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Abstract

In this paper the recently developed semi-analytic method to solve the free-surface wave inter-
action with a thin elastic plate is extended to the case of a plate of finite thickness. The method
used is based on the reformulation of the differential-integral equation for this problem. The
thickness of the plate is chosen such that the elastic behavior of the plate can be described by
means of thin plate theory, while the water pressure at the plate is applied at finite depth. The
water depth is finite.

1 Introduction

We consider the two-dimensional interaction of an incidentwave with a flexible floating dock or
very large floating platform (VLFP) with finite draft. The water depth is finite. The case of a rigid
dock is a classical problem. For instance Mei and Black [1] have solved the rigid problem, by
means of a variational approach. They considered a fixed bottom and fixed free surface obstacle,
so they also covered the case of small draft. After splittingthe problem in a symmetric and an
antisymmetric one the method consists of matching of eigenfunction expansions of the velocity
potential and its normal derivative at the boundaries of tworegions. In principle, their method
can be extended to the flexible platform case. Recently we derived a simpler method for both the
moving rigid and the flexible dock [2]. However we consideredobjects with zero draft only. In this
paper we extend our approach to the case of finite, but small, draft. The draft is small compared to
the length of the platform to be sure that we may use as a model,for the elastic plate, the thin plate
theory, while the water pressure at the plate is applied at finite depth. The method is based on a
direct application of Green’s theorem, combined with an appropriate choice of expansion functions
for the potential in the fluid region outside the platform andthe deflection of the plate. The integral
equation obtained by the Green’s theorem is transformed into an integral-differential equation by
making use of the equation for the elastic plate deflection. One must be careful in choosing the
appropriate Green’s function. It is crucial to use a formulation of the Green’s function consisting
of an integral expression only. In Appendix A we derive such aGreen’s function for the two-
dimensional case. One may derive an expression as can be found in the article of Wehausen and
Laitone [3] after application of Cauchy’s residue lemma. Inthe three dimensional case one also
may derive such an expression. The advantage of this versionof the source function is that one
may work out the integration with respect to the space coordinate first and apply the residue lemma
afterwards. In the case of a zero draft platform this approach resulted in the dispersion relation in
the plate region and an algebraic set of equations for the coefficients of the deflection only. Here
we derive a coupled algebraic set of equations for the expansion coefficients of the potential in the
fluid region and the deflection.

2 Mathematical formulation for the finite draft problem

In this section we derive the general formulation for the diffraction of waves by a flexible platform
of general geometric form. The fluid is ideal, so we introducea velocity potential usingV(x, t) =
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∇Φ(x, t), whereV(x, t) is the fluid velocity vector. HenceΦ(x, t)is a solution of the Laplace
equation

∆Φ = 0 in the fluid, (1)

together with the linearized kinematic condition,Φz = w̃t , and dynamic condition,p/ρ = −Φt −
gw̃, at the mean water surfacez= 0, wherew̃(x,y, t) denotes the free surface elevation, andρ is
the density of the water. The linearized free surface condition outside the platform,z = 0 and
(x,y) ∈ F , becomes:

∂2Φ
∂t2 +g

∂Φ
∂z

= 0. (2)

The platform is situated at the mean free-surfacez = 0, its thickness isd. The platform is
modelled as an elastic plate with zero thickness. The neutral axis of the plate is atz= 0, while the
water pressure distribution is applied atz= −d. Meylan et al [4] have considered finite thickness
as well. They consider the elastic equation for the deflection of a plate of finite thickness, however
they apply the equation of motion atz= 0. They show for large platforms a minor influence due
to the change of the elastic model. Our elastic model can easily modified by changing the fourth
order differential operator, but due to lack of knowledge ofsuitable parameters we decided not to
do so. So we neglect horizontal and torsional motion. To describe the vertical deflection ˜w(x,y, t),
we apply the isotropic thin-plate theory, which leads to an equation forw̃ of the form

m(x,y)
∂2w̃
∂t2 = −

(

∂2

∂x2 +
∂2

∂y2

)(

D(x,y)

(

∂2w̃
∂x2 +

∂2w̃
∂y2

))

+ p|z=−d (3)

wherem(x,y) is the piece-wise constant mass of unit area of the platform while the piece-wise
constantD(x,y) is its equivalent flexural rigidity. We differentiate (3) with respect tot and use the
kinematic and dynamic condition to arrive at the following equation forΦ atz=−d in the platform
area(x,y) ∈ P :

{(

∂2

∂x2 +
∂2

∂y2

)(

D(x,y)
ρg

(

∂2

∂x2 +
∂2

∂y2

))

+
m(x,y)

ρg
∂2

∂t2 +1

}

∂Φ
∂z

+
1
g

∂2Φ
∂t2 = 0. (4)

Due to the fact that the plate is freely floating we do not consider the hydrostatic pressure.
The edges of the platform are free of shear forces and moment.We assume that the flexural

rigidity is constant along the edge and its derivative normal to the edge equals zero. Also, we
assume that the radius of curvature, in the horizontal plane, of the edge is large. Hence, the edge
may be considered to be straight locally. We then have the following boundary conditions at the
edge:

∂2w̃
∂n2 + ν

∂2w̃
∂s2 = 0 and

∂3w̃
∂n3 +(2−ν)

∂3w̃
∂n∂s2 = 0 (5)

whereν is Poisson’s ratio,n is in the normal direction, in the horizontal plane, along the edge and
sdenotes the arc-length along the edge. At the bottom of the fluid regionz= −h we have:

∂Φ
∂z

= 0. (6)

We assume that the velocity potential is a time-harmonic wave function,Φ(x, t) = φ(x) e−iωt . We
introduce the following parameters:

K =
ω2

g
, µ=

mω2

ρg
, D =

D
ρg

.

In a practical situation the total lengthL of the platform is a few thousand meters. We obtain at the
free surface,z= 0

∂φ
∂z

−Kφ = 0 (7)

and at the plate,z= −d, for a single strip,
{

D

(

∂2

∂x2 +
∂2

∂y2

)2

−µ+1

}

∂φ
∂z

−Kφ = 0 . (8)
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The potential of the undisturbed incident wave is given by:

φinc(x) =
gζ∞

iω
cosh(k0(z+h))

cosh(k0h)
exp{ik0(xcosβ+ysinβ)} (9)

whereζ∞ is the wave amplitude in the original coordinate system,ω the frequency, while the wave
numberk0 is the positive real solution of the dispersion relation,

k0 tanh(k0h) = K, (10)

for finite water depth. We restrict ourselves to the case of normal incidence,β = 0. In [6]it is shown
that the extension to oblique waves can be done easily.

To obtain an integral equation for the deflection ˜w(x,y, t) = ℜ
[

w(x,y) e−iωt
]

of the platform,
see [5] and [6], it is very convenient to apply the Green’s theorem, making use of the Green’s
function,G(x;ξξξ), that fulfills boundary conditions at the seabed (6) and at the free surface (7). Ap-
plication of Green’s theorem in the fluid domain leads to the following expression for the potential
function,

4πφ(x) = 4πφinc(x)+
Z

C
φ(ξξξ)

∂G(x,ξξξ)

∂n
dS+

Z
P

(

φ(ξξξ)
∂G(x,ξξξ)

∂ζ
−

∂φ(ξξξ)

∂ζ
G(x;ξξξ)

)

dS. (11)

The first integral is along the vertical sides of the platform, where the normal velocity of the fluid
equals zero. The second integral is along the flat bottom. In the two-dimensional case,(x,z)-plane,
the expression for the total potential becomes:

2πφ(x,z) = 2πφinc(x,z)+

Z 0

−d

(

φ(0,ζ)
∂G(x,z;0,ζ)

∂ξ
−φ(l ,ζ)

∂G(x,z; l ,ζ)

∂ξ

)

dζ

+
Z l

0

(

φ(ξ,−d)
∂G(x,z;ξ,−d)

∂ζ
−

∂φ(ξ,−d)

∂ζ
G(x,z;ξ,−d)

)

dξ.

(12)

We continue with the two-dimensional case.
The Green’s functionG(x,z;ξ,ζ) for the two dimensional case can be derived by means of a

Fourier transform with respect to thex-coordinate. As is shown in Apendix A it has the form:

G(x,z;ξ,ζ) =
Z ∞

−∞

1
γ

K sinhγz+ γcoshγz
K coshγh− γsinhγh

coshγ(ζ+h) eiγ(x−ξ) dγ for z> ζ (13)

and

G(x,z;ξ,ζ) =

Z ∞

−∞

1
γ

K sinhγζ+ γcoshγζ
K coshγh− γsinhγh

coshγ(z+h) eiγ(x−ξ) dγ for z< ζ. (14)

If we close the contour of integration in the complexγ−plane we obtain the complex version of
formula (13.34), as can be found in Wehausen and Laitone [3]

G(x,z;ξ,ζ) = −2πi
∞

∑
i=0

1
ki

k2
i −K2

hk2
i −hK2+K

coshki(z+h)coshki(ζ+h) eiki |x−ξ|, (15)

wherek0 andki , i = 1, · · · ,∞ are the positive real and positive imaginary zeros of the dispersion
relation (10).

The advantage of this formulation for the Green’s function is that, by means of the Green’s
theorem, we can derive the algebraic set of equations for theexpansion coefficients by carrying out
the integration with respect to the spatial variable analytically first.

It is well known that for the rigid case, Mei and Black [1], thepotential can be expanded in
eigenfunctions in the regions outside and underneath the platform. In the traditional approach
continuity of mass and velocity leads to sets of equations atx = 0 andx = l respectively. The
use of orthogonality relations then gives a set of equationsfor the unknown coefficients. In the
case of zero thickness it is shown by Hermans [2] that a set of algebraic equations can be obtained
for the expansion coefficients of the deflection alone. Here we also use this approach to obtain a
coupled set of algebraic equations for the finite thickness case as well. It is also possible to make
a non-orthogonal expansion, see for instance [7], of the potential underneath the flexible platform.
In that case one can express, a posteriori, the deflection as an expansion in exponential functions.
The dispersion relations derived by both approaches are thesame, as expected.
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3 Semi analytic solution

Equation (12) and or the three-dimensional version (11), together with the condition at the bottom
of the plate (8), can be solved by by means of a numerical diffraction code based on WAMIT. How-
ever, it is interesting to see how one can solve the equationssemi-analytical for simple geometries.
Here we work out the case of a strip.

We eliminate in relation (12) the functionφ(ξ,−d) by using equation (8) and the kinematic
condition

φζ(ξ,−d) = −iωw(ξ). (16)

Thus we obtain,

2πφ(x,z) = 2πφinc(x,z)+

Z 0

−d

(

φ(0,ζ)
∂G(x,z;0,ζ)

∂ξ
−φ(l ,ζ)

∂G(x,z; l ,ζ)

∂ξ

)

dζ

−iω
Z l

0

(

1
K

(

D
∂4

∂ξ4 −µ+1

)

w(ξ)
∂G(x,z;ξ,−d)

∂ζ
−w(ξ)G(x,z;ξ,−d)

)

dξ.

(17)

We assume that the deflectionw(x) can be written as an expansion in exponential functions, trun-
cated atN+2 terms of the form,

w(x) = ζ∞

N+1

∑
n=0

(

an eiκnx +bn e−iκn(x−l)
)

. (18)

The values forκn follow from a ’dispersion’ relation, yet to be determined. If we considerκn’s
with either real positive values or, if they are complex , with positive imaginary part, then the first
part of expression (18) expresses modes travelling and evanescent to the right. The second part
then describes modes travelling and evanescent to the left.

Furthermore we expand the potential function forx≤ 0 andx≥ l in series of orthogonal eigen-
functions, truncated atN terms

φ(x,z) =
gζ∞

iω

(

coshk0(z+h)

coshk0h
eik0x +

N−1

∑
n=0

αn
coshkn(z+h)

coshknh
e−iknx

)

for x≤ 0 (19)

and

φ(x,z) =
gζ∞

iω

N−1

∑
n=0

βn
coshkn(z+h)

coshknh
eikn(x−l) for x≥ l , (20)

The difference in the number of expansion functions in (18) is due to the fact that we have four
boundary conditions at the edge of the plate (5). The coefficientsα0 andβ0 are the reflection and
transmission coefficients respectively. it should be noticed that the potential under the platform
is not expanded in a set of orthogonal eigenfunctions. By the way, such a set does not exist.
Extension of the solution along the bottom of the platform inthe flow region is simply done by
application of (17). We have introduced 4N+4 unknown coefficients. Next we derive an algebraic
set of equations for these coefficients.

First we take(x,z) at the bottom of the plate, this leads to the following equation

2π
(

D
∂4

∂x4 −µ+1

)

w(x) =

−2π
K
iω

φinc(x,−d)−
K
iω

Z 0

−d

(

φ(0,ζ)
∂G(x,−d;0,ζ)

∂ξ
−φ(l ,ζ)

∂G(x,−d; l ,ζ)

∂ξ

)

dζ

+ lim
z↑−d

Z l

0

((

D
∂4

∂ξ4 −µ+1

)

w(ξ)
∂G(x,z;ξ,−d)

∂ζ
−Kw(ξ)G(x,z;ξ,−d)

)

dξ.

(21)

We take the limit in the last integral after we have carried out the spatial integrations analytically.
This means that we keep the factor 2π in the left hand side of the equation. The commonly used
factor π and principle value integral may be obtained by taking the limit first. However, it is
more convenient to avoid the principle value integral in ourapproach. In the first integral on the
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right-hand side we insert for the Green function the series expansion (15) and for the potential
function the expansions (19) and (20), while in the second integral we use (14) for the Green
function and (18) for the deflection. In the first integral integration with respect toζ and in the last
integral the integration with respect toξ can be carried out. Next we close the remaining contour
of integration in the complexγ-plane.

If we now equalize the coefficients of eiκnx and of e−iκn(x−l), we obtain the following ’disper-
sion’ relation forκn, theκn’s are the zero’s of

(Dκ4−µ)K coshκd+
(

K2−κ2(Dκ4−µ+1)
) sinhκd

κ
= (Dκ4−µ+1)

(K coshκh−κsinhκh)

coshκ(−d+h)
.

After some manipulations this relation can be rewritten in the form:

(

(Dκ4−µ−1)κ tanhκ(h−d)−K
)

(K sinhκd−κcoshκd) = 0 (22)

For d = 0 the dispersion relation for the zero draft platform is recovered. It should be noticed that
relation (22) is not exactly the same as the zero draft relation with h replaced byh−d. Hence, we
ignore the zeros of the second part, that occur for values ofK sufficiently large only.

3.1 Semi infinite platform

Let us first consider the half-plane problem. We introduce some slight physical damping to get rid
of the contributions of the upper bound in the last integral in (21) and the second part of the first
integral. The terms we obtain after closure of the contour inthe last integral of (21) contain the
exponential functions eiknx. We take the coefficients of each exponential equal to zero. This leads
to a set ofN algebraic equations for the coefficientsan andαn. For the the half-plane problem, we
obtain fori = 0, · · · ,N−1:

N−1

∑
n=0

αn

coshknh
Ki,n−

N+1

∑
n=0

an

κn−ki

(

(Dκ4
n−µ+1)sinhki(h−d)−

K
ki

coshki(h−d)

)

=

δ0
i

hk2
0 −hK2+K

(k2
0−K2)coshk0h)

−
Ki,0

coshk0h
,

(23)

where the coefficientsKi,n are defined as

2Ki,n =
1

ki +kn
[sinh(ki +kn)h−sinh(ki +kn)(h−d))]

+
1

ki −kn
[sinh(ki −kn)h−sinh(ki −kn)(h−d)] .

(24)

This is a set ofN equations for 2N+2 unknown coefficients. We have two conditions at the edge of
the plate, so we must still obtainN. At the vertical frontend of the platform (17) gives the relation

2πφ(0,z) = 2πφinc + lim
x→0

Z 0

−d
φ(0,ζ)

∂G(x,z;0,ζ)

∂ξ
dζ

−iω
Z ∞

0

(

1
K

(

D
∂4

∂ξ4 −µ+1

)

w(ξ)
∂G(0,z;ξ,−d)

∂ζ
−w(ξ)G(0,z;ξ,−d)

)

dξ.

(25)

We insert the series expansions (18) and (19) in this equation and compare the coefficients of
coshki(z+h). For the Green function we use expression (15) in both integrals.

We obtain fori = 0, · · · ,N−1:

hk2
i −hK2+K

(k2
i −K2)coshkih

αi −
N−1

∑
n=0

αn

coshknh
Ki,n

−
N+1

∑
n=0

an

κn +ki

(

(Dκ4
n−µ+1)sinhki(h−d)−

K
ki

coshki(h−d)

)

=
1

coshk0h
Ki.0

(26)
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We give some result for the absolute value of the amplitude ofthe deflection for a semi-infinite
platform with a draft of two meters and water depth of ten meter. In figure 1 results are shown
for three values of the deep water wave length,λ = 2π/K = 150, 90, 30 m respectively. As
expected the amplitude increases with increasing values ofthe wave length. In figure 2 we show
for λ = 90 m and water depth of ten meter the absolute value of the amplitude for several values
of the draft,d = 0, 2, 4, 6 m. In figure 3 we show the influence of water depth on de amplitude

 0.4

 0.3

 0.2

 0.1

 0
 1 0.5 0

|w|/ζ∞

x/300

Figure 1: D = 107 m4, d = 2 m, h = 10 m
andλ = 150, 90, 30 m (top-down)

 0.4

 0.3

 0.2

 0.1

 0
 1 0.5 0

|w|/ζ∞

x/300

Figure 2:D = 107 m4, d = 0, 2, 4, 6 (top-
down),h = 10 m andλ = 90 m

of deflection. We have chosenh = 100, 20, 10 m,d = 2 m and a fixed frequency withλ = 90 m.
The amplitude of the deflection increases for increasing water depth. To carry out computations
for the larger values of water depth one must get rid of all hyperbolic sin and cosine functions in
the formulation. This can be done by using standard formulasfor these functions and by using the
dispersion relation for the free surface water waves. By doing so one obtains very accurate results.
In figure 4 we show the real part of the deflection for the same values of water depth,d = 5 m and
fixed values of the wavelengthλ0 = 2π/k0 = 100 m. We also have computed the absolute value
of the amplitude of the wave elevation in front of the platform. The result is shown in figure 5. It
is clearly shown that the elevation of the wave and the platform are discontinuous atx = 0. The
amplitude of the reflected waveα0 = 0.45657−0.43639i.

 0.4

 0.3

 0.2

 0.1

 0
 1 0.5 0

|w|/ζ∞

x/300

Figure 3: D = 107 m4, d = 2 m, h =
100, 20, 10 m (top-down) andλ = 90 m

 0.1

 0.05

 0

-0.05

-0.1

 1 0.8 0.6 0.4 0.2 0

ℜw/ζ∞

x/1000

Figure 4: Real part of the deflection forD =
107 m4, d = 5 m, h = 100, 20, 10 m (top-
down) m andλ0 = 100 m

3.2 Strip of finite length

We follow the same procedure as for the semi-infinite case. The first step is to compare the coeffi-
cients of the exponential functions e±iknx in (21). This leads to a set of 2N algebraic equations for
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 1.5

 1

 0.5

 0
 1 0.5 0-0.5-1

|w|/ζ∞

x/300

Figure 5: Amplitude of wave and deflection forD = 107 m4, d = 2 m,h = 10 m andλ = 90 m

the coefficientsan, bn, αn andβn.

N−1

∑
n=0

αn

coshknh
Ki,n−

N+1

∑
n=0

an

κn−ki

(

(Dκ4
n−µ+1)sinhki(h−d)−

K
ki

coshki(h−d)

)

+
N+1

∑
n=0

bn

κn +ki

(

(Dκ4
n−µ+1)sinhki(h−d)−

K
ki

coshki(h−d)

)

eiκnl

= δ0
i

hk2
0 −hK2+K

(k2
0 −K2)coshk0h)

−
Ki,0

coshk0h

(27)

and
N−1

∑
n=0

βn

coshknh
Ki,n +

N+1

∑
n=0

an

κn +ki

(

(Dκ4
n−µ+1)sinhki(h−d)−

K
ki

coshki(h−d)

)

eiκnl

−
N+1

∑
n=0

bn

κn +ki

(

(Dκ4
n−µ+1)sinhki(h−d)−

K
ki

coshki(h−d)

)

= 0.

(28)

This is a set of 2N equations for 4N + 4 unknown coefficients. Next we consider the equations at
x = 0 andx = l respectively. After integration with respect to the spatial variable one obtains a
summation of coshki(z+h) terms. By taking the coefficients of each coshki(z+h) function equal
to zero we obtain the following set of 2N equations for the unknown expansion coefficients.

At x = 0 we get

hk2
i −hK2+K

(k2
i −K2)coshkih

αi −
N−1

∑
n=0

αn−βn eiki l

coshknh
Ki,n

−
N+1

∑
n=0

an

κn +ki

(

(Dκ4
n−µ+1)sinhki(h−d)−

K
ki

coshki(h−d)

)

(

1− ei(κn+ki)l
)

+
N+1

∑
n=0

bn

κn−ki

(

(Dκ4
n−µ+1)sinhki(h−d)−

K
ki

coshki(h−d)

)

(

eiκnl − eiki l
)

=
1

coshk0h
Ki.0,

(29)

and atx = l we get

hk2
i −hK2 +K

(k2
i −K2)coshkih

βi +
N−1

∑
n=0

αn eiki l −βn

coshknh
Ki,n

+
N+1

∑
n=0

an

κn−ki

(

(Dκ4
n−µ+1)sinhki(h−d)−

K
ki

coshki(h−d)

)

(

eiκnl − eiki l
)

−
N+1

∑
n=0

bn

κn +ki

(

(Dκ4
n−µ+1)sinhki(h−d)−

K
ki

coshki(h−d)

)

(

1− ei(κn+ki)l
)

=
hk2

0 −hK2+K

(k2
0 −K2)coshk0h

eik0l −
1

coshk0h
Ki.0

(30)
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Together with the four relations at the end of the strip we have 4N + 4 linear algebraic equations
for the 4N+4 unknown coefficients.

The set of equations as is written here is not very suitable for numerical computations directly.
Especially for large values of water-depth the arguments ofthe hyperbolic sine and cosine functions
becomes rather large. So one is subtracting very large values in the computation of the coefficients.
To obtain high numerical accuracy one must get rid of these functions. This can be done by using
the dispersion relation for the water region. In Appendix B amore suitable set of equations is
given.

We show some computational results for a two-dimensional platform of width 300 m. In all
cases we take a fixed values for the flexural rigidityD = 107 m4, the width of the stripl = 300 m
and the water depthh = 10 m. In figure 6 and 7 we show ford = 0 and ford = 2 m the variation
of the amplitude of deflection with respect to the wave length.

 0.4

 0.3

 0.2

 0.1

 0
 1 0.5 0

|w|/ζ∞

x/l

Figure 6: D = 107 m4, l = 300
m, d = 0 m, h = 10 m and
λ/l = 0.5, · · · , 0.3,−−, 0.1,−−
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 0.1

 0
 1 0.5 0

|w|/ζ∞

x/l

Figure 7:D = 107 m4, l = 300 m,d = 2 m,
h = 10 m andλ/l = 0.5, 0.3, 0.1
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|w|/ζ∞

x/l

Figure 8:D = 107 m4, l = 300 m,d = 0,−−,
2,−−, 4, · · · m, h = 10 m andλ/l = 0.3

 0.4

 0.3

 0.2

 0.1
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 1 0.5 0

|w|/ζ∞

x/l

Figure 9:D = 107 m4, l = 300 m,d = 0,−−,
2,−−, 4, · · · m, h = 10 m andλ/l = 0.5
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x/l

Figure 10:D = 1010 m4, l = 300 m,d = 0, 2, 4 m,h = 10 m andλ/l = 0.5
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Figure 11: D = 107 m4, l = 300 m,d = 0
m, h = 10 m andλ/l = 0.3
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Figure 12: D = 107 m4, l = 300 m,d = 4
m, h = 10 m andλ/l = 0.3
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Figure 13: D = 107 m4, l = 300 m,d = 0
m, h = 10 m andλ/l = 0.215
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Figure 14: D = 107 m4, l = 300 m,d = 4
m, h = 10 m andλ/l = 0.215

In figure 8 and 9 the dependence on the draft for fixed values of the wave length is shown.
The results of the first case show an increase of the deflectionfor increasing values of the draft. It
will be shown later that this is due to a shift in the reflectioncurve. In figure 10 a result is shown
for a larger value of the flexural rigidityD = 1010 m4 and wave lengthλ/l = 0.5. This case is
comparable with the interaction of free-surface waves witha rigid body. One clearly observes that
the motion of the dock consists of a heave and pitch motion only.

In figure 11 and 13 we show for two values of the wave length the absolute value of the am-
plitude of the water surface in front and behind the strip, together with the amplitude of the plate
deflection for the zero draft case. The second case is near thezero reflection situation.

In the four meter draft case, see figure 12 and 14, we see thatλ/l = 0.215, or in terms of the
actual wave lengthλ0/l = 0.178, is close to total reflection. This is in contrast with thezero draft
case in figure 13, due to the shift in the transmission-reflection curves. For the same reason the
absolute value of the deflection increases if the draft increases in figure 8 in contrast with the result
in figure 9.

The reflection and transmission coefficients for a strip of 300 m and depth 10 m are shown in
figure 15, for zero draft and in 16 for a draft of two meter. If wedefineR= α0 andT = β0, notice
no exponential function, we find that in all cases the relations |T|2+ |R|2 = 1 andTR+TR= 0, see
for instance Mei et al [1] or for a derivation Roseau [8], are fulfilled for at least 10 decimals. The
coefficients are presented as a function of the actual wave length,λ0/l = 2π/k0l . In the figures 17
and 18 these coefficients are given for a water depth of 100 meter. In all cases the coefficient of
flexural rigidity equalsD = 107 m4. Figures 18, 19 and 20 show the results for different sizes of
the strip. In figure 21 and 22 the result is shown for a strip of width l = 100 m and draftd = 8 m.
It is clearly observed that for the short waves total reflection takes place .
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Figure 15:−−− Reflection and−− trans-
mission coefficients forh = 10 m,d = 0 m
andl = 300 m
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Figure 16: Reflection and transmission co-
efficients forh = 10 m, d = 4 m andl =
300 m
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Figure 17: Reflection and transmission co-
efficients forh = 100 m,d = 0 m andl =
300 m
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Figure 18: Reflection and transmission co-
efficients forh = 100 m,d = 2 m, andl =
300 m

A The Green’s function

Here we derive the two-dimensional version of the function of GreenG(x,z;ξ,ζ) as used in this
paper. This ’source’ function is a solution of

Gxx+ Gzz= 2πδ(x−ξ,z−ζ), (31)

with boundary conditions:
KG −Gz = 0 atz= 0 (32)

Gz = 0 atz= −h. (33)

We introduce the Fourier transform ofG

G̃(z;ζ) =
1
2π

Z ∞

−∞
G(x,z;ξ,ζ) e−iγx dx. (34)

This transformed Green’s function satisfies the conditions:

G̃zz− γ2G̃ = 0 for z 6= ζ
KG̃ − G̃ = 0 atz= 0

G̃z = 0 atz= −h (35)

lim
ε→0

(

G̃(ζ+ ε;ζ)− G̃(ζ− ε;ζ)
)

= 0

lim
ε→0

(

G̃z(ζ+ ε;ζ)− G̃z(ζ− ε;ζ)
)

= e−iγξ.

The solution of this equations is

G̃(z;ζ) =
1
γ

K sinhγz+ γcoshγz
K coshγh− γsinhγh

coshγ(ζ+h) e−iγξ for z> ζ (36)
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Figure 19: Reflection and transmission co-
efficients forh = 100 m,d = 2 m, andl =
650 m
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Figure 20: Reflection and transmission co-
efficients forh = 100 m,d = 2 m andl =
1000 m
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Figure 21: Reflection and transmission co-
efficients forh = 100 m,d = 8 m, andl =
1000 m

C
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Figure 22: Reflection and transmission co-
efficients forh = 500 m,d = 8 m andl =
1000 m

G̃(z;ζ) =
1
γ

K sinhγζ+ γcoshγζ
K coshγh− γsinhγh

coshγ(z+h) e−iγξ for z< ζ. (37)

Then we transformed back to thex−variable. This results in (13) and (14. The contour of inte-
gration passes above or underneath the singularities on thereal axis. The choice of this contour is
determined by the radiation condition. Forx> ξ the waves travel in the positivex−direction, while
for x < ξ the waves travel in the negativex−direction. Therefore the contour passes the negative
real pole above and the positive real pole below. Closure of the contour in the complexγ−plane
leads to (15).

B Simplification of the set of algebraic equations

To obtain accurate solutions of the set of equations (26-28)one must get rid of the terms that
consist of subtraction of large numbers. To achieve this goal we use the dispersion relation (10),
γ tanh(γh) = K Making use of the relation

cosh(γh)2−sinh(γh)2 = 1

one obtains for the zerosγ = ki for i = 0,1, · · · · · ·

cosh(kih) =
(−1)iki
√

k2
i −K2

and sinh(kih) =
(−1)iK
√

k2
i −K2

.

We also use

coshγ(h−d) = coshγhcoshγd−sinhγhsinhγd
sinhγ(h−d) = sinhγhcoshγd−coshγhsinhγd.
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One can see that for large values depthk0 is very close toK the accuracy is improved if one divides
out the large term analytically. The results in 21 can not be obtained without this simplification.
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