Lin and Liu [8] have successfully applied the k  turbulence 
model in their studies of wave breaking and runup in the surf zone. Lin and Liu’s model has been 
extended and applied to many different coastal engineering problems, including the wave-
structure interaction [9]. In the LES method, the three-dimensional turbulent motions are directly 
simulated and resolved down to a pre-determined scale, and the effects of smaller-scale motions 
are then modeled by closures. In terms of the computational expense, LES lies between RANS 
and DNS. Compared to DNS in solving high-Reynolds-number flows, LES avoids explicitly 
representing small-scale motions and therefore, the computational costs can be greatly reduced. 
Compared to RANS models, because the large-scale unsteady motions are computed explicitly, 
LES can be expected to provide more statistical information for the turbulence flows in which 
large-scale unsteadiness is significant [7].  

ε−
k ε

ε−

The flow governing equations for LES are derived from the N-S equations by applying a 
low-pass spatial filter. Similar to the RANS approach, a term related to the residual-stress tensor 
or the sub-grid-scale (SGS) Reynolds stress tensor appears in the filtered N-S equations. Thus, a 
closure model is also required to relate the residual-stress tensor to the filtered velocity field. The 
traditional Smagorinsky model [10] is probably the simplest LES-SGS model and has been used 
in several breaking wave studies [11, 12, 13, 14].  

In the present study, we plan to extend the LES model developed by Liu et al. [14], which 
was originally designed for studying landslide generated tsunamis, to wave-pile interaction 
problems. The model solves the filtered NS equations using a two-step projection algorithm with 
finite volume formulation. The Volume-of-Fluid (VOF) method [15] is used to track the free 
surface motions. The Smagorinsky SGS model is employed in [14]. In the present work, we 
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intend to improve the SGS model by implementing a dynamic SGS closure scheme. However, 
before developing an adequate dynamic SGS model, we would like to verify first that the core 
algorithms of the model (i.e., the VOF method and the two-step projection methods) are adequate 
for dealing with the wave-piles interaction problems. Thus, in this paper, we will ignore the 
viscous and turbulent effects and solve only the Euler’s equations. The algorithms for inputting 
the appropriate incident waves and for the outgoing waves through a boundary are developed.   

Therefore, the objectives of this paper are: (i) the validation of a three-dimensional 
numerical model based on the Euler’s equations for non-breaking wave propagation and (ii) the 
investigation of the influence of a pile on the wave field. For this purpose laboratory data sets, 
containing large-scale measurements of the water surface elevation, the fluid particle velocity, the 
pressure at different locations around the circumference of the pile, and the total wave force are 
used to check the accuracy of the numerical results 
 
2. The Numerical Model 

Fluid motion of incompressible and inviscid fluid can be described by the Euler’s 
equations: 

                                                                                                                      (2.1) 0∇ ⋅ =u

           ( ) 1∂u p
t ρ

+ ∇ ⋅ = − ∇ +
∂

uu g                                                                               (2.2) 

where  represents velocity vector, u ρ water density, the gravity force vector, t time, and g p  
pressure. 

To simulate the wave-pile interaction in a wave flume, the computational domain is 
usually a rectangular box which is occupied by water, air and the pile. The upper (ceiling) and 
lower (bottom of the flume) boundaries and two lateral (sidewalls of the flume) boundaries of the 
boundaries as well as the surface of the pile are rigid boundaries. Therefore, the no-flux boundary 
condition is applied. The incident wave information, including the velocity and the free surface 
displacement, are input at the upstream boundary, while an outflow boundary condition is applied 
at the downstream boundary. On the free surface, the dynamic boundary condition requires that 
the pressure filed is continuous. On the other hand, the kinematic boundary condition is replaced 
by requiring the conservation of a volume of fluid function, f , representing the volume fraction 
of water within a computational cell. The f value equals to one, if the cell is full, zero if empty, 
and  if the cell is partially filled with water. The governing equation for0 f< <1 f can be 
described by: 

                            ( ) 0f f
t

u∂
+∇⋅ =

∂
                                                                             (2.3) 

The Euler’s equations are solved by the two-step projection method [16]. The momentum 
equations, (2.2), are split into two fractional steps: 

             (
1 *n n n nn

t
u u uuρ ρ

ρ
+ −

=−∇⋅
Δ

) ,                                                                   (2.4) 
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in which the superscript “n” denotes the n-th time step.  Equation (2.4) is an explicit expression 
for the interim velocity, , referred to as the predictor step. On the other hand, (2.5) is called the 
projection step. Combining (2.4) with (2.5) produces the time discretization of (2.2): 

*u

          ( )
1 1

1
n n n n

n n np
t

u u uu 1gρ ρ
ρ

+ +
+ +−

= −∇⋅ −∇ +
Δ

ρ .                                      (2.6) 

No additional approximation results from this decomposition. 
Equation (2.5) relates  to . By adopting the continuity condition, (2.1), we have: 1nu + *u

                   
1 *

1

n

n

p
t

u g
ρ

+

+

⎛ ⎞∇ ⎟⎜ ⎟∇⋅ =∇⋅ +⎜ ⎟⎜ ⎟⎜Δ⎝ ⎠
.                                                                      (2.7) 

The above equation is also called the Poisson Pressure Equation (PPE). The pressure 1np +  at the 
new time step can be obtained by solving (2.7). 

The two-step projection method is implemented in a finite volume algorithm so that 
unstructured computational grids (cells) can be used. We also note that a multidimensional PLIC 
(piecewise linear interface calculation) method [17] is utilized to construct the free surface.  The 
details of the algorithm can be found in Wu [16]. 

3. Comparison of Laboratory Data and Numerical Results 

To check the capability and accuracy of our current numerical model, we compare 
numerical results with available experimental data. The numerical simulations of non-breaking 
periodic waves and solitary waves and their interaction with a cylindrical pile were conducted and 
the results were compared with the experiments conducted in the Large Wave Flume (GKW) of 
the Coastal Research Centre (FZK) in Hannover, Germany. 

3.1 Laboratory Set-Up in the GKW Experiments 

A series of large-scale experiments were conducted in the Large Wave Flume (GKW) of 
the Coastal Research Centre (FZK) in Hannover, Germany, to measure the wave forces acting on 
a cylindrical pile. This wave flume has an effective length of 309 m, a width of 5 m and a depth 
of 7 m. A steel circular cylinder with a diameter of 0.7 m was instrumented and installed in the 
flume. This paper deals only with a series of tests of non-breaking monochromatic and solitary 
waves with the pile placed on flat bottom of the flume at a distance of 111 m from the wave-
maker (see Figure 2). Additional details on the test set-up are given in [18] and [19].  
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Figure 2 A sketch of the Large Wave Flume (GKW) of the Coastal Research Centre (FZK) with a 
summary the measuring devices used for comparison in this study 

 
To measure wave forces, strain gauges were installed at the two bearings (top and bottom) 

of the cylinder. Additionally, 49 pressure transducers were fixed on the cylinder; they are 
uniformly distributed along the frontline of the cylinder with a spacing 0.2z mΔ =  and are also 
spread out over the circumference in two horizontal cross sections. The time histories of the water 
surface elevation were measured with 19 wave gauges. Four wave gauges were located at the pile 
and 15 of them along the flume. Four two-component current meters measured the water particle 
velocities under the trough and six propeller probes are used in the region above the wave trough. 
They were located at the side wall of the flume corresponding to the front line of the cylinder. 

In this paper three representative experimental cases are used to check the numerical 
results in detail. The characteristics of these non-breaking regular waves and solitary wave cases, 
ranging from intermediate water depth waves to the shallow water wave, are shown in Table 1. 

 
 

type of 
wave 

water 
depth, 
h [m] 

wave 
period,

T [s] 

Wave 
height, 
H [m] 

kh kH 

1 regular 4.76 4 1.20 1.3523 0.3282 
2 regular 4.77 6 1.35 0.7885 0.2233 
3 solitary 4.755 4.92 0.7 - - 

Table 1. Wave conditions used in the laboratory experiments (GWK) and numerical simulations 

3.2 Numerical simulations of GWK solitary wave experiments 

To reduce the computational costs, it is desirable to use only half width of the wave flume in the 
numerical simulations. The concern, however, is whether the flow field is actually symmetric 
with respect to the centreline of the tank. We have compared the results based on the full wave 
tank width as well as the half wave tank width. The differences between two simulations are 
negligible. Therefore, all the results presented herein are based on the half wave tank width 
simulations.  As shown in Figure 3, the horizontal computational domain is 60m long and 2.5 m 
wide and is bounded laterally by two solid boundaries. The incident wave conditions are 
prescribed along the upstream boundary, while the radiation boundary condition is employed at 
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the downstream boundary. The wave is allowed to propagate out of the computational domain 
without reflection by specifying the outgoing flow properties: 

0gC
t n
ϕ ϕ∂ ∂

+ =
∂ ∂

 

where ϕ  is a physical variable, such as the fluid velocity,  gC  is the group velocity and 

(gC g h )η= +  for a long wave, η  is the free surface elevation measured from the still water 
depth, and h the still water depth;  / nϕ∂ ∂  is the normal derivative at the downstream boundary.  

Unstructured meshes are used to discretize the computational domain with finer grids in 
the region near the cylinder. Generally speaking, 10 grids with uniform grid size, , 
are placed in the spanwise direction and 59 non-uniform grids with minimum grid  
near the free surface are installed in the vertical direction. In the streamwise direction three 
different zones are designed: Near the upstream boundary coarser grids 
with

0.25y mΔ =

min 0.05z mΔ =

0.6 0.25x mΔ = ∼ m are installed; in the neighbourhood of the pile finer 
grids, 0.25 0.06x mΔ = ∼ m , are employed (There are 18 grids along the half perimeter of the pile); 
and coarser grids, 0.06 0.5x mΔ = ∼ m  are employed near the outflow boundary. The total number 
of computational cells is 101,716. 

 

 
 

Figure 3 Computational domain (not to scale) 
 

The experimentally measured time history of free surface displacements at the wave 
gauge located at 29.5 m upstream of the pile was used as the input incident wave boundary 
condition at the upstream boundary. The corresponding fluid velocity for the incident wave is 
calculated using the following approximate formula [20]: 

 
2 2 2 21 1 7 93 1 1

6 2 4 4
u H H z H z

h h h h h h hgh

2η η⎡ ⎤⎛ ⎞ ⎛⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛= + − + − − +⎢ ⎥⎜ ⎟ ⎜⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜⎜ ⎟ ⎜⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝⎢ ⎥⎝ ⎠ ⎝⎣ ⎦

⎞ ⎞
⎟ ⎟⎟ ⎠⎠

,                    (3.1) 

 

( )
2

3

3 31 tanh 1 1 7 1 1
4 2

w H z H H zx Ct
h h h h h H h Hgh

η η 3η⎧ ⎫⎡ ⎤⎛ ⎞ ⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + − + − − + −⎢ ⎥⎜ ⎟ ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎪ ⎪⎝ ⎠ ⎣ ⎦⎩ ⎭
,   (3.2) 

 
where η  denotes the measured time history of free surface elevation, H the wave height and h the 
water depth. 
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Figure 4 shows the numerical results for the time histories of free surface displacement at 
several wave gauge locations. The time used in these figures indicates the numerical simulation 
time. An excellent agreement between the numerical results and the experimental data for the 
wave crest and the trailing wave trough is observed at gauges in front of the pile. However, 
noticeable differences near the wave crest at the wave gauge, located at 10 cm away from the side 
of the pile ( ), are observed, which could be the consequence of flow separation. 90oθ =
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Figure 4 Time histories of free surface displacements.  

Figure 5 shows the time histories of the horizontal particle velocity at different locations. 
ADV velocity meters are installed at the side wall corresponding to the frontline of the pile. 
ADV 1 ~ 4 and the propeller probes are located at different elevations and the elevations from the 
bottom are zADV1 = 2.03 m, zADV3 = 3.23 m, zADV4 = 3.83 m, zprop1 = 4.23 m, zprop2 = 4.63 m, 
zprop3 = 5.03 m, respectively. We first note that the experimental data are raw data without 
applying any filtering out the noise. The numerical results for the maximum horizontal velocity 
slightly over-estimate the laboratory data. It is interesting to observe that although trailing wave 
troughs appeared in the free surface measurements shown in Figure 4 these troughs disappeared 
in the horizontal velocity measurements. The numerical results are consistent with the surface 
elevation as shown in Figure 4. Additionally, the agreement between the experimental data and 
numerical results is incredibly good for the vertical component (which is not shown here). 
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Figure 5 Time histories of horizontal particle velocity at different elevations.   

In Figure 6 the dynamic pressure responses along the perimeter at z/h = -0.11 (4.23 m 
above the bottom) are plotted. Note that 0  and 180θ = ° ° denote the front and back of the pile, 
respectively. The agreement between the numerical results and experimental data is excellent 
except at the locations 0  and 120θ = ° ° . Similar agreement is also obtained along the perimeter at 
z/h = -0.44 (2.63 m above the bottom), which is not shown here. Figure 7 shows the dynamic 
pressure distribution over the depth in the front of the pile, 0θ = ° , at the instant / 21.62 t g h =  
when the force acted on the pile reaches its maximum. The dynamic pressure varies nearly 
linearly above the still water level and is almost a constant under the still water level. The 
numerical results overestimate the experimental data by about 10% under the still water level, 
while the agreement is very good above the still water level. 
 

14 16 18 20 22 24 26 28 30 32 34
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

14 16 18 20 22 24 26 28 30 32 34
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

14 16 18 20 22 24 26 28 30 32 34
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

14 16 18 20 22 24 26 28 30 32 34
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

14 16 18 20 22 24 26 28 30 32 34
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

14 16 18 20 22 24 26 28 30 32 34
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

 
Figure 6 Time histories of dynamic pressure along the perimeter of the pile at z/h = -0.11.  
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Figure 7 Dynamic pressure over the                            Figure 8 Time history of total wave force acting 
depth in front of the pile (Solid line:                             on the pile.  
numerical; : laboratory).                                

 
 Figure 8 shows the measured and calculated wave force acting on the cylinder. 

Numerical results are obtained by integrating the pressure distribution on the wetted surface of 
the pile. The agreement is surprisingly poor; the difference in maximum force is almost a factor 
of 2. In view of the good agreement between experimental data and numerical results for velocity, 
pressure and free surface elevation as shown in Figures 4, 5, and 6, the only explanation for such 
a huge difference in resulting force could be a mistake made in our numerical integration of 
pressure. However, as to be shown in the next section, the same algorithm is used to calculate the 
wave forces due to periodic waves. A much better agreement is observed. Therefore, the question 
for the discrepancy shown in Figure 8 remains open.   

3.3. Numerical simulations of GWK periodic wave experiments 

Numerical simulations were also carried out for two non-breaking periodic wave cases as 
shown in Table 1. The detailed comparisons are presented here only for the first case with a water 
depth h = 4.76 m, a wave period T = 4.0 s and a wave height H = 1.2 m. In this section first the 
incident boundary conditions are discussed and the technique is checked due to the comparison of 
numerical results with the so called undisturbed measured water surface elevations and horizontal 
particle velocities in the next section. Finally, the loads on the slender pile, i.e. local pressure and 
total force, from numerical and laboratory experiments will be shown. 

In order to minimize the computational domain and to use the available computer source 
most efficiently, a regular wave train is driven into the numerical tank directly on the incident 
boundary (see Figure 3) by specifying appropriate water surface elevation, horizontal and vertical 
particle velocity in the entire water depth. These quantities are obtained by adopting the Fourier 
approximation method suggested by Fenton [21] with the wave parameters indicated in Table 1. 
Thus, the wave free surface elevation and fluid particle velocities at incident wave boundary 
(x = 0) are: 

1

1( ) cos
N

j
j

t Y jk
k

η
=

⎡ ⎤
= ⎢

⎣ ⎦
∑ Ct⎥       (3.3) 

1

1 cosh (/ / cos
cosh/

N

j
j

jk h zu C k g U k g jB jk
jkhk g =

⎡ ⎤+
= − +⎢ ⎥

⎣ ⎦
∑ ) Ct  (3.4) 
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1

1 sinh ( ) sin
cosh/

N

j
j

jk h zw jB
jkhk g =

⎡ ⎤+
= ⎢

⎣ ⎦
∑ jkCt⎥                     (3.5) 

The spanwise velocity component, v, is zero at the incident wave boundary condition. The 
values of Fourier coefficients Yj  and BBj depend on the choice of truncation order. The parameter 
C is the wave celerity and Ū is the mean fluid speed in the moving frame with a speed of C. The 
advantage of all Fourier approximation methods, e.g. [21] and [22], is that these methods can be 
applied to general wave conditions, including waves in both deep water and water of finite depth. 
The Fenton formulation can adopt both Stokes first and second approximation of phase speed. 
For the present simulation in a closed wave tank Fenton’s method uses the Stokes second 
approximation of phase speed together with zero Stokes drift CS. 

The computational domain for this simulation is slightly larger than the one used for the 
solitary wave simulations. The total length in the direction of wave propagation is 77 m, where 
the distance between the upstream boundary and the front of the cylinder is 40 m long. Finer grids 
are installed around the cylinder with 26 grid points along the perimeter of the pile and coarser 
grids are used in the regions far away from the pile with 0.35 mxΔ =  (roughly, 60 grids in one 
wavelength).  The vertical grid is uniform with 0.1094 mzΔ = , i.e., there are about 10 grids 
within one wave height. 
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Figure 9 Free surface displacements at various locations upstream and in the vicinity of the pile. 

 
The surface elevations measured at several wave gauges are plotted with numerical 

results in Figure 9. Incident wave condition measured at the flume wall (WG 11) and the water 
surface elevation at the cylinder (WGCYL-1~3) are shown. The synchronization of all time 
histories has been done due to the comparison of numerical and laboratory surface elevation 
measured at wave gauge WG 11. The reference wave amplitude in Figure 9 is the maximum 
elevation of WG 11 ηmax,WG11. In general, the agreement between measured data and numerical 
results is reasonably good. Even some characteristic ripples are predicted well, which are 
measured in the frontline of the cylinder (WGcyl 1) while the wave trough passes the pile. 
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Figure 10 Time histories of horizontal particle velocity at different elevations. 
 

Figure 10 shows the velocity profiles at different elevations from the bed. The numerical 
model tends to underestimates the crest of the velocity slightly, while overestimates the trough 
velocities. It is obvious that the propeller probes record absolute values only. The numerical 
results show a downward drift, suggesting a small opposing current. This feature could be caused 
by the imperfect incident boundary conditions.   

 

 
Figure 11 Time histories of dynamic pressures along the perimeter of the pile at z/h = -0.11. 
 

The time histories of dynamic pressure along the perimeter of the pile at z/h = -0.11 
(4.23 m above the bottom) are shown in Figure 11.  The numerical model underestimates most of 
the crests of the measured pressure slightly. Taking into account the comparison of the incident 
wave conditions, the difference of the measured and predicted pressure is in agreement with the 
differences presented in Figure 10. The critical region from view of flow separation, 

90 -120θ = ° ° , no significant change of the time history is visible, neither for the comparison 
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between each laboratory experiment nor for the comparison with the numerical results. The 
pressure measurements of the lower section have the same pattern as shown here for the upper 
section. 

The time history of the total inline force acting on the pile is plotted on the left hand side 
in Figure 12. In the case of the laboratory data the force Fx represents the sum of the measured 
force in the bearings and in the numerical case the pressure has been integrated over the wetted 
surface of the cylinder. The total inline force is predicted with excellent accuracy. The maximum 
discrepancy in the maximum force is about 10%. Recall that in the solitary wave case the 
difference in wave force is a factor of two, although the overall agreement between the numerical 
results and experimental data for the velocity, free surface elevation and pressure is much better 
than that for the periodic wave case.  

To proof the assumption that the determined test is inertia dominated, a comparison with 
the Morison-Inertia force using a force coefficient CM = 2 and the undisturbed water surface 
elevation (measured at the side wall) is shown on the right hand side of Figure 12. The extreme 
loads occur synchronously to the zero-crossings of the water surface elevation and are in phase 
with the horizontal particle acceleration.  

 
Figure 12 Time history of the total force acting on the pile. 
 

4. Concluding Remarks 

A 3D numerical model, developed for studying water wave-body interaction problems, 
has been tested with experimental data for periodic and solitary waves interacting with a slender 
pile. For the tested cases, waves are non-breaking and turbulence is negligible. The comparisons 
show that the numerical model is capable of predicting free surface displacement, fluid particle 
velocity, and dynamic pressure on the pile, provided that the correct incident boundary conditions 
are applied.  The relatively less satisfactory agreement in the particle velocity of periodic waves 
may be due to the imperfect incident boundary conditions used in the numerical simulations. A 
ramp function, i.e. spinning up the incident waves, can be used to improve the situation. 

The agreement between experimental data and numerical results for the wave force is 
reasonable and consistent with the comparisons of other physical variables for the periodic cases. 
Unfortunately, this is not the case for solitary waves. Large discrepancy is observed in the wave 
force measurements and numerical calculations. Additional numerical and laboratory experiments 
will be performed in the near future.  
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