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Abstract. The paper deals with two-dimensional unsteady problem of liquid parabola impact

onto a rigid flat plate at a constant velocity. The liquid is assumed ideal and incompressible and

its flow potential. Initial stage of the impact is of main concern in this study. Non-dimensional

half-width of the contact region between the impacting liquid and the plate plays a role of the

small parameter of the problem. The flow region is subdivided into four parts: (i) main flow re-

gion, dimension of which is of the order of the contact region width, (ii) jet root region, where the

curvature of the free surface is very high and the flow is strongly non-linear, (iii) jet region, where

the flow is approximately one-dimensional, (iv) far-field region, where the flow is approximately

uniform at the initial stage of the impact. Second-order solution in the main flow region has

been derived and matched to the first-order inner solution in the jet root region. The matching

conditions provide the estimate of the contact region dimension for small time. Pressure distri-

butions in both the main flow region and the inner region have been derived. Accuracy of the

obtained asymptotic formulae is estimated. Second-order hydrodynamic force acting on the plate

is obtained and compared with available experimental data. A fairly good agreement is reported.
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1. Introduction

Initial stage of wave impact onto a rigid and horizontal flat plate is studied. The wave profile

close to the impact point is approximated by a parabolic contour. The liquid flow induced by the

impact is two-dimensional and symmetric with respect to the vertical line, which is normal to the

plate at the impact point. The liquid is assumed ideal and incompressible. Gravity and surface

tension effects are not taken into account. The liquid flow is assumed potential. Before the impact

the liquid parabola moves up at constant velocity V and touches the plate at the impact instant,

which is taken as the initial one, at a single point, which is taken as the origin of the Cartesian

coordinate system (see Figure 1). The shape of liquid region before the impact is characterized

only by the radius of the curvature R at the parabola top. We shall determine initial asymptotics

of the liquid flow, the pressure distribution along the wetted part of the plate, dimension of the

contact region between the impacting liquid and the rigid plate and the hydrodynamic force acting

on the plate during the early stage, when the displacements of the liquid particles are much smaller
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than the length scale R of the problem. Due to the flow symmetry, only the right-hand side of

the flow is considered in this paper.
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Figure 1. Sketch of the flow just before the impact.

The problem is considered within the non-dimensional variables with R being the length scale,

R/V time scale, V R scale of the velocity potential and ρV 2 scale of the hydrodynamic pressure.

The sketch of the flow just before the impact is shown in Figure 1. The origin of the Cartesian

coordinate system Oxy is taken at the impact point. The line y = 0 corresponds to the rigid flat

plate. The line x = 0 is the symmetry line of the flow. At the impact instant, t = 0, the shape

of the liquid free surface is described by the equation y = −1
2
x2 in the non-dimensional variables.

The flow pattern after the impact instant, t > 0, is shown in Figure 2, where c(t) is the half-length

of the wetted part of the plate and d(t) is the distance from the impact point to the turnover

point P at which the tangent to the free surface is vertical.

d(t)

V

y

xP

Figure 2. The flow pattern during the initial stage of the liquid impact: d(t) is

the distance from the impact point to the turnover point P , where the tangent

to the free surface is vertical, the jet length is infinite within the incompressible

liquid model.
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The turnover point plays a very special role in the impact problem. This is because during

the early stage of the impact the jets are very thin and can be disregarded in calculations of the

hydrodynamic force acting on the rigid body as was suggested by Wagner [1]. Correspondingly, the

wetted part of the plate (contact region between the liquid and the rigid surface) can be defined

without account for the jets with its dimension being equal to 2d(t). In the present asymptotic

analysis the quantity d is treated as a small parameter and the time t(d) is considered as unknown

function. Moreover, the problem is analyzed by using the stretched coordinates x/d and y/d,

within which the horizontal coordinate of the turnover point P is fixed.

A peculiarity of the impact problem is connected with the fact that features of the flow in

different parts of the flow region are different. This is why the flow domain is subdivided into four

basic subdomains. The asymptotic solutions are obtained for each subdomain and matched one

to another.

The main region of the disturbed flow is marked as the region I (see Figure 3). The dimension

of this region is of the order of O(d) as t → 0. This is the region, where the flow is described by

the Wagner solution in the leading order as t → 0. In this region the free surface slope is small,

the actual position of the free surface can be approximated as y = 0, the boundary conditions can

be linearized in the leading order and imposed on the horizontal line y = 0, |x| > d(t). This is the

main idea of the Wagner approach which has been successfully used in both theoretical analysis

of the water impact problems and in practical applications for more than seventy years. Within

the Wagner approach the function d(t) is unknown and is determined as a part of the solution

with the help of the so-called Wagner condition [1]. In the present problem the Wagner condition

requires that the vertical position of the deformed free surface at |x| = d(t) is zero. The Wagner

solution is treated in the present analysis as the leading order solution in the region I. The Wagner

solution is considered in brief in Section 3.1.
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Figure 3. The flow domain is divided into four region: I is the main flow

region, II is the jet root region, III is the jet region, IV is the far-field region.

The asymptotic solutions are obtained for each region and are matched one to

another

The flow in the region IV, dimension of which is of the order of O(1) in the non-dimensional

variables, is uniform in the leading order as t → 0. We need to determine higher-order terms of

3



the solution in this region and match this solution with the higher-order solution in the region I

(see Section 3.2).

The flow in the jet root region II, the dimension of which is much smaller than d(t), was

investigated for the first time by Wagner [1] in the leading order as d → 0. The corresponding

solution was obtained in a convenient for practical purposes form in [2, 3]. The matching of the

inner solution in the region II with the solution in the main flow region I was studied by Oliver

[4]. The nonlinear boundary-value problem, which governs the flow in the region II in the leading

order, is revisited in Section 4 with the aim to estimate the order of accuracy of its solution during

the initial stage.

The flow in the jet region III was studied in [2, 3]. We use here the results from [2] and [3],

which show that the contribution of the pressure in the jet region to the total hydrodynamic force

acting on the plate during the early stage of the impact is negligibly small compared with the

contribution of the hydrodynamic pressure in the jet root region II. Note that in [2] it was shown

that the jet length is infinite within the incompressible liquid model, this is why in the following

we take c(t) = ∞.

It should be noted that we defined the scheme of the flow before the higher-order asymptotic

solution has been obtained. This scheme is well adopted in the water impact analysis (see [3] and

[5], for example). We take this scheme here as granted with the aim to improve the leading order

solution, which is well known [1], by taking into account the higher-order terms in the boundary

conditions. The account for the higher-order terms in the water impact problem is necessary due

to the well-known discrepancy between the Wagner predictions of the hydrodynamic loads and

the loads measured in experiments and computed within the fully nonlinear theory of potential

flows induced by impact (see [6] for more details and discussions).

The second-order solution for the problem of wedge entry was studied by Fontaine and Cointe

[7]. They derived the boundary-value problem for the second-order velocity potential in the region

I and suggested to solve this problem numerically.

2. Formulation of the problem

The liquid flow after the impact instant, t > 0, is described within the non-dimensional variables

by the velocity potential ϕ(x, y, t), which satisfies the following equations

∆ϕ = 0 ( in Ω(t) ), (1)

ϕy = 0 ( y = 0 ), (2)

ϕy = Yx(x, t)ϕx + Yt(x, t), p = 0 ( y = Y (x, t) ), (3)

p(x, y, t) =
1

2
− 1

2
|∇ϕ|2 − ϕt ( in Ω(t) ), (4)

Y (x, t) ∼ −1

2
x2 + t ( |x| → ∞ ), (5)
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ϕ ∼ y ( x2 + y2 →∞ ), (6)

Y (x, 0) = −1

2
x2, ϕ(x, y, 0) = y. (7)

Here equation y = Y (x, t) describes the deformed shape of the free surface after the impact,

Y (x, t) is unknown multi-valued function defined for |x| > d(t) and p(x, y, t) is the hydrodynamic

pressure. The boundary condition (2) on the plate implies that the plate is fixed and rigid, the

kinematic and dynamic boundary conditions (3) are imposed on the actual position of the free

surface after the impact. Conditions (5) and (6) represent the far-field conditions and imply that

far from the impact region the free surface deformations are negligibly small and the liquid flow

is uniform. Unsteady Bernoulli equation (4) indicates that in the far field, where x2 + y2 À 1, the

pressure is zero and the liquid moves vertically up as a rigid body. The unknown function d(t) is

defined by the condition

|Yx(x, t)| → ∞ ( |x| → d(t) + 0 ). (8)

Note that we assume after Wilson [2] that the plate is totally wetted just after the impact in-

stant. This is a reasonable assumption once the liquid compressibility is not taken into account.

Calculations of the jet length within the compressible liquid model can be found in [8].

It should be noted that there is no parameter in problem (1) - (8). The initial stage of the

impact is defined as the stage, where the non-dimensional time is small, t ¿ 1. In the dimensional

variables this inequality implies that the displacements of the liquid particles are much smaller

than the length scale R of the process during the initial stage under consideration.

We shall obtain the asymptotic solution of the boundary-value problem (1) - (8) as t → 0.

Note that d(t) → 0 as t → 0. It is convenient to take the quantity d as a small parameter of the

problem and consider the time t(d) as a new unknown function. Also it is convenient to introduce

the stretched variables

ξ = x/d, η = y/d, φ(ξ, η, d) = ϕ/d, q(ξ, η, d) = p/ḋ, (9)

H(ξ, d) = Y/d2, χ(ξ, η, d) = ψ/d

and the stretched time

T (d) = t(d)/d2, (10)

where ψ(x, y, t) is the stream function, ψ(x, 0, t) = ψ(0, y, t) = 0 owing to the flow symmetry and

the body boundary condition (2).

In the new stretched variables (9), (10) the boundary-value problem (1) - (8) takes the form

∆φ = 0 ( in Ωs(d) ), (11)

φη = 0 ( η = 0 ), (12)

φη =
1

2S(d)
[2H − ξHξ] + dHξφξ +

d

2S(d)
Hd, q = 0 ( η = dH(ξ, d) ), (13)

q(ξ, η, d) = ξφξ + ηφη − φ− dφd + dS(d)[1− |∇φ|2] ( in Ωs(d) ), (14)
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H(ξ, d) ∼ −1

2
ξ2 + T (d) ( |ξ| → ∞ ), (15)

φ ∼ η ( ξ2 + η2 →∞ ), (16)

|Hξ| → ∞ ( |ξ| → 1 + 0 ), (17)

where

S(d) = T (d) +
1

2
dT ′(d), dḋ =

1

2S(d)
, (18)

Ωs(d) is the flow region in the stretched variables. We shall determine the asymptotic solution of

the problem (11) - (18) as d → 0.

3. Asymptotic solution in the main flow region

Considering the flow and the pressure distribution in region I, one should keep in mind that non-

physical behavior of the solution may be found close to the jet root region II. The size of the region

II is much smaller than the size of the region I. Therefore, the region II should be treated as a

point, when one deals with the flow in region I. The same is true for the region IV. This is, the

far-field behavior of the asymptotic solution in region I can be non-physical and, in this case, it

must be corrected with the help of the asymptotic solution in the region IV. Thus, the uniformly

valid solution is obtained with the help of the matched asymptotic expansion method.

Initial asymptotic of the solution in region I is sought in the form

φ(ξ, η, d) = φ0(ξ, η) + Φ1(ξ, η, d),

H(ξ, d) = h0(ξ) + H1(ξ, d), (19)

T (d) = t0 + T1(d),

where Φ1(ξ, η, d), H1(ξ, d) and T1(d) tend to zero together with their first derivatives as d → 0. It

should be noted that the asymptotic procedure is designed in such a way that the leading order

solution is identical to that given by Wagner [1]. Note that we do not specify the orders of the

higher-order terms in expansions (19) but shall determine these orders as a part of the asymptotic

solution.

3.1. Leading-order solution

By substituting (19) into equations (11) - (18) and letting d → 0, we obtain the equations which

govern the leading order solution

∆φ0 = 0 ( η < 0 ), (20)

∂φ0

∂η
= 0 ( η = 0, |ξ| < 1 ), (21)
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∂φ0

∂η
=

1

2t0
[2h0 − ξh0ξ] ( η = 0, |ξ| > 1 ), (22)

ξ
∂φ0

∂ξ
− φ0 = 0 ( η = 0, |ξ| > 1 ), (23)

h0(ξ) ∼ −1

2
ξ2 + t0 ( |ξ| → ∞ ), (24)

φ0 ∼ η ( ξ2 + η2 →∞ ), (25)

|h0ξ| → ∞ ( |ξ| → 1 + 0 ), (26)

h0(1) = 0. (27)

The region III is of infinitesimal thickness with respect to the dimension of the region I. This

is why one can disregard the jets in analysis of the flow in the region I and impose the body

boundary condition (12) only along the interval |ξ| < 1. Equation (27) follows from the adopted

scheme of the flow and is known as the Wagner condition.

The general solution of the ordinary differential equation (23) is φ0(ξ, 0) = C1ξ, where C1 = 0

according to condition (25). Therefore, the dynamic boundary condition (23) along the free surface

provides

φ0 = 0 ( η = 0, |ξ| > 1 ). (28)

The complex potential φ0 + iχ0, which satisfies the boundary conditions (21), (28), the far-field

condition (25) and is of minimal singularity at the ”contact points” ξ = ±1, η = 0, has the form

φ0 + iχ0 = −i
√

z2 − 1, z = ξ + iη. (29)

The complex function
√

z2 − 1 is defined on the plane z with the cut along the interval −1 < ξ < 1,

η = 0. The chosen branch of this function is defined as

. (30)

√
z2 − 1 =

√
ξ2 − 1 (ξ > 1, η = 0),

= −
√

ξ2 − 1 (ξ < −1, η = 0),

= −i
√

1− ξ2 (|ξ| < 1, η = −0),

= i
√

1− ξ2 (|ξ| < 1, η = +0).

Along the free surface, ξ > 1, η = 0, we obtain φ0 + iχ0 = −i
√

ξ2 − 1 and, therefore,

χ0(ξ, 0) = −
√

ξ2 − 1. By using the equality φ0η = −χ0ξ, we find φ0η = ξ/
√

ξ2 − 1 along the free

surface. The kinematic condition (22) and the conditions (26) and (27) lead to the boundary-value

problem with respect to the function h0(ξ)

ξ
∂h0

∂ξ
− 2h0 = −2t0

ξ√
ξ2 − 1

( ξ > 1 ), (31)

h0(1) = 0, (32)
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h0(ξ) ∼ −1

2
ξ2 + t0 ( |ξ| → ∞ ), (33)

The general solution of equation (31) is

h0(ξ) = C2ξ
2 − 2t0ξ

√
ξ2 − 1,

condition (32) gives C2 = 0. The obtained solution behaves in the far field as

h0(ξ) ∼ −2t0ξ
2 + t0 + O(ξ−2),

which together with condition (33) provides t0 = 1/4 and the leading order shape of the liquid

free surface in the region I as

h0(ξ) = −1

2
ξ
√

ξ2 − 1. (34)

We obtained the leading order solution in region I, which is identical to that obtained for the first

time by Wagner [1].

3.2. Second-order solution

With the help of equations (19) the dynamic boundary condition, q = 0, on the free surface

provides

ξ
(∂φ0

∂ξ
(ξ, dH) +

∂Φ1

∂ξ
(ξ, dH, d)

)
+ dH(ξ, d)

(∂φ0

∂η
(ξ, dH) +

∂Φ1

∂η
(ξ, dH, d)

)
−

φ0(ξ, dH)− Φ1(ξ, dH, d)− d
∂Φ1

∂d
(ξ, dH, d) + dS(d)[1− |∇φ0|2(ξ, 0)] + O(d · Φ1) = 0.

By using Taylor expansion of terms in the latter equation and equality (28), we obtain in the

leading order the dynamic condition as

dξ
∂

∂ξ

(∂φ0

∂η

)
(ξ, 0)h0(ξ) + ξ

∂Φ1

∂ξ
(ξ, 0, d)− Φ1(ξ, 0, d)−

d
∂Φ1

∂d
(ξ, 0, d) +

d

4

(
1−

[∂φ0

∂η

]2

(ξ, 0)
)

= o(d) ( |ξ| > 1 ). (35)

Conditions (35), (12) and equation (11) show that

Φ1(ξ, η, d) = C3(d)φ1e(ξ, η) + dφ1(ξ, η) + Φ2(ξ, η, d), (36)

where Φ2(ξ, η, d) = o(d) and Φ2(ξ, η, d) = o(C3(d)) as d → 0, the function φ1e(ξ, η) is a non-trivial

solution of the boundary-value problem

∆φ1e = 0 (η < 0), φ1e → 0 (ξ2 + η2 →∞),

∂φ1e

∂η
= 0 (η = 0, |ξ| < 1), φ1e = 0 (η = 0, |ξ| > 1).
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Possible solutions of this problem are singular at the contact points. The solution of minimal

singularity has the form

φ1e(ξ, η) = <[1/
√

1− z2].

Function φ1e(ξ, η) could be required to match the second order outer solution with the inner

solution in the jet root region. However, the following analysis shows that the matching procedure

does not require singular terms in the second-order solution for the velocity potential, which is

why we take C3(d) = o(d) as d → 0.

The potential φ1(ξ, η) satisfies the body boundary condition (12) and the condition on the free

surface

ξ
∂φ1

∂ξ
− 2φ1 =

1

4
[φ2

0η − 1]− ξh0(ξ)[φ0η]ξ ( η = 0, |ξ| > 1), (37)

which follows from (35) and (36). Condition (37) leads to the equation

ξ
∂φ1

∂ξ
− 2φ1 = −1

2
− 1

4

1

ξ2 − 1
( η = 0, ξ > 1)

with its general solution

φ1(ξ, 0) = C4ξ
2 +

1

8

[
1− ξ2 ln

(
1− 1

ξ2

)]
( ξ > 1). (38)

Note that

φ1(ξ, 0) = C4ξ
2 +

1

4
+

1

16
ξ−2 + O(ξ−4) (39)

as ξ → +∞ and

φ1(ξ, 0) = −1

8
ln(ξ − 1) + O(1) (40)

as ξ → 1 + 0. The solution can be verified by its substituting into (37).

In the original variables the term with C4 in (38) gives the contribution to the velocity potential

on the free surface as d · d · C4(x/d)2 = C4x
2 , which does not decay for t → 0. This result in

combination with the initial conditions (7) gives C4 = 0. The same result can be also obtained

by matching the potential distribution (38) along the free surface with that in the region IV (see

[9], where the far-field asymptotics of the solution has been obtained for the problem of liquid

drop impact in the leading order as t → 0). Without giving details, we present here only the final

result for the velocity potential in the region IV written with the help of the stretched variables

φ(ξ, η, d) = η +
1

2
d
[ η

ξ2 + η2
+

1

2

]
+ O(d3) (d → 0).

It is clear that the latter asymptotics matches the asymptotic expansion (39) if and only if C4 = 0.

The kinematic boundary condition (13), equations (19), (22) and (36) provide

H(ξ, d) = h0(ξ) + dh1(ξ) + H2(ξ, d), (41)

T (d) =
1

4
+ dt1 + T2(d), (42)
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where d−1H2(ξ, d) → 0 and d−1T2(d) → 0 as d → 0. Taylor expansion of the terms in the kinematic

condition (13) as d → 0 with account for (22) gives

φ1η(ξ, 0) = 2(3h1 − ξh′1)− 6t1φ0η ( η = 0, | ξ| > 1),

which is considered in the following as the ordinary differential equation with respect to the

second-order elevation of the free surface h1(ξ):

ξ
∂h1

∂ξ
− 3h1 = −3t1φ0η − 1

2
φ1η(ξ, 0) ( ξ > 1). (43)

In this equation the coefficient t1 and the normal derivative φ1η(ξ, 0) along the free surface are

still unknown.

The derivative φ1η(ξ, 0) in (43) is obtained as a part of the solution of the boundary-value

problem for the second-order velocity potential φ1(ξ, η)

∆φ1 = 0 ( η < 0 ), (44)

∂φ1

∂η
= 0 ( η = 0, |ξ| < 1 ), (45)

φ1 =
1

8
− 1

8
ξ2 ln

(
1− 1

ξ2

)
( η = 0, |ξ| > 1 ), (46)

φ1 → 1

4
( ξ2 + η2 →∞ ), (47)

Details of the analysis of the boundary-value problem (44) - (47) can be found in the Appendix.

Here we present only the final results

∂φ1

∂η
(ξ, 0) =

1

2

{
|ξ| arctan

[ 1√
ξ2 − 1

]
− |ξ|√

ξ2 − 1

}
( |ξ| > 1 ), (48)

φ1(ξ, 0) =
1

8
+

1

4

√
1− ξ2 − 1

8
ξ2 ln(1− ξ2) +

1

4
ξ2 ln[1 +

√
1− ξ2] ( |ξ| < 1 ). (49)

Now the right-hand side of equation (43) is defined and we can integrate this equation.

3.3. Second-order free surface elevation

We denote the right-hand side of equation (43) as G(ξ, t1), where

G(ξ, t1) = −3t1
ξ√

ξ2 − 1
− ξ

4

{
arctan

[ 1√
ξ2 − 1

]
− 1√

ξ2 − 1

}
.

The general solution of the ordinary differential equation (43) has the form

h1(ξ) = C5ξ
3 − ξ3

∫ ∞

ξ

G(α, t1)
dα

α4
.
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The condition at the infinity, h1(ξ) → 0 as ξ →∞, gives C5 = 0 and

h1(1) = −
∫ ∞

1

G(α, t1)
dα

α4
.

By using the integrals

∫ ∞

1

{
arctan

[ 1√
ξ2 − 1

]
− 1√

ξ2 − 1

}dξ

ξ3
= −π

8
,

∫ ∞

1

dξ

ξ3
√

ξ2 − 1
=

π

4
,

we obtain

h1(1) = −3π

4
t1 − π

32
. (50)

The constant t1, which defines the second-order wetting correction by equation (42), is evaluated

by matching the second-order free surface elevation in the main flow region I with the free surface

shape in the jet root region II (see Section 4).

3.4. Second-order hydrodynamic pressure

The pressure distribution in the main part of the contact region, |ξ| < 1, is given by equation

(14), which provides with account for (12)

q(ξ, 0, d) = ξφξ(ξ, 0, d)− φ(ξ, 0, d)− dφd(ξ, 0, d) + dS(d)[1− φ2
ξ(ξ, 0, d)], (51)

where dS(d) = 1
4
d + O(d2). In the main flow region I,

φ(ξ, 0, d) = φ0(ξ, 0) + dφ1(ξ, 0) + O(d2).

Therefore,

q(ξ, 0, d) = q0(ξ) + dq1(ξ) + O(d2). (52)

The leading order term of the pressure q0(ξ) is given as

q0(ξ) = ξφ0ξ(ξ, 0)− φ0(ξ, 0) =
1√

1− ξ2
,

which is the well-known pressure distribution within the Wagner theory [1]. We used the leading

order velocity potential distribution in the contact region, φ0(ξ, 0) = −
√

1− ξ2, which follows

from (29). The second-order pressure distribution q1(ξ) in the main part of the contact region is

calculated with the help of (49) as (see Appendix for details)

q1(ξ) = ξφ1ξ(ξ, 0)− 2φ1(ξ, 0) +
1

4
[1− φ2

0ξ] = − 1

2
√

1− ξ2
.
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Finally, we obtain

q(ξ, 0, d) =
1− d/2√

1− ξ2
+ O(d2). (53)

Despite the complex form of the second-order velocity potential distribution (49), the second-order

pressure distribution in the main part of the contact region differs only by the coefficient from the

pressure distribution given by Wagner theory.

3.5. Asymptotic behavior of the second-order velocity potential close to the contact points

The second-order velocity potential is singular at the contact points ξ = ±1. In order to resolve

the singularity and describe fine details of the flow and the pressure distribution in the jet root

region II, one needs to derive the inner asymptotic solution in the region II and match it to the

second-order solution in the main flow region I. The latter solution is referred in the following as

the outer solution. In this section we obtain the asymptotic behavior of the outer solution close

to the contact point ξ = 1.

Along the rigid plate, η = 0, the second-order velocity potential as ξ = 1− %a(d), where % > 0

and a(d) → 0 as d → 0, behaves as

φ(ξ, 0, d) = −
√

1− ξ2 + d
{1

8
+

1

4

√
1− ξ2 − 1

8
ξ2 ln(1− ξ2) +

1

4
ξ2 ln[1 +

√
1− ξ2]

}
+ O(d2)

= −
√

2− %a
√

%a + d
{1

8
+

1

4

√
2− %a

√
%a− 1

8
(1− 2%a + %2a2)[ln(2− %a) + ln(%a)]

+
1

4
(1− 2%a + %2a2) ln[1 +

√
2− %a

√
%a]

}
+ O(d2). (54)

The first and second-order terms in (54) are of the same order as d → 0 if and only if a(d) = d2.

Note that in comparing the term orders we do not account for the terms, which are independent

of the spatial coordinate %. Substituting a(d) = d2 into (54), we obtain

φ(ξ, 0, d) = d
{
−

√
2%− 1

8
ln % + K(d)

}
+ O(d2), K(d) =

1

8
(1− ln 2)− 1

4
ln d. (55)

When we approach the contact point along the free surface, ξ = 1+%d2, % > 0, the asymptotic

behavior of the velocity potential is

φ(ξ, dH(ξ, d), d) = φ0(ξ, dH) + dφ1(ξ, 0) + O(d2)

= φ0(ξ, 0) + φ0η(ξ, 0) · dh0(ξ) + dφ1(ξ, 0) + O(d2)

= d
{
−1

2
− 1

8
ln % + K(d)

}
+ O(d2). (56)
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Asymptotic formulae (55) and (56) are used below in matching procedure to derive the leading

order inner solution, which describes details of the flow close to the contact points, where the

outer asymptotic solution is not valid.

4. Asymptotic solution in the jet root region

The leading order inner solution was derived several times starting from the original paper by

Wagner [1]. In the present analysis we pay special attention to the accuracy of the inner solution

as d → 0. The inner variables are introduced as

λ =
ξ − 1

d2
, µ =

η

d2
, φ = dΦi(λ, µ, d), H = dζ(λ, d), q =

1

d
Q(λ, µ, d). (57)

Within the inner variables (57) the boundary-value problem (11) - (14) together with the matching

conditions (55) and (56), where now % =
√

λ2 + µ2 and % À 1, d ¿ 1, takes the form

∆Φi = 0 ( in Ωinner(d) ), (58)

Φiµ = 0 ( µ = 0 ), (59)

Φiµ = ζλΦiλ − 1

2S(d)
ζλ +

d2

2S(d)
Dζ ( µ = ζ(λ, d) ), (60)

Q(λ, µ, d) = Φiλ − S(d)|∇Φi|2 + d2Dq ( in Ωinner(d) ), (61)

Q = 0 ( µ = ζ(λ, d) ), (62)

Φi ∼ −
√

2|λ| − 1

8
ln |λ|+ K(d) ( µ = 0, λ → −∞ ), (63)

Φi ∼ −1

2
− 1

8
ln λ + K(d) ( µ = ζ(λ, d), λ →∞ ), (64)

where

Dζ = 3ζ − 3λζλ + dζd, Dq = 3λΦiλ + 3µΦiµ − 2Φi + S(d)− dΦid.

It is convenient to introduce the modified velocity potential Φ̃(λ, µ, d) as

Φi(λ, µ, d) =
1

2S(d)
[λ + Φ̃(λ, µ, d)]. (65)

The boundary-value problem (58) - (64) written with respect to the new unknown functions takes

the form

∆Φ̃ = 0 ( in Ωinner(d) ), (66)

Φ̃µ = 0 ( µ = 0 ), (67)

Φ̃µ = ζλΦ̃λ + d2Dζ ( µ = ζ(λ, d) ), (68)

Q(λ, µ, d) =
1

4S(d)
[1− |∇Φ̃|2] + d2D̃q ( in Ωinner(d) ), (69)

13



|∇Φ̃|2 = 1 + 4d2S(d)D̃q ( µ = ζ(λ, d) ), (70)

Φ̃ ∼ −2S
√

2|λ| − λ− S(d)

4
ln |λ|+ 2S(d)K(d) + O(d) ( µ = 0, λ → −∞ ), (71)

Φ̃ ∼ −λ− S(d)− S(d)

4
ln λ + 2S(d)K(d) + O(d) ( µ = ζ(λ, d), λ →∞ ), (72)

where the terms O(d) in (71) and (72) comes from the third-order outer solution,

D̃q =
3λ

2S(d)
[1 + Φ̃λ] +

3µ

2S(d)
Φ̃µ − 1

S(d)
[λ + Φ̃] + S(d)− d

2S
[Φ̃d − S ′(d)(λ + Φ̃)/S].

Omitting in the inner problem (66) - (72) the terms of the order of O(d2), we arrive at the

approximate boundary-value problem for the modified velocity potential

∆Φ̃ = 0 ( in Ωinner(d) ),

Φ̃µ = 0 ( µ = 0 ), (73)

|∇Φ̃|2 = 1, Φ̃n = 0 ( µ = ζ(λ, d) )

with the matching conditions (71) and (72), where Φ̃n is the normal derivative of the modified

potential along the free surface. The condition Φ̃n = 0 along the free surface implies that the

free surface is approximately a stream line in the jet root region II with accuracy up to O(d2) as

d → 0. Equations (73) can be used also in combination with the third-order outer solution, when

the matching conditions include the terms of the order of O(d). In this paper, we limit ourselves

to the second-order outer solution.

The inner problem (73) was solved several times (see [1 - 4], for example). Here we reproduce

the solution procedure in brief with the aim to demonstrate the matching of the leading order inner

solution with the second-order outer solution. In this analysis d is treated as a parameter. By

using the complex potential W̃ (ω) = Φ̃+ iΨ̃, where ω = λ+ iµ and Ψ̃(λ, µ) is the stream function,

and the complex velocity U(ω) = W̃ ′(ω) = Φ̃λ − iΦ̃µ, the problem (73) can be reformulated

on the hodograph plane U as: To find the analytic function W̃ (U) in the region bounded by the

line =U = 0 and the curve |U | = 1, which satisfies the boundary conditions =W̃ = 0 on the

body surface, where =U = 0, and =W̃ = Ψ̃fs along the free surface, where |U | = 1, and the

far-field condition as U → −1, which follows from the matching conditions (71) and (72). Here

the constant value Ψ̃fs of the stream function along the free surface is unknown in advance and

has to be determined as a part of the solution. On the hodograph plane a small vicinity of the

corner point U = 1 corresponds to the origin of the jet region III, where the inner solution should

be matched with the solution in the jet region III.

In order to derive the far-field condition at the corner point U = −1, we take in the matching

conditions (71), (72) only the leading order terms in the far field

W̃ ∼ −2
3
2 S(d)i

√
ω − ω ( |ω| → ∞ ). (74)
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Here
√

ω =
√

λ, where µ = 0, λ > 0, and
√

ω = −i
√
|λ|, where µ = −0, λ < 0. Differentiating

(74) with respect to ω, we find

U ∼ −1−
√

2S(d)i/
√

ω

and

(U + 1)2 ∼ −2S2

ω
∼ 2S2

W̃
in the far field. The latter equation can be presented as

W̃ ∼ 2S2(d)

(U + 1)2
( U → −1 ), (75)

which is the required far-field condition at the corner point U = −1.

Once the analytic function W̃ (U), which satisfies condition (75) and the corresponding bound-

ary conditions has been obtained, one can derive the solution of the original problem in the

parametric form if the function ω(U) is known. This function is computed by integrating the

equation

dω =
dW̃

U
=

dW̃

dU

dU

U
= W̃ ′(U)

dU

U
.

Note that the point U = 0 on the hodograph plane corresponds to the stagnation point in the

inner coordinate system. The stagnation point is in the jet root region but not in the far field if

and only if W̃ ′(0) = 0. The latter equation is used in the following analysis to find the constant

value of the stream function Ψ̃fs along the free surface, |U | = 1.

One can check that the analytic function

W̃ (U) = −2S2
{ U

(U + 1)2
+

1

2
ln

(1− U

1 + U

)}
+ L(d) (76)

satisfies the far-field condition (75) and equation W̃ ′(0) = 0, its imaginary part is constant along

the free surface, |U | = 1, and zero on the body surface, =U = 0. Here L(d) is a real function,

which has to be determined with the help of the matching conditions (71) and (72).

The function ω(U) is obtained by integration of the equation

1

2S2

dω

dU
=

W̃ ′(U)

2S2U
= − 1

U(1 + U)2
+

2

(1 + U)3
+

1

2U(1− U)
+

1

2U(1 + U)
.

We find
ω(U)

2S2
= − 1

1 + U
− 1

(1 + U)2
− 1

2
ln

(1− U

1 + U

)
+ C6. (77)

Along the free surface, where U = exp(−iθ), 0 < θ < π, we obtain (C6 = <(C6) + i=(C6))

λ + iµ

2S2
= −3

4
+

1

4
tan2 θ

2
− 1

2
ln

(
tan

θ

2

)
+ <(C6) + i

[
− tan

θ

2
− π

4
+ =(C6)

]
. (78)

At the point P of the free surface, where the tangential to the free surface is vertical and the

horizontal component of the flow velocity in the inner coordinate system is zero, <U = 0 and

θ = π/2, equation (78) gives

λ + iµ

2S2
= −1

2
+ <(C6) + i

[
−1− π

4
+ =(C6)

]
.
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The inner coordinate system has been defined in such a way that λ = 0 at the point P of the free

surface, which yields

<(C6) =
1

2
.

Along the rigid surface U = α, −1 < α < 1 and µ = 0. The imaginary part of the equation (77)

provides

=(C6) = 0.

Therefore, along the free surface

λ + iµ

2S2
= −1

4
+

1

4
tan2 θ

2
− 1

2
ln

(
tan

θ

2

)
+ i

[
− tan

θ

2
− π

4

]
, (79)

and along the rigid surface

λ

2S2
= − 1

1 + α
− 1

(1 + α)2
− 1

2
ln

(1− α

1 + α

)
+

1

2
, Φ̃λ = α. (80)

Equation (80), in particular, gives the coordinate λs of the stagnation point, where Φ̃λ(λs, 0) = 0

as

λs = −3S2. (81)

In the limit as θ → 0 equation (79) provides the jet thickness hj in the inner variables as

µ(1)

2S2
= − hj

2S2
= −π

4
.

Therefore,

hj =
π

2
S2(d).

We obtain the vertical coordinate µP of the point P on the free surface as

µP = −hj − 2S2. (82)

Along the free surface equation (76) gives

Φ̃ = −2S2
{ 1

4 cos2(θ/2)
+

1

2
ln

(
tan

θ

2

)}
+ L(d), Ψ̃ = −hj (83)

and along the rigid surface

Φ̃ = −2S2
{ α

(1 + α)2
+

1

2
ln

(1− α

1 + α

)}}
+ L(d), Ψ̃ = 0, Φ̃λ = α. (84)

In order to determine the function L(d) in (83), (84) and to demonstrate matching of the velocity

potential distributions (83) and (84) with the velocity potential in the outer region I, we need to

obtain the asymptotic behavior of the velocity potential along both the free surface and the rigid

surface in the far field.
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In the far field along the rigid surface, where λ → −∞ and α → −1 + 0, it is convenient to

introduce small positive parameter ε = 1+α and determine asymptotic behavior of functions (80)

and (84) as ε → 0. Equations (80) and (84) provide as λ → −∞

1

ε
=

1

S

√
|λ|
2
− 1

2
+ O(

ln |λ|√
|λ|),

Φ̃ = −2S2
{ λ

2S2
+

2

ε
+ ln(2− ε)− ln ε− 1

2

}
+ L(d).

By distinguishing in the latter equations the higher-order terms (h.o.t.), which vanish as λ → −∞
and d → 0, and using the asymptotic formula S(d) = 1

4
+ O(d), we obtain in the far field of the

inner region

Φ̃ ∼ −2S
√

2|λ| − λ− S(d)

4
ln |λ|+ 3

16
− 5

16
ln 2 + L(d) + h.o.t. ( µ = 0, λ → −∞ ) (85)

Comparing (71) and (85), we obtain

L(d) =
1

4
ln 2− 1

8
[1 + ln d]. (86)

Equations (79) and (83) give the modified potential distribution along the free surface as

Φ̃ = −λ− S2 − 2S2 ln
(
tan

θ

2

)
+ L(d),

where

tan
θ

2
=

√
2λ

S
+ O(

ln λ√
λ

)

as λ → +∞. These equations provide in the limits λ → +∞ and d → 0 with account for (86)

Φ̃ ∼ −λ− S(d)− S(d)

4
ln λ +

1

16
− 1

8
ln d− 1

16
ln 2 + h.o.t. ( µ = ζ(λ, d), λ →∞ ),

which coincides with the asymptotic behavior of the outer potential along the free surface given

by equation (72).

In the far field equation (79) provides the asymptotic behavior of the inner free surface shape

as

µ = −1

2

√
2λ− π

32
+ h.o.t. ( λ →∞ ). (87)

This asymptotic formula should be matched with the second-order outer solution for the free

surface shape. With the help of (34), (41) and (57) we can present the outer solution as

η = dH(ξ, d) = d[h0(ξ) + dh1(ξ) + O(d2)].

This equation provides in the inner variables

d2µ = d[h0(1 + d2λ) + dh1(1 + d2λ) + O(d2)]
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and in the leading order as d → 0

µ = − 1

2d
(1 + d2λ)

√
d2λ(2 + d2λ) + h1(1 + d2λ) + O(d)

= −1

2

√
2λ + h1(1) + O(d). (88)

The outer asymptotic shape of the free surface (88) matches the far-field asymptotics of the inner

free surface shape (87) if

h1(1) = − π

32

and formula (50) provides

t1 = 0. (89)

Equations (10) and (42) lead to the asymptotic formula

d(t) = 2
√

t + O(t
3
2 ) (t → 0), (90)

which explains why the dimension of the contact region predicted by the Wagner theory, d(t) = 2
√

t

in the problem under consideration, is in good agreement with experimental data. We obtained

that in the problem of wave impact the second-order solution does not change the dimension of

the wetted area given by the first-order Wagner approach.

5. Second-order hydrodynamic force

The non-dimensional hydrodynamic force acting onto the rigid plate F (t), where ρV 2R is the force

scale, is given with the help of (9) and (18) as

F (t) =

∫ ∞

−∞
p(x, 0, t)dx =

1

S(d)

∫ ∞

0

q(ξ, 0, d)dξ. (91)

During the initial stage of the impact, when d ¿ 1, the pressure distributions in both the main

part of the contact region, |ξ| < 1, and in the jet root region II have to be taken into account in

integral (91). In order to do this, we introduce a large parameter L, where L À 1, d2L ¿ 1, and

present equation (91) in the form

F (t) =
1

S(d)

{∫ 1−d2L

0

q(ξ, 0, d)dξ +

∫ ∞

1−d2L

q(ξ, 0, d)dξ
}

. (92)

The first integral in (92) is calculated by using asymptotic formula (53) and the second integral

is calculated by using equations (57), (67), (69) and (84).

The first integral in (92) provides the contribution Fouter(t) of the second-order outer solution

to the hydrodynamic force

Fouter(t) =
1

S(d)
(1− d

2
)

∫ 1−d2L

0

dξ√
1− ξ2

+ O(d2)
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= (4 + O(d2))(1− d

2
)
[π

2
−
√

2d2L + O([d2L]
3
2 )

]
+ O(d2)

= 2π − 4d
√

2L− πd + O(d2
√

L). (93)

The first term in (93) is the hydrodynamic force given by the first-order Wagner theory [1].

The contribution Finner(t) of the jet root region II to the second-order total hydrodynamic

force is evaluated as

Finner(t) =
1

S(d)

∫ ∞

1−d2L

q(ξ, 0, d)dξ =
d

S(d)

∫ ∞

−L

Q(λ, 0, d)dλ.

Equations (67) and (69) give

Q(λ, 0, d) =
1

4S(d)
[1− Φ̃2

λ(λ, 0, d)] + d2D̃q,

where Φ̃(λ, 0, d) is given by equation (84). It is convenient to change the integration variable for

α with the help of equations (80). These equations yield

dλ

2S2
=

4dα

(1− α2)(1 + α)2
, Φ̃λ(λ, 0, d) = α + O(d).

We obtain

Finner(t) = 2d

∫ 1

α(−L)

dα

(1 + α)2
+ O(d2), (94)

where α(−L) is the solution of equation (80) for λ = −L. By using the asymptotic formula for

1/(1 + α), which was derived in Section 4, we find

1

1 + α(−L)
=

1

S

√
L

2
− 1

2
+ O(

ln L√
L

) (L →∞). (95)

Evaluating the integral in (94) and substituting into the result the asymptotic formula (95), we

find

Finner(t) = −2d + 4d
√

2L + O(d ln L/
√

L). (96)

By neglecting the higher-order terms, the total hydrodynamic force is obtained as

F (t) = 2π − 2(π + 2)
√

t + h.o.t. (97)

Comparing (93) and (96), one can conclude that the contribution of the jet root region II into the

total hydrodynamic force is of the second order, this is Finner(t) is of the same order as the second-

order term −pid in the asymptotic formula (93) for Fouter(t). Therefore, account for details of the

pressure distribution close to the periphery of the contact region in combination with the first-

order outer solution may provide wrong estimation of the hydrodynamic force and second-order

outer force component is required.
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Figure 4. The non-dimensional hydrodynamic force for the problem of circular

cylinder entry at constant velocity: solid line is given by asymptotic formula

(97), points represent the experimental results by Cointe and Armand [11],

the classical Wagner theory predicts F (t) = 2π, which is shown by the dashed

line.

We cannot prove rigorously at this moment that the obtained formula for the hydrodynamic

force (97) can be applied also to the problem of rigid parabolic contour entering water at constant

velocity. Within the first-order Wagner theory it is well-known (see [10], for example) that the

relative vertical distance between the undisturbed free surface and the surface of the entering

body matters but not the surfaces on their own. If this is valid within the second-order theory,

then formula (97) can be compared with the experimental results by Cointe and Armand [11] for

circular cylinder entering liquid at constant velocity. Note that a cylinder can be approximated

by a parabolic contour only close to the impact point. The non-dimensional hydrodynamic force

(97) is shown in Figure 4 by solid curve and the experimental results from [11] by points. It is seen

that formula (97) well corresponds to the experimental results and that the second-order force

contribution significantly improve the Wagner theory.

6. Conclusion

In this paper a simplest problem of water impact was considered. The problem is simple because

the rigid surface is flat, initial shape of the free surface is parabolic and the impact velocity is
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constant. More complex shapes and different impact conditions would require more sophisticated

higher order theory of impact. However, the present simple analysis is helpful as a reference for

more general and more accurate impact theories (see [12], where two-dimensional entry problem

is studied in higher-order approximation). This is why we tried to give as many details of analysis

as possible.

Note that the stretched coordinates were used in the present analysis. The stretched coordi-

nates are helpful because they allow us to fix dimension of the contact region and perform formal

asymptotic analysis.

It is interesting to notice that the obtained second-order velocity potential is rather complicated

but the second-order pressure distribution in the contact region has the same form as in the first-

order theory by Wagner. One may expect that this result is valid also in the three-dimensional

case.

It is important to notice that the second-order theory of impact does not give contribution to

the dimension of the contact region as function of time. This is in agreement with the well-known

observation that the first-order Wagner theory reasonably predicts the contact region dimension,

even if the first-order prediction of the hydrodynamic force is not satisfactory.
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Appendix

In this Appendix the solution of the boundary-value problem (44) - (47) is derived and formulae

(48) and (49) are obtained.

In order to obtain the solution, we introduce the complex potential w1(z) = φ1 + iψ1, which is

analytical in the lower half-plane η < 0 and satisfies the mixed boundary conditions

ψ1 = 0 (|ξ| < 1, η = 0), (A1)

φ1 =
1

8

[
1− ξ2 ln

(
1− 1

ξ2

)]
(|ξ| > 1, η = 0). (A2)

The complex potential is sought in the form

w1(z) =
1

8

[
1− z2 ln

(
1− 1

z2

)]
+ ŵ1(z), (A3)

where the branch of the multi-valued function ln(1− 1/z2) is defined on the plane z with the cut

along the interval η = 0, −1 < ξ < 1 and is chosen in such a way that

ln
(
1− 1

z2

)
= ln

∣∣∣1− 1

z2

∣∣∣ + iA(z), (A4)

A(z) = 0 (|ξ| > 1, η = 0),

A(z) = −πsgn(ξ) (|ξ| < 1, η = −0).

Equations (A2) - (A4) give that

<[ŵ1(ξ − i0)] = 0 (|ξ| > 1). (A5)

Correspondingly, the body boundary condition (A1) and (A3) - (A4) provide

=[ŵ1(ξ − i0)] = −π

8
ξ|ξ| (|ξ| < 1). (A6)

The auxiliary function V (z) = ŵ1(z)
√

z2 − 1, where the branch of the function
√

z2 − 1 is defined

by (30), satisfies the boundary conditions

<[V (ξ − i0)] = 0 (|ξ| > 1), (A7)

<[V (ξ − i0)] = −π

8
ξ|ξ|

√
1− ξ2 (|ξ| < 1). (A8)

The analytic function V (z) in the lower half-plane η < 0 is sought in the form of the Cauchy

integral

V (z) =
1

2πi

∫ ∞

−∞

τ(σ)dσ

σ − z
+ iV1, (A9)

where V1 is an arbitrary real constant. By using the Plemely’s formula at the limit η → −0, we

obtain

V (ξ − i0) = −1

2
τ(ξ) +

1

2πi
p. v.

∫ ∞

−∞

τ(σ)dσ

σ − ξ
+ iV1, (A10)
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where p.v. stands for principal value integral. Comparing (A10) and (A7), (A8), we find

τ(ξ) =
π

4
ξ|ξ|

√
1− ξ2 (|ξ| < 1), (A11)

τ(ξ) = 0 (|ξ| > 1).

Equations (A3), (A4) give the second-order velocity potential in the contact region η = −0,

−1 < ξ < 1 as

φ1(ξ,−0) =
1

8

[
1− ξ2 ln

(
1− 1

ξ2

)]
− 1√

1− ξ2
=[V (ξ − i0)]. (A12)

On the free surface, ξ > 1, we find

ψ1(ξ, 0) = =[ŵ1(ξ − i0)] =
1√

ξ2 − 1
=[V (ξ − i0)]. (A13)

It is seen that, to obtain equations (48) and (49), one needs to evaluate the imaginary part of the

analytic function V (z) along the liquid boundary z = ξ − i0. Equations (A10) and (A11) give

=[V (ξ − i0)] = − 1

2π
· π

4
p. v.

∫ 1

−1

σ|σ|√1− σ2dσ

σ − ξ
+ V1. (A14)

By algebra,

=[V (ξ − i0)] =
1

4

∫ 1

0

σ2(1− σ2)dσ

σ2 + ξ2 − 1
+ V1 (A15)

and

=[V (ξ − i0)] =
1

4

[
−1

3
+ ξ2 + ξ2(1− ξ2)

∫ 1

0

dσ

σ2 + ξ2 − 1

]
+ V1. (A16)

The value of the integral in (A16) is dependent on the value of the variable ξ. In the contact

region, |ξ| < 1 and ξ2 − 1 = −a2, which yields

∫ 1

0

dσ

σ2 + ξ2 − 1
=

ln |ξ| − ln(1 +
√

1− ξ2)√
1− ξ2

and finally

=[V (ξ − i0)] =
ξ2 − 1/3

4
+

1

4
ξ2

√
1− ξ2

[
ln |ξ| − ln(1 +

√
1− ξ2)

]
+ V1 (|ξ| < 1). (A17)

On the free surface, |ξ| > 1 and ξ2 − 1 = a2, which yields

∫ 1

0

dσ

σ2 + ξ2 − 1
=

1√
1− ξ2

arctan
1√

1− ξ2
(A18)

and finally

=[V (ξ − i0)] =
ξ2 − 1/3

4
− 1

4
ξ2

√
ξ2 − 1 arctan

1√
1− ξ2

+ V1. (A19)
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Equations (A12) and (A17) provide the distribution of the second-order velocity potential in the

contact region as

φ1(ξ, 0) =
1

8
− 1

8
ξ2 ln(1−ξ2)+

1

4

√
1− ξ2+

1

4
ξ2 ln(1+

√
1− ξ2)− V2√

1− ξ2
, V2 = V1+

1

6
(A20)

and the stream function on the free surface as

ψ1(ξ, 0) =
1

4

√
ξ2 − 1− 1

4
ξ2 arctan

1√
1− ξ2

+
V2√
ξ2 − 1

(ξ > 1). (A21)

By using the equality φ1η = −ψ1ξ, we obtain the second-order vertical velocity on the free surface,

ξ > 1, in the form

∂φ1

∂η
(ξ, 0) =

1

2
ξ
{

arctan
[ 1√

ξ2 − 1

]
− 1√

ξ2 − 1
+

2V2

(ξ2 − 1)
3
2

}
. (A22)

The terms with V2 in (A20) - (A22) are the most singular ones. The matching of the second-order

outer solution with the inner solution (see Section 4) gives V2 = 0 and turns (A22) into (48) and

(A20) into (49).

The second-order horizontal velocity in the contact region is obtained as

φ1ξ(ξ, 0) = −1

4
ξ ln(1− ξ2) +

1

2
ξ ln(1 +

√
1− ξ2) +

1

4

ξ

1− ξ2
− ξ

2

1√
1− ξ2

,

which gives

ξφ1ξ(ξ, 0)− 2φ1(ξ, 0) =
1

4

ξ2

1− ξ2
− 1

4
− 1

2

ξ2

√
1− ξ2

− 1

2

√
1− ξ2.

The latter formula is used for deriving equation (53).

25


