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Abstract
Based on the momentum and energy conservation principles, a compact calculation formula
is analytically derived for the wave drift force on a 2-D body floating in a two-layer fluid
of finite depth. In a two-layer fluid, two different wave modes (the surface-wave mode with
longer wavelength and the internal-wave mode with shorter wavelength) exist not only in the
incident wave but also in the body-scattered wave, and these wave characteristics are properly
incorporated in the obtained formula. It is noted that, unlike the single-layer case, the wave
drift force can be negative in the incident wave of surface-wave mode, if the transmitted wave
with internal-wave mode is large. Numerical computations are implemented for a Lewis-form
body by means of the boundary integral-equation method with Green’s function for the two-
layer fluid problem. The effects of density ratio, interface position, and body motions on the
wave drift force are studied, and some important features are found for two-layer fluids.

Key words: Two-layer fluid, wave drift force, surface-wave mode, internal-wave mode, finite
water depth

1. Introduction

Hydrodynamic studies of a body floating in a two-layer fluid of finite depth have been conducted

for the radiation and diffraction problems which are of first order with respect to the incident-

wave amplitude ([1] [2] and the references therein). However, to the author’s knowledge, no

study has been made on the second-order wave drift force in a two-layer fluid. For the case of

single-layer fluid, it is well known that the coefficient of reflection wave is directly connected

with the wave drift force and its calculation formula is established by the far-field method based

on the momentum and energy conservation principles.

For a two-layer fluid, however, the analyses look complicated even for first-order problems.

For example, in the diffraction problem, two different incident waves of surface-wave mode

(with longer wavelength) and internal-wave mode (with shorter wavelength) must be considered

separately for a prescribed frequency, and each incident wave will be scattered by a body into

two different wave modes. Thus the energy of the incident wave may be transferred from one

mode to the other. Furthermore, when the body is oscillating in response to the incident wave,

the body motion may change the reflected and transmitted waves. For this complicated wave

field in a two-layer fluid, it is crucial to understand analytically what is the correct form of the

calculation formula for the wave drift force, in what way two-layer effects are incorporated in

the formula, and what are distinctive differences from the single-layer case.

In this article, after the definition and formulation of the problem, the asymptotic expression

of the velocity potential valid at a far field is obtained, in which the coefficients of reflected and

transmitted waves are defined in terms of the Kochin functions for the radiation and diffraction

problems in a two-layer fluid. Then on the basis of the momentum and energy conservation

principles, analytical integrations at the far field and some mathematical transformations are

performed to derive the desired calculation formula for the wave drift force. The key to success

in this procedure is to apply the orthogonality properties to the eigenfunctions in the two-layer

fluid of finite depth.

Numerical computations are performed for a Lewis-form body, using the boundary integral-

equation method developed by Ten and Kashiwagi [1]. The density ratio and the interface

position between the upper and lower layers are varied and those effects on the wave drift force
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are studied. Furthermore, by showing the results for three cases where the body is completely

fixed, only the heave motion is free, and all modes of body motion are free in response to incident

waves, the effects of body motions on the wave drift force are also discussed. Lastly, some findings

from the theoretical and numerical studies in this article are summarized as conclusions.

2. Mathematical Formulation

We consider a 2-D floating body of general shape in a two-layer fluid with finite depth. The

body may intersect the interface between the upper and lower layers and is assumed to oscillate

sinusoidally in response to an incident wave with circular frequency ω. Fig. 1 shows the Cartesian

coordinate system and notations used in the analyses below, with the origin on the undisturbed

free surface and the z-axis positive in the downward direction. The free surface, the interface,

and the flat rigid bottom of the water are located at z = 0, z = h1, and z = h, respectively.

Assuming both of the upper and lower fluids to be incompressible and inviscid with irrota-

tional motion, the velocity potential is introduced and written in the form

Φ(m)(x, z, t) = Re
[
φ(m)(x, z) eiωt

]
, m = 1, 2 (1)

φ(m)(x, z) =

2∑
p=1

gAp

iω
φ

(m)
Dp (x, z) +

3∑
j=1

iωXj φ
(m)
Rj (x, z)

≡
2∑

p=1

gAp

iω
ϕ(m)

p (x, z), (2)

where
ϕ(m)

p (x, z) = φ
(m)
Dp (x, z) − K

3∑
j=1

Xj

Ap
φ

(m)
Rj (x, z), (3)

φ
(m)
Dp (x, z) = φ

(m)
Ip (x, z) + φ

(m)
Sp (x, z), (4)

with K = ω2/g, and g is the gravitational acceleration.

Here the superscript (m) denotes the fluid layer, with m = 1 and 2 corresponding to the

upper and lower layers, respectively. As described in Yeung and Nguyen [3], there can be two

different wave modes in the incident wave in two-layer fluids for a prescribed frequency. Those

modes are differentiated with subscript (p), and specifically p = 1 is referred to as the surface-

wave mode and p = 2 as the internal-wave mode.

Ap is (2) denotes the amplitude of incident wave at each mode. It is known that a simple

relation holds at each mode on the amplitude ratio between the waves on the free surface and

on the interface. However, the ratio between the waves of surface-wave and internal-wave modes

on the free surface or the interface is not known a priori. Therefore the diffraction problem
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Fig. 1. Coordinate system and notations
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must be solved for two different incident waves at a given frequency. In this article, Ap at each

mode is defined in the theory as the incident wave on the free surface, whereas in numerical

computations a larger amplitude is adopted as Ap at each wave mode (i.e., A1 is the amplitude

on the free surface and A2 is the amplitude on the interface).

φ
(m)
Dp denotes the diffraction potential, which includes the incident wave potential φ

(m)
Ip to

be given as the input (explicit expressions of which will be shown below) and the scattering

potential φ
(m)
Sp . φ

(m)
Rj in (3) is the radiation potential with unit velocity in the j-th direction

(j = 1 for sway, j = 2 for heave, and j = 3 for roll) and the amplitude of the j-th mode of

motion, Xj/Ap, must be obtained by solving the equations of motions of a body, for which

hydrodynamic forces must be computed with the solution of the boundary-value problem.

The governing equation for the velocity potentials is the 2-D Laplace equation

∂2φ(m)

∂x2
+

∂2φ(m)

∂z2
= 0 (5)

and the linearized boundary conditions to be satisfied on the free surface, the interface, and the

rigid bottom of the lower layer are expressed as follows:

∂φ(1)

∂z
+ Kφ(1) = 0 on z = 0, (6)

∂φ(1)

∂z
=

∂φ(2)

∂z

γ

(
∂φ(1)

∂z
+ Kφ(1)

)
=

∂φ(2)

∂z
+ Kφ(2)

⎫⎪⎪⎬
⎪⎪⎭ on z = h1, (7)

∂φ(2)

∂z
= 0 on z = h (= h1 + h2). (8)

Here, by linearity, φ(m) in the above can be any of the velocity potentials appearing in

(1)–(4), and γ = ρ1/ρ2 ≤ 1 is the density ratio, with ρm being the density of the upper (m = 1)

and lower (m = 2) fluids.

Since the incident wave is independent of the presence of a body, the velocity potential of

the incident wave, φ
(m)
Ip , can be obtained from (5)–(8) and by specifying the amplitude of the

incident wave on the free surface (z = 0) or the interface (z = h1). As shown in Fig. 1, the

incident wave is assumed to propagate from the positive x-axis. Then the velocity potential of

the incident wave is expressed in the form

φ
(m)
Ip (x, z) = Z(m)(kp; z) eikpx (9)

where
Z(1)(k; z) =

k chkz − K shkz

k

Z(2)(k; z) =
K chkh1 − k shkh1

k shkh2
chk(z − h)

⎫⎪⎬
⎪⎭ (10)

and the variable k in (9) and (10) is the wavenumber satisfying the dispersion relation for a

two-layer fluid given by

D(k) = K
(
k shkh − K chkh

)
+ ε

(
K2 − k2

)
shkh1 shkh2 = 0. (11)

For brevity, the hyperbolic functions of cosh(x) and sinh(x) have been written as ch(x) and

sh(x), respectively, and ε = 1 − γ in (11); these notations will be used throughout this article.

To determine the other velocity potentials associated with the disturbance by a body, the

boundary condition on the body surface must be imposed, which can be given in the form

∂φ
(m)
Dp

∂n
= 0 (p = 1, 2)

∂φ
(m)
Rj

∂n
= nj (j = 1 ∼ 3)

⎫⎪⎪⎬
⎪⎪⎭ on S

(m)
H (12)
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where nj denotes the j-th component (n1 = nx, n2 = nz, n3 = xnz −znx) of the normal vector,

which is defined as positive when directed into the fluid domain from boundaries (see Fig. 1).

The boundary-value problems for the disturbance velocity potentials (except for the

incident-wave component) may be completed by imposing the radiation condition of generated

waves radiating from the body.

3. Numerical Solution Method

The diffraction and radiation potentials formulated above are determined directly by the

integral-equation method in terms of the Green function satisfying all homogeneous bound-

ary conditions. This solution method can be applied to a general case where an arbitrary body

intersects the interface between the upper and lower layers, and the derivation of the integral

equation based on Green’s theorem is shown in Ten and Kashiwagi [1] and Kashiwagi et al. [2].

The results may be summarized in the form

C(P)φ
(m)
� (P) +

2∑
n=1

∫
S

(n)
H

φ
(m)
� (Q)

∂

∂nQ
G(m)

n (P;Q) ds

=

⎧⎪⎪⎨
⎪⎪⎩

φ
(m)
Ip (P) ( 	 = Dp; p = 1, 2 )

2∑
n=1

∫
S

(n)
H

nj(Q)G(m)
n (P;Q) ds ( 	 = Rj; j = 1 ∼ 3 )

(13)

where P = (x, z) and Q = (ξ, ζ) denote the field and integration points, respectively, located on

the body surface and C(P) denotes the solid angle. G
(m)
n (P;Q) represents the Green function,

which has different forms depending on whether P and Q are in the upper or lower layer; details

of which are shown in Ten and Kashiwagi [1].

The so-called constant-panel collocation method is adopted for solving (13); that is, the

body surface of z > 0 is divided into N segments and on each segment the unknown velocity

potential is assumed to be constant. Then, considering N different points for P(x, z), (13) can

be recast in a linear system of simultaneous equations for N unknowns.

In actual numerical computations, some additional field points are considered on both z = 0

and z = h1 inside the body to get rid of the irregular frequencies. The resultant over-constrained

simultaneous equations are solved using the least-squares method.

Once the velocity potentials on the body surface are determined, it is straightforward to

compute the hydrodynamic forces that must be used in solving the motion equations of a body

in each of the incident waves of surface-wave mode (p = 1) and internal-wave mode (p = 2).

The calculation method for the motions of a body in waves is described in Kashiwagi et al. [2].

4. Velocity Potentials at the Far Field

The analyses necessary for obtaining asymptotic expressions of the velocity potentials at x →
±∞ may be found also in Ten and Kashiwagi [1] and Kashiwagi et al. [2], and the results are

summarized as follows:

φ
(m)
Dp ∼ φ

(m)
Ip + i

2∑
q=1

H±
Sp(kq)Z(m)(kq ; z) e∓ikqx, (14)

φ
(m)
Rj ∼ i

2∑
q=1

H±
Rj(kq)Z(m)(kq ; z) e∓ikqx, (15)

where

H±
Sp(k) = −

2∑
n=1

∫
S

(n)
H

φ
(n)
Dp

∂

∂n

Wn(k; ζ)

D ′(k)
e±ikξ ds, (16)

H±
Rj(k) =

2∑
n=1

∫
S

(n)
H

{
∂φ

(n)
Rj

∂n
− φ

(n)
Rj

∂

∂n

}
Wn(k; ζ)

D ′(k)
e±ikξ ds, (17)
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W1(k; ζ) = γ α(k)k shkh2 Z(1)(k; ζ)

W2(k; ζ) = α(k)k shkh2 Z(2)(k; ζ)

}
(18)

α(k) =
K

K chkh1 − k shkh1
, (19)

D′(k) =K( shkh + kh chkh − Kh shkh)

+ε
{
− 2k shkh1 shkh2 + (K2 − k2)(h1 chkh1 shkh2 + h2 shkh1 chkh2)

}
. (20)

Eqs. (16) and (17) are the Kochin functions (complex amplitude functions of the body-

disturbance waves) computed from canonical velocity potentials in the diffraction and radiation

problems. In terms of these Kochin functions and the complex amplitude of the j-th mode of

motion, Xj/Ap, to be obtained by solving the motion equations of a body in the incident wave of

kp-wave mode, the Kochin function representing the whole disturbance wave with wavenumber

kq can be obtained by linear superposition as follows:

H±
p (kq) ≡ H±

Sp(kq) − K

3∑
j=1

Xj

Ap
H±

Rj(kq). (21)

With this definition and taking summation of both components of the surface-wave (q = 1)

and internal-wave (q = 2) modes, the asymptotic expression of the velocity potential defined by

(3) can be expressed in the following form:

ϕ(m)
p (x, z) ∼ Z(m)(kp; z) eikpx +

2∑
q=1

Rpq Z(m)(kq; z) e−ikqx as x → +∞, (22)

ϕ(m)
p (x, z) ∼

2∑
q=1

Tpq Z(m)(kq ; z) eikqx as x → −∞, (23)

where
Rpq = iH+

p (kq)

Tpq = δpq + iH−
p (kq)

}
(24)

with δpq being Kroenecker’s delta.

Rpq and Tpq defined in (24) can be understood as the coefficients of reflected and transmitted

waves, respectively, of the kq-wave mode when the incident wave is of the kp-wave mode.

5. Momentum Conservation Principle

Following Maruo [4], a calculation formula for the wave drift force in the horizontal direction can

be derived on the basis of the momentum and energy conservation principles. Let us consider

first the momentum conservation principle in the x-axis in a two-layer fluid. With the same

transformation as that for a single layer fluid, the following equation may be obtained as a

basis:

2∑
m=1

∫
S(m)

{
p(m)nx + ρm

∂Φ(m)

∂x

(
∂Φ(m)

∂n
− Un

)}
ds = 0, (25)

where
S(1) = S

(1)
H + S

(1)
C + S

(1)
I + SF

S(2) = S
(2)
H + S

(2)
C + S

(2)
I + SB

}
(26)

p(m) = −ρm

{
∂Φ(m)

∂t
+

1

2
∇Φ(m) · ∇Φ(m)

}
+ p

(m)
S , (27)

Φ(m) = Re

[
gAp

iω
ϕ(m)

p (x, z) eiωt

]
. (28)

5



Here the overbar in (25) means the time average over one period and Un in (25) represents

the normal velocity of the boundaries surrounding the fluid under consideration. p
(m)
S in (27)

denotes the static pressure independent of the disturbance velocity potential. As explicitly

written in (28), only the incident wave of the kp-wave mode (p = 1 or 2) is considered here.

As shown in Fig. 1, the control surface S
(m)
C in the present study is parallel to the z-axis

and in the linear theory the free surface SF , the interface S
(m)
I , and the bottom of fluid SB are

parallel to the x-axis; these are fixed in space and thus Un = 0 on these boundaries. On the

other hand, the normal velocity of the body boundary must be equal to the normal velocity of

the fluid and thus

Un =
∂Φ(m)

∂n
on S

(m)
H . (29)

Taking these into consideration and retaining only quadratic terms in the velocity potential,

an expression for the wave drift force acting in the negative direction of the x-axis may be written

as follows:

FD ≡
2∑

m=1

∫
S

(m)
H

p(m)nx ds

=
1

2
ρ1

[∫ h1

0

{
∂Φ(1)

∂x

∂Φ(1)

∂x
− ∂Φ(1)

∂z

∂Φ(1)

∂z

}
dz

]+∞

−∞

+
1

2
ρ2

[∫ h

h1

{
∂Φ(2)

∂x

∂Φ(2)

∂x
− ∂Φ(2)

∂z

∂Φ(2)

∂z

}
dz

]+∞

−∞

−ρ1

∫
SF

∂Φ(1)

∂x

∂Φ(1)

∂z
dx + ρ1

∫
S

(1)
I

∂Φ(1)

∂x

∂Φ(1)

∂z
dx − ρ2

∫
S

(2)
I

∂Φ(2)

∂x

∂Φ(2)

∂z
dx. (30)

Here the square brackets with superscript +∞ and subscript −∞ in (30) means the difference

between the quantities in the brackets evaluated at x = +∞ and x = −∞. The integrand in

the integrals on SF and SI may be transformed in terms of the boundary conditions given by

(6) and (7) as follows:

on SF ∂Φ(1)

∂x

∂Φ(1)

∂z
= −KΦ(1) ∂Φ(1)

∂x
= − 1

2
K

∂

∂x

{
Φ(1)Φ(1)

}
, (31)

on SI

ρ1
∂Φ(1)

∂x

∂Φ(1)

∂z
− ρ2

∂Φ(2)

∂x

∂Φ(2)

∂z
=

ρ1

γ

∂Φ(1)

∂z

∂

∂x

{
γ Φ(1) − Φ(2)

}

=
ρ1

γ

∂Φ(1)

∂z

1 − γ

K

∂

∂x

∂Φ(1)

∂z
=

1

2
ρ1

1 − γ

γK

∂

∂x

{
∂Φ(1)

∂z

∂Φ(1)

∂z

}
. (32)

For taking time average, the following formula may be useful

Re
[
A eiωt

]
Re

[
B eiωt

]
=

1

2
Re

[
A B∗ ], (33)

where A and B are complex in general and the asterisk means the complex conjugate.

Substituting (31) and (32) in (30) and applying (33) with (28) gives the following result:

F ′
Dp ≡ FD

1
2

ρ1gA2
p

=
1

2K

[ ∫ h1

0

{∣∣∣∣∂ϕ
(1)
p

∂x

∣∣∣∣
2

−
∣∣∣∣∂ϕ

(1)
p

∂z

∣∣∣∣
2}

dz +
1

γ

∫ h

h1

{∣∣∣∣∂ϕ
(2)
p

∂x

∣∣∣∣
2

−
∣∣∣∣∂ϕ

(2)
p

∂z

∣∣∣∣
2}

dz

]+∞

−∞

+
1

2

[ ∣∣ϕ(1)
p

∣∣2
z=0

]+∞

−∞
+

1 − γ

2γK2

[ ∣∣∣∣∂ϕ
(1)
p

∂z

∣∣∣∣
2

z=h1

]+∞

−∞
(34)
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This may be regarded as an extension of the expression for a single-layer fluid to the case

of two-layer fluid, and in fact the last line in (34) can be understood as contributions from the

square of wave height at the free surface (z = 0) and the interface (z = h1). However, this

form is not convenient for analytical integration with respect to z, because the derivatives with

respect to z are included. Thus it is not straightforward to utilize the orthogonality properties

of the eigenfunctions for a two-layer fluid summarized in Appendix.

To surmount this inconvenience, we consider further transformation for the integrals includ-

ing the derivatives with respect to z using the Laplace equation and the boundary conditions

on z = 0, z = h1, and z = h. Performing partial integrations and substituting (5)–(8), the

following result can be justified:

I ≡
∫ h1

0

∂ϕ(1)

∂z

∂ϕ(1)∗

∂z
dz +

1

γ

∫ h

h1

∂ϕ(2)

∂z

∂ϕ(2)∗

∂z
dz

= K

{ ∣∣ϕ(1)
∣∣2
z=0

+
1 − γ

γK2

∣∣∣∣∂ϕ(1)

∂z

∣∣∣∣
2

z=h1

}

+

∫ h1

0

∂2ϕ(1)

∂x2
ϕ(1)∗ dz +

1

γ

∫ h

h1

∂2ϕ(2)

∂x2
ϕ(2)∗ dz. (35)

Substituting this result in (34), we can see that the first line on the right-hand side of (35)

cancels exactly the last terms in (34) to be evaluated at z = 0 and z = h1.

Therefore, as a final result convenient for analytical integrations with respect to z, the

following expression can be obtained:

F ′
Dp =

1

2γK

[ ∫ h

0

w(z)

{ ∣∣∣∂ϕp

∂x

∣∣∣2 − ∂2ϕp

∂x2
ϕ∗

p

}
dz

]+∞

−∞

(36)

where w(z) and ϕp are defined as{
w(z) = γ, ϕp = ϕ

(1)
p for 0 ≤ z ≤ h1 ,

w(z) = 1, ϕp = ϕ
(2)
p for h1 ≤ z ≤ h.

(37)

6. Energy Conservation Principle

A relation to be obtained from the energy conservation principle is usually used to derive a

compact formula for the wave drift force and also to check the accuracy of computed results.

With the same notations as for (25)–(28), a basis equation for the two-layer fluid may be given

in the form

2∑
m=1

∫
S(m)

{
ρm

∂Φ(m)

∂t

∂Φ(m)

∂n
−
(

p(m) + ρm
∂Φ(m)

∂t

)
Un

}
ds = 0. (38)

With this equation, considering the normal velocity Un of the boundaries, the work done

by a body onto the fluid may be evaluated as follows:

W ≡
2∑

m=1

∫
S

(m)
H

p(m)Un ds

=−ρ1

[∫ h1

0

∂Φ(1)

∂t

∂Φ(1)

∂x
dz

]+∞

−∞

− ρ2

[∫ h

h1

∂Φ(2)

∂t

∂Φ(2)

∂x
dz

]+∞

−∞

+ ρ1

∫
SF

∂Φ(1)

∂t

∂Φ(1)

∂z
dx − ρ1

∫
S

(1)
I

∂Φ(1)

∂t

∂Φ(1)

∂z
dx + ρ2

∫
S

(2)
I

∂Φ(2)

∂t

∂Φ(2)

∂z
dx. (39)
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Substituting (28) and taking time average over one period using the formula (33), the

following result can be obtained:

W ′
p ≡ W

1
2
ρ1gA2

p

(
ω
K

)
= − Im

[ ∫ h1

0

∂ϕ
(1)
p

∂x
ϕ(1)∗

p dz +
1

γ

∫ h

h1

∂ϕ
(2)
p

∂x
ϕ(2)∗

p dz

]+∞

−∞

+Im

∫
SF

∂ϕ
(1)
p

∂z
ϕ(1)∗

p dx +
1

γ
Im

∫
SI

{
∂ϕ

(2)
p

∂z
ϕ(2)∗

p − γ
∂ϕ

(1)
p

∂z
ϕ(1)∗

p

}
dx (40)

‘Im’ in the above means that only the imaginary part is to be taken.

Taking account of the boundary conditions on SF and SI as did in deriving (31) and (32),

one can easily prove that the integrals on SF and SI have no contributions because the integrands

are of real quantities. Therefore, with notations in (37), the result can be written in the form

W ′
p = − 1

γ
Im

[ ∫ h

0

w(z)
∂ϕp

∂x
ϕ∗

p dz

]+∞

−∞

(41)

Here it is noteworthy that the work done by a body must be zero when the body is fixed

(as in the diffraction problem) or freely oscillating in waves without external oscillation devices

supplying the energy.

7. Wave Drift Force

Having prepared all necessary equations, let us derive the formula for the wave drift in a two-

layer fluid. The asymptotic expressions of ϕ
(m)
p , given by (22) and (23), must be substituted in

(36). To perform this procedure in general, (22) for instance can be written as

ϕ(m)
p (x, z) = Z(m)(kp; z)

{
eikpx + Rpp e−ikpx

}
+ Z(m)(kq; z) Rpq e−ikqx, (42)

with convention of p =/ q; that is, when p = 1 (the incident wave is of the surface-wave mode)

q = 2, and when p = 2 (the incident wave is of the internal-wave mode) q = 1.

It should also be noted that, owing to the orthogonality in Appendix, there is no need to

consider cross terms between kp-wave and kq-wave in evaluating the integrals with respect to z.

Therefore, using (42), the integrand at x = +∞ in (36) may be written as∣∣∣∣∂ϕ
(m)
p

∂x

∣∣∣∣
2

− ∂2ϕ
(m)
p

∂x2
ϕ(m)∗

p

= 2
{
Z(m)(kp; z)

}2
k2

p

(
1 +

∣∣Rpp

∣∣2) + 2
{
Z(m)(kq; z)

}2
k2

q

∣∣Rpq

∣∣2. (43)

Here the integrals with respect to z can be identified with the normalization integral, whose

explicit form is provided in Appendix as follows:

F(k) ≡ 2k

γ

∫ h

0

w(z)
{

Z(k; z)
}2

dz

=
K

k
+ kh

(K chkh1 − k shkh1)
2

γ k2 sh2kh2

+
ε

γ

h1

k

[(
1 − k2

K2
+

1

Kh1

)(
K chkh1 − k shkh1

)2
+ γ

(K2 − k2)2

K2
sh2kh1

]
. (44)

With these results, the integral at x = +∞ in (36) takes the following form:

[
F ′

Dp

]
+∞ =

1

2K

{
kp

(
1 +

∣∣Rpp

∣∣2)F(kp) + kq

∣∣Rpq

∣∣2F(kq)
}

. (45)
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In the same manner, the integral at x = −∞ can be analytically performed. Namely, with

convention of p =/ q, (23) is written as

ϕ(m)
p (x, z) = Tpp Z(m)(kp; z) eikpx + Tpq Z(m)(kq; z) eikqx (46)

and then it follows that∣∣∣∣∂ϕ
(m)
p

∂x

∣∣∣∣
2

− ∂2ϕ
(m)
p

∂x2
ϕ(m)∗

p = 2
{
Z(m)(kp; z)

}2
k2

p

∣∣Tpp

∣∣2 + 2
{
Z(m)(kq; z)

}2
k2

q

∣∣Tpq

∣∣2. (47)

Therefore, in terms of (44), the result of the integral at x = −∞ takes the form[
F ′

Dp

]
−∞ =

1

2K

{
kp

∣∣Tpp

∣∣2F(kp) + kq

∣∣Tpq

∣∣2F(kq)
}

. (48)

The wave drift force must be given by the difference between (45) and (48). Therefore the

result from (36) is expressed as

F ′
Dp =

1

2K

[
kp

(
1 +

∣∣Rpp

∣∣2 −
∣∣Tpp

∣∣2)F(kp) + kq

(∣∣Rpq

∣∣2 −
∣∣Tpq

∣∣2)F(kq)

]
. (49)

As the next step, let us consider a relation to be obtained from the energy conservation

principle given by (41). With the same convention for ϕ
(m)
p and the orthogonal properties for

the integrals with respect to z, the final result of (41) can be expressed as follows:

W ′
p = − 1

2

{(
1 −

∣∣Rpp

∣∣2 −
∣∣Tpp

∣∣2)F(kp) −
(∣∣Rpq

∣∣2 +
∣∣Tpq

∣∣2)F(kq)

}
. (50)

As noted at the end of the preceding section, W ′
p = 0 for the case where a body is fixed or freely

oscillating in the incident wave. Therefore the energy conservation principle takes the form(
1 −

∣∣Rpp

∣∣2 −
∣∣Tpp

∣∣2)F(kp) =
(∣∣Rpq

∣∣2 +
∣∣Tpq

∣∣2)F(kq). (51)

Substituting this in (49), the final form of the calculation formula for the wave drift force in a

two-layer fluid can be given in the form

F ′
Dp =

1

K

[
kp

∣∣Rpp

∣∣2F(kp) +
{

kp + kq

2

∣∣Rpq

∣∣2 +
kp − kq

2

∣∣Tpq

∣∣2}F(kq)

]
. (52)

By considering the limiting case of γ → 1, let us confirm the corresponding formula for a

single-layer fluid. For γ = 1, k2 → ∞ and the internal wave no longer exists, and hence

p = 1, F(k2) = 0, k1 = k, K = k tanh kh. (53)

In this limiting case, ε = 0 in (44); thus the coefficient associated with the normalization integral

can be transformed into

J ≡ k

K
F(k) = 1 +

h

K

(K chkh1 − k shkh1)
2

sh2kh2

= 1 +
h

K
(K shkh − k chkh)2 = 1 +

2kh

sh2kh
. (54)

Therefore it follows from (52) that

F ′
D =

FD

1
2
ρgA2

=
∣∣R∣∣2 {1 +

2kh

sh2kh

}
, (55)

with R being the coefficient of reflected wave in a single-layer fluid. This result is well known

as a formula for the wave drift force in the water of finite depth.

Another thing noteworthy for (52) is a possibility of negative value of the wave drift force

in a two-layer fluid. The wave drift force to be computed from (52) is mostly positive. In

particular for the case of p = 2 (i.e., in the incident wave of internal-wave mode), the value of
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(52) is definitely positive because k2 > k1. However, for the case of p = 1, the value of (52) can

be negative if the value of |T12 | (the transmitted wave with wavenumber k2 in the incident wave

of the surface-wave mode) is relatively large.

When the energy is not conserved due to viscous effects such as the viscous damping in roll,

relation (51) obtained from the energy conservation principle can not be used. However, even

in this case, the momentum conservation principle holds and thus the wave drift force can be

computed with (49).

8. Numerical Results and Discussions

Numerical computations were performed for the Lewis-form body used in the previous study of

the first-order radiation (Ten and Kashiwagi [1]) and diffraction (Kashiwagi et al. [2]) problems.

This Lewis-form body can be represented by a conformal mapping with two nondimensional

parameters; those are the half-breadth to draft ratio H0 = b/d = 0.833 and the sectional

area ratio σ = A/Bd = 0.9 (in real dimensions, the breadth B = 2b = 0.2 m and the draft

d = 0.12m). Since this body is symmetrical with respect to x, only half of the body surface was

discretized into 40 segments for all computations in this article. With this number of segments,

satisfaction of the energy-conservation principle given by (51) was virtually perfect with the
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Fig. 2. Wave drift force on a Lewis-form body (H0 = 0.833, σ = 0.9) in two-layer
fluids: Effect of the difference in the fluid density for the case where all
body motions are fixed.
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body motions are free to oscillate.

order of error being 10−4 for both cases of body motions fixed and free to oscillate in waves.

8.1. Effects of the density ratio

To see the effects of the density ratio on the second-order wave drift force, computations were

implemented for the same parameters as those in the study of the first-order radiation and

diffraction problems; that is, γ = 1.0, 0.9, 0.7, and 0.2 with the depths of the fluid layers fixed

at h1 = 1.2d and h = 2.0d. As γ → 1, the fluid reduces to a single-layer fluid of h = 2.0d.

Conversely as γ → 0, the lower fluid behaves more like a rigid block, and the results are expected

to approach those for a single-layer fluid with upper layer depth h1 = 1.2d. To illustrate this

behavior, computations were also carried out for single-layer fluids of h = 1.2d and 2.0d.

Figure 2 shows the nondimensional value of the wave drift force for the case where all body

motions are fixed, in which the left-hand and right-hand sides are for the surface-wave and

internal-wave modes, respectively, of the incident wave.

It should be noted first that the wave drift force shown in Fig. 2 is always positive over the

whole range of frequency, although theoretically there is a possibility of negative value in the

incident wave of surface-wave mode. The results for γ = 0.9 are close to those for a single-layer

fluid of h = 2.0d except for very low frequencies, and the results for γ = 0.7 are also almost

the same as those for γ = 0.9 in the frequency range of Kb > 0.4. On the other hand, for

γ = 0.2, the results in the incident wave of surface-wave mode tend to approach the results for

a single-layer fluid of h = 1.2d, and the nondimensional value of the drift force in the incident

wave of internal-wave mode also becomes large. (Note that the amplitude A2 of the incident

wave of internal-wave mode is taken as that on the interface.)

Figure 3 shows computed results for the same parameters but for the case where only

the heave motion is free to oscillate. Compared to Fig. 2, big difference can be seen in lower

frequencies, where the drift force in two-layer fluids becomes negative in the incident wave of

surface-wave mode over a certain range of frequency; which can be attributed to a larger value

of T12 in the calculation formula of (52). It can be said that the results for γ = 0.7 are almost

the same as those for γ = 0.9 and for a single-layer fluid of h = 2.0d at frequencies of Kb > 0.6

which is higher than the resonant frequency in heave. The wave drift force in the incident wave

of internal-wave mode is always positive but very small for larger values of γ. However, for

γ = 0.2, the nondimensional value becomes larger than double the corresponding value in the

diffraction case, owing to the effect of heave motion.

Figure 4 shows the results when all modes (heave, sway, and roll) of body motion are free

to oscillate. In the present computations, the gyrational radius in roll is set to κxx = 0.6b and

the vertical distance between the center of gravity and the free surface is set to OG = 0.45b. A

rapid change can be seen around Kb � 0.5 both for the surface-wave and internal-wave modes,

11



which is obviously due to the resonance in roll. (It should be noted that the roll amplitude

near the resonance is unrealistically very large because the viscous damping is not considered in

the present theory.) When the incident wave is of surface-wave mode, the wave drift forces for

γ = 0.2 and 0.7 become negative at frequencies lower than the roll resonant frequency. However,

marked difference when compared to Fig. 3 is that the wave drift force is almost zero at very

low frequencies. Another thing to be noted is that the results for γ = 0.9 are very close to those

for a single-layer fluid over the whole frequency range including the heave and roll resonant

frequencies; which implies that a small difference in the fluid density between the upper and

lower layers gives no prominent difference in the wave drift force and motion characteristics.

The results shown above are for the case where a body floats in the upper fluid only and the

interface is located at a relatively deeper position. The horizontal force (like the wave drift force)

may be affected by the presence of internal waves near a body, which is the case particularly

when a body intersects the interface and will be studied next.

8.2. Effects of the interface position

For the same Lewis-form body (b = B/2 = 0.1 m and d = 0.12m) and fixed values of h = 0.4 m

and γ = 0.75, only the vertical position of the interface was changed from h1 = 0.06 m to 0.20m,

including the case where the body intersects the interface.
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Fig. 5. Wave drift force on a Lewis-form body (H0 = 0.833, σ = 0.9) in two-layer
fluids: Effect of the interface position for the case where all body motions
are fixed.
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Figure 5 shows computed results of the wave drift force for the case where all body motions

are fixed, and like before the left-hand and right-hand sides are for the surface-wave and internal-

wave modes, respectively, of the incident wave. In the incident wave of surface-wave mode, the

drift force is always positive, and no prominent difference exists among the results for different

interface positions, except that undulatory variation can be seen at Kb < 0.25 for the case of

h1 = 0.13m where the interface is located just below the bottom of the body (d = 0.12m). On

the other hand, in the incident wave of internal-wave mode, a remarkable change can be seen

depending on whether a body intersects the interface. When the interface position is deeper

than the draft of a body, the wave drift force is negligibly small. However, once a body intersects

the interface, the wave drift force becomes large and increases almost linearly with respect to

Kb; for which we may envisage that the internal incident wave will be blocked by a body and

almost all waves may be reflected; that is, the coefficient of R22 in the calculation formula (52)

is largely different depending on whether the body intersects the interface.

Figure 6 shows the results when only the heave motion is free to oscillate. Obviously, owing

to the heave motion, the wave drift force becomes small in frequencies lower than the heave

resonant frequency, which implies that longer incident waves transmit because the heave is free

to oscillate. It should be noted, however, that the drift force at h1 = 0.13 m fluctuates in lower

frequencies and becomes negative in a certain range of frequency, which is due to the effect of

waves with internal-wave mode, as can be conjectured from (52).

On the other hand, in the incident wave of internal-wave mode, no marked difference can

be seen as compared to Fig. 5, which implies that the reflection-wave coefficient R22 (especially

when a body intersects the interface) is not much influenced by the heave motion and the

hydrodynamic situation near the cross point between the body and interface may be viewed

locally as the diffraction problem regardless of the heave motion.

Lastly, Fig. 7 shows the results for various vertical positions of the interface when all modes

of body motion are free to oscillate. As shown in Kashiwagi et al. [2], the resonant frequency

in roll changes slightly depending on the position of the interface, due mainly to the change

in the roll restoring moment. Therefore, the frequency where rapid variation in the wave drift

force appears is slightly different depending on the vertical position of the interface. It can be

seen that the wave drift force is almost zero at lower frequencies, irrespective of the interface

position. Another point to be emphasized is that the wave drift force looks always positive when

a body intersects the interface (at h1 = 0.11m and 0.06 m), which means that the transmitted

wave with internal-wave mode T12 in the calculation formula of (52) is relatively small. When

the incident wave is of internal-wave mode, as compared to Figs. 5 and 6, slight difference can be

seen around the roll resonance, but we should note that the roll amplitude near the resonance

becomes unrealistically very large for lack of the viscous damping in the present study.
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9. Conclusions

The wave drift force in a 2-D two-layer fluid of finite depth has been studied with the potential-

flow assumption. Based on the momentum and energy conservation principles, a compact cal-

culation formula for the wave drift force was obtained; the key to success was to use effectively

the orthogonality relations for the eigenfunctions in a two-layer fluid. Owing to the presence

of the interface, for a prescribed frequency, there can exist two different incident waves with

surface-wave mode (longer wavelength) and internal-wave mode (shorter wavelength), and each

incident wave will be diffracted by a body into two different wave modes and hence the energy

of the incident wave may be transferred from one mode to the other. The wave drift force

in this rather complicated situation was described with only one equation, which includes the

coefficients of reflected and transmitted waves in a two-layer fluid. An important feature to

be seen from this calculation formula is that a possibility of negative drift force exists in the

incident wave of surface-wave mode; which can be exerted by a large value of the transmitted

wave with internal-wave mode.

Numerical computations were performed with the boundary integral-equation method using

the Green function for the two-layer fluid problem. Computed results of the wave drift force

were shown for both incident waves with surface-wave and internal-wave modes and also for

three cases where all body motions are completely fixed, only the heave motion is free, and all

body motions are free to oscillate. Furthermore, by changing the density ratio and the interface

position including the case where a body intersects the interface, those effects on the wave drift

force were discussed.

Main results obtained from the present numerical study may be summarized as follows:

1) When the body motions are fixed, the wave drift force seems to be positive for all frequencies,

regardless of the density ratio and the interface position. However, when the position of

the interface is a little deeper than the bottom of a body and the body motions are free to

respond to the incident wave of surface-wave mode, the wave drift force becomes negative

at frequencies lower than the resonant frequency of body motion.

2) When the difference in the fluid density between the upper and lower layers is large (say

γ = 0.2), the wave drift force becomes large even in the incident wave of internal-wave

mode. On the other hand, when the difference in the fluid density is small (say γ = 0.9),

the results are very close to those for a single-layer fluid over the whole range of frequency,

except at very low frequencies when all or some of the body motions are fixed.

3) When a body intersects the interface, the body reflects most of the incident wave of internal-

wave mode particularly at higher frequencies, and hence the wave drift force nondimension-

alized in terms of the square of wave amplitude on the interface seems to increase linearly

in proportional to the square of the frequency.

References

1. I. Ten and M.Kashiwagi, Hydrodynamics of a body floating in a two-layer fluid of finite

depth, Part 1: Radiation problem, Journal of Marine Science and Technology 9 (3) (2004)

127–141.

2. M.Kashiwagi, I. Ten and M.Yasunaga, Hydrodynamics of a body floating in a two-layer

fluid of finite depth, Part 2: Diffraction problem and wave-induced motions, Journal of

Marine Science and Technology, submitted.

3. R. W.Yeung and T.Nguyen, Radiation and diffraction of waves in a two-layer fluid. Proceed-

ings of the 22nd Symposium on Naval Hydrodynamics, Washington D.C. (1999) pp. 875–891.

4. H. Maruo, The drift of a body floating on waves, Journal of Ship Research 4 (1960) 1–10.

14



Appendix

The orthogonality properties of the eigenfunctions with respect to z in the two-layer fluid prob-

lem are explained in Ten and Kashiwagi [1], a summary of which is given below.

As explicitly given by (10), the z-dependent functions in the upper and lower layers are

denoted by Z(1)(k; z) and Z(2)(k; z), respectively. If necessary, the eigenfunctions corresponding

to the eigenvalues k = kp (p = 1, 2) are represented by the subscript; e.g., Z
(1)
p (kp; z) and

Z
(2)
p (kp; z).

The orthogonality can be proven in the same way as that in the Sturm-Liouville eigenvalue

problem, and the basic equation is given as

L ≡ γ

∫ h1

0

{
d2Z

(1)
1

dz2
Z

(1)
2 − Z

(1)
1

d2Z
(1)
2

dz2

}
dz +

∫ h

h1

{
d2Z

(2)
1

dz2
Z

(2)
2 − Z

(2)
1

d2Z
(2)
2

dz2

}
dz

= (k2
1 − k2

2)

[
γ

∫ h1

0

Z(1)(k1; z)Z(1)(k2; z) dz +

∫ h

h1

Z(2)(k1; z)Z(2)(k2; z) dz

]

≡ (k2
1 − k2

2)

∫ h

0

w(z)Z(k1; z)Z(k2; z) dz, (A1)

where {
w(z) = γ, Z(kp; z) = Z(1)(kp; z) 0 ≤ z ≤ h1

w(z) = 1, Z(kp; z) = Z(2)(kp; z) h1 ≤ z ≤ h
(A2)

Integrating by parts for the first line of (A1) and substituting the boundary conditions on

z = 0, z = h1, and z = h (these are the same in form as (6)–(8)), one can easily prove that

L = 0 for the case of k1 =/ k2; that is,∫ h

0

w(z)Z(k1; z)Z(k2; z) dz = 0 for k1 =/ k2 . (A3)

This means that there is no need to consider the integrals of cross terms between the k1-wave

and k2-wave modes.

Next, the normalization integral for the case of k1 = k2 ≡ k can be obtained by taking the

limit of k1 → k2 in (A1). Substituting k1 = k2 + δk in (A1), considering the Taylor expansion

with respect to k, and retaining only the term of O(δk), the desired result for the normalization

integral can be derived and expressed in the form

F ≡ 2k

γ

∫ h

0

w(z)
{
Z(k; z)

}2
dz

=
K

k

[{
Z(1)

}2
]

z=0
+

kh

γ

[{
Z(2)

}2
]

z=h

+ ε kh1

[{
Z(1)

}2
+

1

γ

(
1 +

1

Kh1
− ε

k2

K2

){
Z(1)′}2

+ 2
k

K
Z(1)Z(1)′

]
z=h1

=
K

k
+ kh

(K chkh1 − k shkh1)
2

γ k2 sh2kh2

+
ε

γ

h1

k

[(
1 − k2

K2
+

1

Kh1

)(
K chkh1 − k shkh1

)2
+ γ

(K2 − k2)2

K2
sh2kh1

]
. (A4)
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