Free-surface Wave Interaction with a Thick Flexible Dock or
Very Large Floating Platform

A.J. Herman$

Abstract

In this paper the recently developed semi-analytic metb@lve the free-surface wave inter-
action with a thin elastic plate is extended to the case oagepf finite thickness. The method
used is based on the reformulation of the differentialgrakéequation for this problem. The
thickness of the plate is chosen such that the elastic bahaf/the plate can be described by
means of thin plate theory, while the water pressure at thie g applied at finite depth. The
water depth is finite.

1 Introduction

We consider the two-dimensional interaction of an incideatve with a flexible floating dock or
very large floating platform (VLFP) with finite draft. The veatdepth is finite. The case of a rigid
dock is a classical problem. For instance Mei and Black [1jehsolved the rigid problem, by
means of a variational approach. They considered a fixedrbadind fixed free surface obstacle,
so they also covered the case of small draft. After splittimg problem in a symmetric and an
antisymmetric one the method consists of matching of eigeifon expansions of the velocity
potential and its normal derivative at the boundaries of tegions. In principle, their method
can be extended to the flexible platform case. Recently weeatkta simpler method for both the
moving rigid and the flexible dock [2]. However we consideobjects with zero draft only. In this
paper we extend our approach to the case of finite, but smaft, @he draft is small compared to
the length of the platform to be sure that we may use as a modé¢he elastic plate, the thin plate
theory, while the water pressure at the plate is applied dé fiepth. The method is based on a
direct application of Green'’s theorem, combined with arrappate choice of expansion functions
for the potential in the fluid region outside the platform &nel deflection of the plate. The integral
equation obtained by the Green’s theorem is transformedaintintegral-differential equation by
making use of the equation for the elastic plate deflectione @ust be careful in choosing the
appropriate Green'’s function. It is crucial to use a forrtialaof the Green’s function consisting
of an integral expression only. In Appendix A we derive sucGraen’s function for the two-
dimensional case. One may derive an expression as can be ifotime article of Wehausen and
Laitone [3] after application of Cauchy’s residue lemma.tHa three dimensional case one also
may derive such an expression. The advantage of this veo$itire source function is that one
may work out the integration with respect to the space coatdifirst and apply the residue lemma
afterwards. In the case of a zero draft platform this apgroasulted in the dispersion relation in
the plate region and an algebraic set of equations for thifideats of the deflection only. Here
we derive a coupled algebraic set of equations for the expaigsefficients of the potential in the
fluid region and the deflection.

2 Mathematical formulation for the finite draft problem

In this section we derive the general formulation for thérddtion of waves by a flexible platform
of general geometric form. The fluid is ideal, so we introdaoeelocity potential usiny (x,t) =
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Od(x,t), whereV(x,t) is the fluid velocity vector. Henc&(x,t)is a solution of the Laplace
equation
A® =0 inthe fluid, (1)

together with the linearized kinematic conditiah; = W, and dynamic conditionp/p = —®; —
gw, at the mean water surfage= 0, wherew(x,y,t) denotes the free surface elevation, gnid
the density of the water. The linearized free surface camibutside the platformz = 0 and
(x,y) € ¥, becomes:

°® 9P

a2 9%

The platform is situated at the mean free-surface 0, its thickness igl. The platform is

modelled as an elastic plate with zero thickness. The riearrs of the plate is at = 0, while the
water pressure distribution is appliedzat —d. Meylan et al [4] have considered finite thickness
as well. They consider the elastic equation for the deflaatica plate of finite thickness, however
they apply the equation of motion at= 0. They show for large platforms a minor influence due
to the change of the elastic model. Our elastic model catyaasidified by changing the fourth
order differential operator, but due to lack of knowledgesitable parameters we decided not to
do so. So we neglect horizontal and torsional motion. Toritesthe vertical deflectiom(X,y,t),
we apply the isotropic thin-plate theory, which leads to anation forw of the form

0%W 9> 0° W 0°W
m(XJ)W =- (W + 6_yz> <D(XaY) (W + 6—yz>> + Plz=—d )
wherem(x,y) is the piece-wise constant mass of unit area of the platfohitevthe piece-wise
constanD(x,y) is its equivalent flexural rigidity. We differentiate (3)thirespect td and use the

kinematic and dynamic condition to arrive at the followirggation for® atz= —d in the platform
area(x,y) € P:

0> 0%\ /D(xy) [ 9> & m(x,y) 92 0P  19%0
{<a—+w> < g (0_+W>>+ g ﬁ“}vaﬁ—o- @
Due to the fact that the plate is freely floating we do not cdersthe hydrostatic pressure.
The edges of the platform are free of shear forces and monvéatassume that the flexural
rigidity is constant along the edge and its derivative ndrtoghe edge equals zero. Also, we
assume that the radius of curvature, in the horizontal plahthe edge is large. Hence, the edge

may be considered to be straight locally. We then have thewiolg boundary conditions at the
edge:

—0. )

oW AW 03w 03w
anz%—v@_o andW+(2—v)m_0 (5)
wherev is Poisson’s ration is in the normal direction, in the horizontal plane, along ¢ige and

sdenotes the arc-length along the edge. At the bottom of tieridgionz = —h we have:

0 _
0z

0. (6)

We assume that the velocity potential is a time-harmonicesdamction,®(x,t) = @(x) el e
introduce the following parameters:
o’ mu? D
K:_a u:—a D=—.
g P9 (8]
In a practical situation the total lengthof the platform is a few thousand meters. We obtain at the

free surfacez=0

0@ B
3, Ke=0 ()

and at the platez = —d, for a single strip,
2 92\° 3¢
{@<W+0_y2> —u—l—l}E—K(p—O. (8)
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The potential of the undisturbed incident wave is given by:

inc,oy _ 9lw COSHKo(z+h))
9 = iw  coshkoh)

where(,, is the wave amplitude in the original coordinate systarthe frequency, while the wave
numberkg is the positive real solution of the dispersion relation,

kotanh(koh) = K, (10)

for finite water depth. We restrict ourselves to the case ohabincidencef = 0. In [6]it is shown
that the extension to obligue waves can be done easily.

To obtain an integral equation for the deflectiofx.y,t) = O [w(x,y) e'**] of the platform,
see [5] and [6], it is very convenient to apply the Green'soteen, making use of the Green'’s
function, G(x;&), that fulfills boundary conditions at the seabed (6) andeafribe surface (7). Ap-
plication of Green'’s theorem in the fluid domain leads to thiefving expression for the potential

function,
- 0G 0G(x 0
amo() — ang(0 + [ o) 200 s [ (o) 2908 W ge)) as
The first integral is along the vertical sides of the platfowh\ere the normal velocity of the fluid
equals zero. The second integral is along the flat bottonmhdtvo-dimensional caséx, z)-plane,
the expression for the total potential becomes:

2rp(x,2) = 2mg"°(x, 2) +/_(; <¢(O,Z)%§O’Z) _¢(|7z)%§;l’o> a

| 0G(xzE —d) IgE,—d)
+/0 (CP(E,—d) P % g(x,z,E,—d)> dE.

We continue with the two-dimensional case.
The Green'’s functiors(x,z &, ) for the two dimensional case can be derived by means of a
Fourier transform with respect to tixecoordinate. As is shown in Apendix A it has the form:

. _ [* 1Ksinhyz+ ycoshyz
G(x,z&,() = ./w y K coshyh — ysinhyh

exp{iko(xcosB + ysinp)} 9)

(12)

coshy(Z +h) V8 dy forz>¢ (13)

and

] [ 1KsinhyC +ycoshy(
Gxz8,0) = ./;co y K coshyh — ysinhyh
If we close the contour of integration in the comphexplane we obtain the complex version of
formula (13.34), as can be found in Wehausen and Laitone [3]

coshy(z+h) €Y dy  forz< Z. (14)

2 .
G(x,zE,0) = —2m Zak' mﬂth—écosm(u h) coshk; (Z + h) &'kix=8l, (15)
whereky andk;, i = 1,--- ,c0 are the positive real and positive imaginary zeros of thpatison

relation (10).

The advantage of this formulation for the Green’s functisrthiat, by means of the Green’s
theorem, we can derive the algebraic set of equations fanthansion coefficients by carrying out
the integration with respect to the spatial variable aizgify first.

It is well known that for the rigid case, Mei and Black [1], tpetential can be expanded in
eigenfunctions in the regions outside and underneath thigopih. In the traditional approach
continuity of mass and velocity leads to sets of equations-at0 andx = | respectively. The
use of orthogonality relations then gives a set of equatfonshe unknown coefficients. In the
case of zero thickness it is shown by Hermans [2] that a sdgebeaic equations can be obtained
for the expansion coefficients of the deflection alone. Hesealgo use this approach to obtain a
coupled set of algebraic equations for the finite thicknese @s well. It is also possible to make
a non-orthogonal expansion, see for instance [7], of therial underneath the flexible platform.
In that case one can express, a posteriori, the deflection espansion in exponential functions.
The dispersion relations derived by both approaches arsaiine, as expected.
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3 Semi analytic solution

Equation (12) and or the three-dimensional version (1fettwer with the condition at the bottom
of the plate (8), can be solved by by means of a numericabdiffon code based on WAMIT. How-
ever, itis interesting to see how one can solve the equasiems-analytical for simple geometries.
Here we work out the case of a strip.

We eliminate in relation (12) the functiop(&, —d) by using equation (8) and the kinematic
condition

@ (& —d) = —iow(). (16)

Thus we obtain,

2mp(x,2) = 21" (x, 2) + /_(; <¢(0,Z)M _ (p(mw) o

9% % (a7)
o[ (& (D) we 2T ZE g gixzt -a) o

We assume that the deflectiarix) can be written as an expansion in exponential functions; tru
cated alN + 2 terms of the form,

N+1

W(X) = Lo ; (an e X | p, e‘iK“(X‘”) . (18)

The values fo,, follow from a 'dispersion’ relation, yet to be determined.we considerk,’s
with either real positive values or, if they are complex ,hwibsitive imaginary part, then the first
part of expression (18) expresses modes travelling andesegant to the right. The second part
then describes modes travelling and evanescent to the left.
Furthermore we expand the potential functionXat 0 andx > | in series of orthogonal eigen-
functions, truncated & terms
9o [ coshko(z+h) i "' coshiG(z+h)
o(x,2) = s <We +n;anTH<nhe > forx<0 (19)

and

N-1 P

The difference in the number of expansion functions in ($8)ue to the fact that we have four
boundary conditions at the edge of the plate (5). The coeffisbg andf3 are the reflection and
transmission coefficients respectively. it should be matithat the potential under the platform
is not expanded in a set of orthogonal eigenfunctions. By the wagh @ set does not exist.
Extension of the solution along the bottom of the platfornihia flow region is simply done by
application of (17). We have introducetll4- 4 unknown coefficients. Next we derive an algebraic
set of equations for these coefficients.

First we take(x,z) at the bottom of the plate, this leads to the following edrati

21'[(@6—:4 — U+ 1) wW(X) =

o) [ (00,0200 E08 g 26 B ) @ o
| 4 o
+iim, [ <<@:—E4 Cue 1) W(E)W —KW(E)G(x.ZE, —d)) N3

We take the limit in the last integral after we have carrietitbe spatial integrations analytically.
This means that we keep the factar i the left hand side of the equation. The commonly used
factor Tt and principle value integral may be obtained by taking thatlifirst. However, it is
more convenient to avoid the principle value integral in approach. In the first integral on the
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right-hand side we insert for the Green function the serigmmsion (15) and for the potential
function the expansions (19) and (20), while in the seconégial we use (14) for the Green
function and (18) for the deflection. In the first integrakigitation with respect t¢ and in the last
integral the integration with respect §acan be carried out. Next we close the remaining contour
of integration in the compley-plane. _ _

If we now equalize the coefficients of & and of e'*n(*-1) we obtain the following 'disper-
sion’ relation fork,, theky's are the zero's of

4 2 L 2imd sinhkd 4 (K coshkh — Kk sinhkh)
(Dk* — WK costkd + (K* — k*(DK* — pu+1)) = (DK*—p+1) coshc(—d 1)
After some manipulations this relation can be rewritterhimform:

((Dx* — u— 1)k tanhk (h—d) — K) (K sinhkd — k costkd) = 0 (22)

Ford = 0 the dispersion relation for the zero draft platform is reed. It should be noticed that
relation (22) is not exactly the same as the zero draft arlatiith h replaced byh— d. Hence, we
ignore the zeros of the second part, that occur for valuéssaifficiently large only.

3.1 Semiinfinite platform

Let us first consider the half-plane problem. We introduaeesglight physical damping to get rid
of the contributions of the upper bound in the last integnaf2l) and the second part of the first
integral. The terms we obtain after closure of the contouh@last integral of (21) contain the

exponential functions ileX_ We take the coefficients of each exponential equal to zenes [€ads
to a set ofN algebraic equations for the coefficieatsanday,. For the the half-plane problem, we
obtain fori=0,--- ,N—1:

On o N g, DK 1) sinhk (h—d K Ho(h—d))
n;)COkanh%’n_n;Kn—k,- <( Ky — M+ 1) sinhki (h— )—Ecos (h— )>_
6o hké hK? 4K K0

' (K —K2)coshkoh)  coshkoh’

(23)

where the coefficients, are defined as

1 . .
2%in = P [sinh(k; + kn)h — sinh(ki + ka)(h—d))] .
+ ! [slnh(k| kn)h—sinh(ki — k,)(h—d)].

ki —

This is a set oN equations for R + 2 unknown coefficients. We have two conditions at the edge of
the plate, so we must still obta. At the vertical frontend of the platform (17) gives the tela

_ inc |, 0 OG(X’Z;O’Z)
21(0, z) = 21T +>I<'Lno,/,d (p(O,Z)iaE ag

—|oo/< ( P u+1>w(§)ag(0’;—;§’_d)—W(E)Q(O,Z;E,—d)) dg.

We insert the series expansions (18) and (19) in this equatml compare the coefficients of
coshk;(z+ h). For the Green function we use expression (15) in both iategr
We obtain fori =0,--- ,N—1:

(25)

hk? — hK? + K N %
(k- K2) costikh zo coshk,h ™"
N+l g 1 (26)

K
_ ZKn-l-K ((Q)K — p+ 1) sinhk; (h— d)—Ecosr'k,(h d)) cosr'koh%



We give some result for the absolute value of the amplitudthefdeflection for a semi-infinite
platform with a draft of two meters and water depth of ten mebe figure 1 results are shown
for three values of the deep water wave length= 21/K = 150, 90, 30 m respectively. As

expected the amplitude increases with increasing valuéiseofvave length. In figure 2 we show
for A = 90 m and water depth of ten meter the absolute value of theitaiahplfor several values
of the draft,d =0, 2, 4, 6 m. In figure 3 we show the influence of water depth on de angditu

w| /2 | wi/2® ,
04 B 0.4 F -
03 ‘ 1 03 [ 1
02 }\;*x i 02 P\
R R — 01 |
° 0 OI.5 lX/3OO ° 0 OI.5 1X/300

Figure 1: D =10'm*, d=2m,h=10m Figure 2: D =10 m*, d =0, 2, 4, 6 (top-
andA = 150 90, 30 m (top-down) down),h=10 mand\ =90 m

of deflection. We have chosén= 100, 20, 10 m,d =2 m and a fixed frequency with= 90 m.
The amplitude of the deflection increases for increasingema@epth. To carry out computations
for the larger values of water depth one must get rid of alldnplic sin and cosine functions in
the formulation. This can be done by using standard formiglathese functions and by using the
dispersion relation for the free surface water waves. Bpglsb one obtains very accurate results.
In figure 4 we show the real part of the deflection for the sanhgegaof water depthd =5 m and
fixed values of the wavelengtky = 211/ky = 100 m. We also have computed the absolute value
of the amplitude of the wave elevation in front of the platfiorThe result is shown in figure 5. It

is clearly shown that the elevation of the wave and the platfare discontinuous at= 0. The
amplitude of the reflected wawe) = 0.45657— 0.43639i.

w/Z | W/
04t y 0.1
0.05
03 R, g
- .
0.2 .
-0.05 ,‘
01 o1 [b i
o - ' X/300 ' /1000
Figure 3: D =10’ m*, d =2 m, h=  Figure 4: Real part of the deflection f@r=

100, 20, 10 m (top-down) and = 90 m 10’ m*, d =5 m,h=100, 20, 10 m (top-
down) m and\g =100 m

3.2 Strip of finite length

We follow the same procedure as for the semi-infinite case.fifst step is to compare the coeffi-
cients of the exponential functions™&X in (21). This leads to a set ofNalgebraic equations for



' x/300

Figure 5: Amplitude of wave and deflection f@&r= 10’ m*, d =2 m,h= 10 m andA =90 m

the coefficients,, by, o, andfy.

N-1 g, N+1 g, . _ K
nZO 7cosl'knh%’” — nZO Kk ((Q)Kn— p+ 1) sinhki(h—d) — Ecosf‘lq(h—d))
+N+1 bn ((@K4— +1)Sinhka(h—d)—Ecosr'ki(h—d)> gkl (27)
n; Kn+ki n—H ki
0 hk3 — hK? + K Ko
' (K —K2)coshkgh)  coshih
and
N-1 g, _ N+l g, DK 1) sinhk (h— d K o (h—d i
nZocosri<nh%'”+rgoKn+ki <( Ky — K+ 1) sinhk (h— )_ECOS (h— )> e o
N+1 bn 4 . - K - B
_n; T ((Q)Kn—qu 1)S|nhk,(h—d)—EcosH<,(h—d)> =0.

This is a set of R equations for 8l 4+ 4 unknown coefficients. Next we consider the equations at
x = 0 andx = | respectively. After integration with respect to the sgataxiable one obtains a
summation of cosk (z+ h) terms. By taking the coefficients of each c&gla+ h) function equal
to zero we obtain the following set ofN2equations for the unknown expansion coefficients.

At x=0 we get

he —hK2 4K NPt — By
g GnTPn€
(k? — K2) coshkih n; coshkyh

Kin

_Nil @n <(£DK4_L1+1)sinhka(h—d)_Ecosrki(h_d)> (1_ ei(Kn+ki)|>
n=0 Kn+ki n ki 09
N+1 bn 4 . K - "
! ;Kn—ki <(@K”_“+1)S'”hki(h—d)—ECOSHQ(h—d)> (e ¢ >
1
= m%.o,
and atx = | we get
he—hk2+K _ Nla, eth_Bn |
(ki2 _ K2) COSthB' + n; W%’n
N+1 | |
+ i n (ﬂDKﬁ—u‘F l)SInhkl(h_d)—ECOSH('(h—d) <e|Kn| _ elk”)
n=0 Kn —K k; (30)
N+1 bn D 4 1)si hk| h—d K I’k' h_d 1 i(Kn-',-k,»)l
_n;Kn—i-ki(( Kp — M+ 1) sinhk; (h— )—Ecos (h— )>< _ o >
_ hk%—th—i—K eikol B 1 -

(k3 — K2)coshkoh coshih
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Together with the four relations at the end of the strip weehdl¥ + 4 linear algebraic equations
for the NN + 4 unknown coefficients.

The set of equations as is written here is not very suitabladmerical computations directly.
Especially for large values of water-depth the argumentsehyperbolic sine and cosine functions
becomes rather large. So one is subtracting very large valibe computation of the coefficients.
To obtain high numerical accuracy one must get rid of thegetfons. This can be done by using
the dispersion relation for the water region. In Appendix Biare suitable set of equations is
given.

We show some computational results for a two-dimensioretfgrim of width 300 m. In all
cases we take a fixed values for the flexural rigidity= 10’ m*, the width of the strig = 300 m
and the water depth= 10 m. In figure 6 and 7 we show for= 0 and ford = 2 m the variation
of the amplitude of deflection with respect to the wave length

w2 | Wi/ |
0.4 A 0.4
03| . 03 —"‘.‘
LT , ‘\‘
0.2 —‘\\ ’ ,-"/' - 02 | %

Figure 6: D = 100 m* | = 300 Figure 7:0 = 10" m* | =300 m,d =2 m,
m d=0 m h=10 m and h=10mand\/l =05, 0.3, 0.1
A/l =05,---,03——, 01—

/2= | w|/¢® ,

0.4 ) : 0.4

0.3 |

0.3

0.2 02

0.1 0.1

Figure 8:0=10"m* 1=300m,d=0, —,
2,——,4,---mh=10mand\/l =0.3

wi/¢®

Figure 9:9=10"m* 1=300m,d =0, —,
2,——,4,---mh=10mand\/l =0.5

04 —

03 —

02 —

0.1

Figure 10:D =10m?* 1 =300 m,d =0, 2, 4m,h=10 mand\/| = 0.5
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X/I
0.5 1 1.5 2 /

Figure 11: 2 =10'm* 1 =300 m,d =0 Figure 12: D = 10" m*, | =300 m,d = 4
m,h=10mand\/I = 0.3 m,h=10mand\/l =0.3
w|/C®

15 —

05

Figure 13: 2 =10'm* 1 =300 m,d =0 Figure 14: D = 10" m*, | =300 m,d = 4
m,h=10m and\/I = 0.215 m,h=10 mand\/l =0.215

In figure 8 and 9 the dependence on the draft for fixed valuebeofMave length is shown.
The results of the first case show an increase of the defleftidncreasing values of the draft. It
will be shown later that this is due to a shift in the reflecteamve. In figure 10 a result is shown
for a larger value of the flexural rigiditg) = 10'° m* and wave lengtt\ /I = 0.5. This case is
comparable with the interaction of free-surface waves witlyid body. One clearly observes that
the motion of the dock consists of a heave and pitch motion onl

In figure 11 and 13 we show for two values of the wave length treolate value of the am-
plitude of the water surface in front and behind the strigetber with the amplitude of the plate
deflection for the zero draft case. The second case is heaetbheeflection situation.

In the four meter draft case, see figure 12 and 14, we seé that 0.215, or in terms of the
actual wave lengtho/l = 0.178, is close to total reflection. This is in contrast with #eeo draft
case in figure 13, due to the shift in the transmission-refieaturves. For the same reason the
absolute value of the deflection increases if the draft smes in figure 8 in contrast with the result
in figure 9.

The reflection and transmission coefficients for a strip df 80and depth 10 m are shown in
figure 15, for zero draft and in 16 for a draft of two meter. If defineR = ag andT = [3g, notice
no exponential function, we find that in all cases the rete|@ |2+ |R]2 = 1 andTR+TR=0, see
for instance Mei et al [1] or for a derivation Roseau [8], arffilfed for at least 10 decimals. The
coefficients are presented as a function of the actual waggHe\y /I = 21/kol. In the figures 17
and 18 these coefficients are given for a water depth of 10@mmkt all cases the coefficient of
flexural rigidity equals? = 10’ m*. Figures 18, 19 and 20 show the results for different sizes of
the strip. In figure 21 and 22 the result is shown for a strip igftlvi = 100 m and draftd = 8 m.
Itis clearly observed that for the short waves total reftectakes place .
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Figure 15: —— Reflection and—— trans- Figure 16: Reflection and transmission co-
mission coefficients foh=10m,d=0m efficients forh=10 m,d =4 m and|l =
andl =300 m 300 m
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Figure 17: Reflection and transmission co-Figure 18: Reflection and transmission co-
efficients forh = 100 m,d =0 m andl = efficients forh =100 m,d =2 m, andl =
300 m 300 m

A The Green'’s function

Here we derive the two-dimensional version of the functibieeen G(x,z&,{) as used in this
paper. Thissource function is a solution of

gxx‘i‘ GZZZZT@(X_E7Z_Z)7 (31)

with boundary conditions:
KG—-G,=0 atz=0 (32)
G,=0 atz=—h. (33)

We introduce the Fourier transform gf

Z0) = o / (x,ZE,0) & M dx. (34)
This transformed Green’s function satisfies the conditions

~VG=0 forz+#(
KG—G=0 atz=0
atz=—h (35)

Ge
lim (é<z+e:<> G(C—-£Q))
I|m (gZ(Z+sZ) C-&0) =

The solution of this equations is

=~ a1 K'sinhyz+ ycoshyz
G(z8) = y K coshyh — ysinhyh

10

coshy(+h) e ¥ forz>¢ (36)
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Figure 19: Reflection and transmission co-Figure 20: Reflection and transmission co-

efficients forh = 100 m,d =2 m, andl = efficients forh = 100 m,d =2 m andl =
650 m 1000 m
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Figure 21: Reflection and transmission co- Figure 22: Reflection and transmission co-

efficients forhn = 100 m,d = 8 m, andl = efficients forh =500 m,d = 8 m andl =
1000 m 1000 m
G(zY) = 1K sinhyc +ycoshy coshy(z+h) e ¥ forz< . (37)

~ yKcoshyh— ysinhyh
Then we transformed back to tlxe-variable. This results in (13) and (14. The contour of inte-
gration passes above or underneath the singularities aedhaxis. The choice of this contour is
determined by the radiation condition. Bor & the waves travel in the positive-direction, while

for x < & the waves travel in the negatixe-direction. Therefore the contour passes the negative
real pole above and the positive real pole below. Closuréd@ficbntour in the compley—plane
leads to (15).

B Simplification of the set of algebraic equations

To obtain accurate solutions of the set of equations (26e2®&) must get rid of the terms that
consist of subtraction of large numbers. To achieve thi$ geause the dispersion relation (10),
ytanh(yh) = K Making use of the relation

coshyh)2 —sinh(yh)2 = 1

one obtains for the zeros=k; fori =0,1,------

costkh) = — =YK and sinfikh) = G
ki2_ K2 kiz_ K2

We also use

coshy(h—d) = coshyhcoshyd — sinhyhsinhyd
sinhy(h — d) = sinhyhcoshyd — coshyhsinhyd.
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One can see that for large values ddgtls very close t the accuracy is improved if one divides
out the large term analytically. The results in 21 can notlaioed without this simplification.
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