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Abstract. It is well-known that near an infinite linear array of periodically spaced
cylinders trapped waves of certain eigen-frequencies can exist. If there are only a
finite number of cylinders in an infinite sea, trapping is imperfect. Simple harmonic
incident waves can excite a nearly trapped wave at one of the eigen-frequencies
through a linear mechanism. However the maximum amplification ratio increases
monotonically with the number of the cylinders, hence the solution is singular in the
limit of infinitely many cylinders. Recently we have completed a nonlinear theory of
subharmonic resonance of perfectly trapped waves. In this article we further extend
the theory to random incident waves with a narrow spectrum centered near twice
the natural frequency of the trapped wave. The effects of detuning and bandwidth
of the spectrum are examined.
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Stuart equation

1. Introduction

Trapping of sinusoidal water waves either by a stationary body in a
channel or by an infinite and periodic array of bodies has been exten-
sively treated in the linearized framework by Evans and his associates
in the past decade ([1]; [2]; [3]; [4]; [5]; [6] and [7]). When trapping
is perfect, these modes cannot be resonated by incident waves of the
same frequency, according to the linearized theory. If there is only a
finite number of periodically spaced cylinders in an infinite sea, then
trapping is imperfect and synchronous resonance can be predicted by
a linear theory [8].

In coastal oceanography it is known that perfectly trapped edge
waves can also be present on a sloping beach of infinite length. Labo-
ratory experiments by Galvin [9] have shown that an edge wave can be
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resonated nonlinearly by a sinusoidal incident wave of twice the edge-
wave frequency. This observation has been explained by a nonlinear
theory ([10], [11], [12] and [13]). Of more recent interest in coastal
engineering is the case of mobile barriers proposed for the inlets of
Venice Lagoon for protecting the famed city from storm tides. Each of
the four planned barriers is a series of twenty closely aligned hollow
gates across an inlet. All gates are allowed to swing about a common
axis on the seabed to reduce the forces on the supporting structure and
the foundation, but are otherwise unattached to one another. It was
however found in the laboratory that normally incident sea waves can
force the neighboring gates to oscillate in opposite phases, at half the
frequency. The cause for this undesirable oscillation was later found to
be the existence of trapped modes owing to the periodic and mobile con-
struction [14]. A nonlinear theory for monochromatic incident waves,
similar to the subharmonic resonance of edge waves, has been given by
[15], and confirmed by laboratory experiments. Chaotic response to de-
terministic narrow-banded incident waves was also found theoretically
and verified by experiments [16]. For a somewhat more idealized barrier
geometry and shallow water waves, Vittori [17] reported a stochastic
theory for the excitation of gate oscillations by random incident waves
with a narrow frequency band.

Recently we have completed a nonlinear theory for subharmonic
resonance of monochromatic waves trapped by a vertical cylinder in a
channel. The geometry is equivalent to one period in an infinite array of
periodically spaced cylinders. The evolution equation for the amplitude
of the trapped mode is found analytically to be a Landau-Stuart equa-
tion governing other trapped-wave resonance problems. The main task
of calculating the coupling coefficients is achieved by solving a number
of scattering or radiation problems. By numerical solution of these
problems, the effects of the geometry on the resonance characteristics
have been examined.

In this article we examine the response to random incident waves
with a narrow frequency band. The spectrum is assumed to be Gaussian
with prescribed bandwidth. The spectral peak is assumed to be slightly
detuned from twice the eigen-frequency of the trapped mode. Because
of the narrowness of the frequency band, the incident wave amplitude is
a slowly-varying, though random, function of time. As a consequence,
the amplitude of the trapped wave is also a slowly-varying random
function of time, governed by the Landau-Stuart equation which is of
the same form as that for the deterministic problem. From many numer-
ical solutions of the stochastic equation we shall examine statistically
the averaged growth rate and averaged final amplitude as functions of
detuning and spectral band width.
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Figure 1. Circular cylinder in a open channel

2. Summary of the deterministic theory

We consider a bottom-mounted circular cylinder of radius o’ fixed at
the center of a channel of width 2d’ and depth A'. Let a Cartesian
coordinate system be chosen such that the (z’,y') plane coincides with
the still free surface and 2z’ points upward along the cylinder axis, as
shown in figure 1. A train of plane waves of amplitude A} arrives along
the positive z’ axis interacts with the cylinder.

For convenience we first outline the steps that lead to the evolution
equation in the deterministic case.

Let the fluid be incompressible and inviscid, and the flow be irro-
tational. Denoting the ratio of the incident wave amplitude A} and
the channel half-width! d' as e?(= A}/d'). It can be reasoned that

the trapped wave amplitude is of order O(A}/e) = O(/A}d') if res-

onated by incident waves of amplitude A’;. After normalization the free
surface conditions are expanded in powers of € to the third order. At
the leading order only the trapped wave is present. The eigenfunction
and the eigenfrequency are found by the hybrid finite-element method,
where the solution is represented analytically by eigenfunction expan-
sions away from the cylinder but by discrete finite elements near the
cylinder. At the second order, the scattered waves due to incoming
waves of frequency 2wy, are calculated. Due to quadratic interactions
of the trapped wave with itself, there are radiated waves of frequency

! The channel width 2d’ can be thought of as the center-to center spacing of a
periodic array of cylinders.
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2wy also. At the third order, cross-interaction between the first-order
trapped waves and the second-order incident/scattered waves creates
forcing which is oscillatory in time at the frequency wj. The condition
for the solvabilty of the corresponding inhomogeneous boundary-value
problem leads to the evolution equation for the complex amplitude B’
of the trapped wave.

Let the following dimensionless variables be used,

x/’ ,,Z,,h,
t:,/%t’, (x,y,z,h)zw k=Ed,

d
(¢, B)

((,B)=—"F+—, A= 4 =1 @:L (2.1)

Jad T /A a'\ g Ay

where ¢’ denotes the free surface displacement and B’ is the amplitudes
of the trapped wave. At the leading order the dimensionless potential
of the trapped waves can be written as

o B coshkg(z+ h)

= —iwol ¢ e 2.2
2iwy  coshkgh n(@,y)e +ec, (22)

where c.c. represents the complex conjugate of the preceding term.
The dimensionless evolution equation for B is found to be the Landau-

Stuart equation

B
—i(fi— = coB*B* + ¢, AB* (2.3)
T

where 7 = €2t and A = 1. The coefficients are

Co = %Zzi;//sp a; Im(n)dS, ¢, = %g//SF viIlm(n)dS  (2.4)

where

E= //SF (Im(n))*ds. (2.5)

The coefficients «;(z,y) and ;(z,y) depend on the geometry and are
discussed in detail in [18].

3. The stochastic problem
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3.1. RANDOM INCIDENT WAVE

For clarity we first describe the random incident waves in terms of
physical variables distinguished by primes. Let the incident wave be
a homogeneous, stationary random process, described by a Fourier-
Stieltjes integral ([19]; [20]; [21])

OO
CI($I, tl) — / el(k T —w't )d%'(w'), (31)
—0o0

where ' is the frequency and k' is the wavenumber satisfying the
dispersion relation
w? = gk' tanh k'R’ (3.2)

Because of stationarity, the covariance between two random variables

de/'(w') and d&’ (W) is
(det' (')A (wh)) = O(w’ — w})S' (') de'df, (3.3)
where the angle brackets denote the ensemble average. S’(w') is the
spectral density, which is real, non-negative and even, S'(—w') = §'(').
n (3.1), d«Z(w') can be seen as the complex amplitude of the com-

ponent wave of frequency between ' and ' + dw'. The reality of ¢’
implies the following symmetry

do' (—u') = d"™ (). (3.4)
Thus we can decompose (3.1) into two parts
CI($l,t,) — / iK'z —w't’) dJZ{I / i(k'z'—w't") dJZ{I( )’ (35)
0
where the second integral can be shown to be the complex conjugate of
the first. The wave energy contained in the frequency range 0 < w' < oo

and —oo < w' < 0 are equal. Hence half of the total energy is, by using
(3.3)

N o = [ / o' (der' () det ()

:/ S'(w / S'Wd.  (3.6)

and can be used to define the characteristic amplitude of the random

incident wave .
00 2
_ (2 / S'(w')dw’) (3.7)
—o0
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The small parameter € is still defined in terms of the new A’ by

Al Al
€= 7,[<< 1, or 62:7,1. (3.8)

Now we assume in addition that the incident wave spectrum has a
narrow bandwidth of order O(e2w})). The spectral density S'(w') peaks
at 2wj + €229’ and decays rapidly away from the peak. 2¢2Q' is the
detuning frequency. By the transformation

W= :|:(2w6 + 2(20Y + U')), for W' =0, (3.9)

we can change the argument of d<7’ from w’ to o’. Accordingly, the free
surface displacement (3.5) becomes

C(a! ) = e Bty /

—20) /€2 =200

oo

ei(k’“"’*g”’t,)d&/(a') +c.c..

(3.10)
The lower limit of the integral in (3.10) is a large value of the order
O(e72) and can be replaced by —oo in view of the assumption that
the spectrum diminishes rapidly away from 2wj. Note that the first
integral in (3.10) includes only the contribution from the positive half
of the two-sided spectrum S’. It follows from (3.3) and the identity
d(Az) = §(x)/|A|, where X is a constant, that the covariance of d.«/'(c")
obeys

(de'(0)de/" (01)) = €%6(0" — 0})§'(0")do"dor. (3.11)
where
~ ' / 2 / ! / o, 0 /.2 !
§(o') = §'(2wh + 29 + ")), o> —2h/E =2,y
0, otherwise,

takes non-zero values only in the positive half of the frequency range
of w'.
Consequently, (3.6) becomes

(N g = [ [ d0'ash @ar'(o)ar' (o)

_ / (o / S'()d!,  (3.13)

which indicates that the incident wave energy is of the order of O(€?)
and hence small.
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3.2. NORMALIZED INCIDENT WAVES

Use A} defined in (3.7) as the scale of the incident wave we introduce
the following normalized variables in addition

d/
(w0, Q,w,,0) =/ — (', 2, w,,0"), kE=kKd,
g

2do’
dod = ——, 3
A7 Al d'2

The purpose of using the factors 2 and 4 in the scales of d«?’ and S’
respectively will become clear shortly.

In dimensionless variables, the free surface displacement (3.10) be-
comes,

((z,t) = % e_Qi“’Ote_QiQT/ el*k2=7) 407 (0) + c.c. + O(€*).  (3.14)

—00

where 7 = €%t is the slow time variable. The wavenumber k is related
to w by the dimensionless form of the dispersion relation (3.2)

ktanh kh = w?. (3.15)

Letting
k=K + Ky + O(e"), (3.16)

we can easily find from (3.9) and (3.15) that

B dw(o + 2Q)
"~ tanh Kh + Kh(1 — tanh® Kh)’

K tanh Kh = 4w?, K, (3.17)

Therefore by substituting (3.16) into (3.14), we get, up to the second
order

. <x> . .
o) = & {eZlQT / el(K”?”T)d%(a)}e‘(K$2w°t) +ec, (3.18)
—o0

with 29 = €’z the slow spatial coordinate. Near cylinder, we set 2 = 0.
Moreover, let us introduce

. w . ~ .
A(T) — 672197/ eflm—dﬂ(d) :Aefhﬂr,
—00

where A = / e~ At (o), (3.19)

—00
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as the wave envelope amplitude varying stochastically with respect to
the slow time 7. Accordingly, we express the random incident wave in
the simple form

C(z,t) = %A(T)ei(KHwo” +e.c., (3.20)

The random amplitude A(7) must be determined from the inci-

dent wave spectrum. From (3.11), the covariance of the dimensionless
increment d«7 (o) is now given by

(e (o)de?™ (01)) = 0(0 — 01)S(0)dodoy, (3.21)

where, from (3.13), one can show that the spectral density function
S(o) satisfies the normalizing condition,

[w S(o)do = 1. (3.22)

The forms of (3.14), (3.21) and (3.22) are the result of introducing the
factors 2 and 4 in the normalization of &7’ and S’, respectively. To
evaluate the complex amplitude A(7) numerically, we rewrite (3.19) as

A(T) — e—QiQT Z |d=527(0m)| e—iamt—iarg[d%(am)]‘ (3‘23)

m=—00

The prescribed spectrum S is discretized into vertical strips of width
Ao and height S(mAo). The frequency of m-th wave component o,
is chosen randomly between (m — 1/2)Ac and (m + 1/2)Ao. The
amplitude is then calculated from

‘dd(om)‘ = 52 (o) Ao, (3.24)

while the phase angle arg[d</(oy,,)] is chosen randomly according to a
probability distribution uniform in [0,2x]. More details can be found
in [22] and [23]. 5

In the present study, we assume that the spectral function S(o) is
Gaussian with zero mean and variance D?:

$(0) = ﬁ exp (-%), (3.25)

which depends only on the standard deviation D.
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3.3. STOCHASTIC EVOLUTION EQUATION OF TRAPPED WAVE

For each realization, the trapped wave amplitude is still given by (2.3),
except now the wave amplitude is given by (3.19). With the transfor-
mation

B = Be V7, (3.26)

(2.3) becomes

dB . . o
—i— = caB*B* + QB + ¢, A(T) B*. (3.27)
T
which is a stochastic differential equation. For the deterministic Landau-
Stuart equation (2.3), the equilibrium states and their linearized insta-
bility have been studied by [13] for edge waves. We now focus attention
on the statistical analysis.

4. Nonlinear resonance excited by random waves

For the complete development of the trapped wave amplitude we must
solve the non-autonomous stochastic Landau-Stuart equation (2.3) nu-
merically with a random complex coefficient ¢, A(7). From (3.26), the
magnitude |B| is the same as |B| solved from (2.3). The statistical
characteristics of the trapped wave amplitude |B| are determined from
a large number of realizations with the phase angles in (3.19) randomly
generated from a uniform distribution between 0 and 27 and the initial
value of |B| at 7 = 0 randomly assigned with some small values less
than 107%.

In figure 2, we display three nonlinear solutions of the Landau-
Stuart equation (2.3), and compare them with the deterministic so-
lution. Starting from infinitesimal disturbance, the trapped wave am-
plitude | B| grows initially at a rate depending on the randomly assigned
phase angle, and becomes a stationary random process thereafter.

The observed trapped wave amplitude | B| at an arbitrary instant 7
is a random variable. Let us define the ensemble average of the trapped
wave amplitude at time 7 by

1
(B =+ > |Ba(7)], (4.1)
n=1
and the standard deviation

1
272

1 N
@ = |5 X (1B~ (BEOD) | (42)
n=1
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where n is the index of a realization and N the total number of real-
izations. In figure 3, the time development of the ensemble average and
standard variance of |B| are plotted. A total of 2048 realizations of | B|
with different phase angles are computed. It can be seen that the en-
semble average increases from infinitesimal disturbance and approaches
a constant when 7 is large, so is the variance. In comparison with the
deterministic forcing represented by the dashed line in figure 3, the
ensemble average grows more slowly and reaches a lower equilibrium
value. These results are similar to [17] for Venice gates.

In [18], it is shown for a deterministic incident wave that the bi-
furcation curve representing the variation of equilibrium action versus
detuning frequency can lean either to the right or to the left, depending
on the sign of ¢,. Hysteresis (jump phenomenon) can occur. Figures
4 and 5 show the equilibrium values of the ensemble average (|B])
and the standard variance (o) p for various narrowband width D when
a = 0.30, h = 0.50. The real part Re(c,) = —0.772 is negative and the
bifurcation curve leans rightward? It can be seen that as the width D
of the incident wave spectrum increases, the bifurcation curve becomes
flatter and the trapped wave can be excited within a wider range of €2,
but to a smaller amplitude. Both bifurcation curves of (|B|) and (o) g of
the randomly resonated trapped wave share the same sense of leaning
as the deterministic case. However, there is no jump phenomenon in
all the random cases calculated with D > 0. Figure 6 and 7 show the
results for a = 0.32 and h = 1.50 where Re(c,) = 0.4911 is positive
and the bifurcation curves lean leftward. Again there is no hysteresis,
and the amplification diminishes with D.

5. Concluding remark

We have shown that for random incident wave of a narrow band width,
the subharmonic resonance mechanism can still be effective. However, if
the bandwidth is large enough, the amplification ratio is small, therefore
the subharmonic mechanism becomes ineffective.
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Figure 2. Samples of trapped wave amplitude |B(7)| for different sets of phase an-
gles, a = 0.5, h = 1.0. The coefficients ¢, = —0.0135+0.1543i, ¢, = 0.0769+0.0851i.
D/|ey| = 0.5, = 0.0. Thin solid line: solution of deterministic incident wave.
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Figure 3. Ensemble average and standard deviation of |B(7)| compared with de-

terministic solution. Solid curve: (|B|), error bar: +(o)p, dashed curve: |B| for

deterministic incident wave.
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Figure 4. Dependence of the ensemble average of the trapped wave amplitude
on D and Q, a = 0.30, h = 0.50. The coefficients ¢, = —0.772 + 0.4466i,
¢y = —0.0066 + 0.1202i. The thick curve is for the deterministic incident wave
and the thin curves are for random waves of various D/|cy|.
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Figure 5. Dependence of the ensemble standard variance of the trapped wave am-

plitude on D and , a = 0.30, h = 0.50. The coefficients ¢, = —0.772 + 0.4466i,
cy = —0.0066 + 0.1202i.
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Figure 6. Dependence of the ensemble average of the trapped wave amplitude
on D and 2, a = 0.32, h = 1.50. The coefficients ¢, = 0.4911 + 0.2794i,
¢y = 0.1265 + 0.020i. The thick curve is for the deterministic incident wave and
the thin curves are for random waves of various D/|c,|.
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Figure 7. Dependence of the ensemble standard variance of the trapped wave am-

plitude on D and €2, a = 0.32, h = 1.50. The coefficients co, = 0.4911 + 0.2794i,
¢y = 0.1265 + 0.020i.
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