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Abstract. The paper concerns the modelling of very large pontoon-type floating 
structures by thin beams and plates of shallow draft, excited by regular waves.  It is shown 
how the classical theory of hydroelasticity, involving the concepts of added mass and 
damping associated with the structural responses, may be reconciled with more recent 
formulations.  In the latter, coupled equations for displacement and total hydrodynamic 
pressure are solved directly, without the breakdown into diffraction and radiation problems.  
A numerical model is adopted based on a Galerkin approach, and the nature of the various 
components of hydrodynamic loading on a shallow draft beam is investigated.  The approach 
is then extended to the case of thin plate in waves, where the hydrodynamic effects are fully 
three dimensional.  
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Introduction 
 
I first encountered Nick Newman at the International Symposium on the Dynamics of Marine 
Vehicles and Structures in Waves, in 1974 at University College London.  My interests then, 
and the paper I presented, concerned hydroelasticity [1, 2].  His paper [3] was on wave drift 
forces, and led to the widely used “Newman approximation” for low frequency drift forces.  
Subsequently he has published a number of papers on hydroelasticity [4, 5] (and I have had 
interests in drift forces).  So it seemed appropriate that my contribution to this celebratory 
volume should return to the subject of hydroelasticity. 
 
It is a subject which has attracted considerable interest in the last ten years, not least in the 
context of Very Large Floating Structures and the major activities related to the Megafloat 
project in Japan.  This has encouraged the attention of hydrodynamicists around the world, 
who have been intrigued by the fascinating interaction of water waves and elastic waves in 
plates.  The size of the structures, as envisaged for example for floating airports and spanning 
many wavelengths, poses substantial challenges in the area of numerical analysis.  Several 
groups have contributed to much progress having been made in development of the tools for 
assessment of complex designs.   Other have provided understanding of the underlying 
hydroelastic phenomena by applying advanced mathematical techniques to simple archetypes 
such as beams and semi-infinite plates.  This paper lies somewhere between those two 
approaches, and attempts through some relatively simple analysis to bring together the 
modelling of beams and plates in order to shed a little light on the characteristics of certain 
mathematical models and the influence of three dimensional effects. 
 
Most of the recent analyses of floating plates have been based on the procedure which 
formulates coupled equations for the deflection of the plate and the pressure on its underside. 
In some approaches these have been manipulated further to obtain a higher order differential 



equation for the deflection alone. The alternative classical procedure of separating the 
problem into diffraction and radiation components, as used universally for seakeeping 
analyses and extended for hydroelastic applications by Bishop and Price [6], is thereby 
avoided. The present paper  considers how the two procedures relate to each other. It also 
examines some features of the two simple idealised models which have been extensively 
invoked to characterise the behaviour of very large floating platforms in waves, namely the 
free-free beam and the rectangular plate with free edges. While the restriction to behaviour in 
two dimensions is a plausible approximation for modelling the structural dynamics of a 
floating plate, it is not clear that the corresponding two dimensional hydrodynamic model 
will provide appropriate insight into the water wave interactions with a slender floating plate. 
In order to investigate this, a very simple numerical method is adopted here. We first consider 
the beam with two dimensional hydrodynamics, and then extend the method to the case of a 
rectangular plate and three dimensional hydrodynamics. 
 
Analysis of an elastic beam 
 
We adopt the formulation described by Khabakpasheva and Korobkin [7] and Eatock Taylor 
[8].  The governing equations are first summarised.  The origin of the coordinate system Oxz 
is taken in the beam, with z positive upwards.  The water is of depth d.  In the two 
dimensional problem the beam is assumed to have unit width.  We non-dimensionalise the 
spatial coordinates by the length L of the beam, and time by gL / , where g is the 
acceleration due to gravity.  The dimensionless water depth is Ld /=δ .  A sinusoidal wave 
of amplitude AI and non-dimensional wave number k is assumed to be incident on the beam, 
propagating from right to left, and the complex amplitude of the deflection of the beam (non-
dimensionalised by AI) is w.  The hydrodynamic pressure on the underside of the beam has 
complex amplitude p, non-dimensionalised by AIρg, where ρ is the density of the fluid. 
 
From the equation of motion of the beam, based on Euler-Bernoulli theory, we find that w 
satisfies: 
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where K is the non-dimensional wave number in infinitely deep water given by the dispersion 
equation K = k tank kδ; and for a uniform beam of flexural rigidity EI and draft h we have  
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We ignore structural damping. As shown in [7], a second equation may be obtained by 
writing Bernoulli’s equation for the pressure p in terms of a velocity potential φ and w.  Thus 
 

gwip −−= φω
ρ

on z = 0,     (2) 

 
where ω is the wave frequency.  The draft h is assumed to be small, so that this pressure on 
the underside of the plate is taken to be at z = 0.  The potential includes the incident wave and 



scattered wave components, and the latter may be expressed as an integral through use of 
Green’s identity with a Green function G (x, xo).  The result is  
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Solution of the coupled equations (1) and (3) yields the hydroelastic behaviour of the beam.  
More complex cases of non-uniform beams, or beams with hinges, may readily be analysed 
using a similar formulation.  The approach is very convenient.  It appears however to be 
rather different from the classical hydroelastic formulation [e.g. 6], in which the 
hydrodynamics are written in terms of diffraction and radiation problems, with appropriate 
definitions of added mass and added damping linked to some specified generalised 
coordinates. One of the aims of this paper is to shown how these two approaches are linked. 
 
First we review the simple numerical method used here to obtain a selection of results.  It is 
described at more length in [8], being based on a Galerkin formulation with the same 
assumed functions to represent the deflection w and the pressure p.  These are the rigid body 
modes of the beam and a finite set of sinusoidal functions, which were shown in [9] to be 
very convenient for representing the dynamics of a free-free beam.  Thus we take 
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where 
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Note that the same number of terms is used in the series for w and p. 
 
These are now substituted into (1) and (3), each is multiplied by )(xmψ , and integrated over 
the length of the beam.  Using the “weak” formulation of the Galerkin method, we integrate  
by parts twice, and equate the resulting weighted residuals to zero.  The boundary terms at 
x = - 1, 1 resulting from these integrations by parts are zero.  The final result, from [8], is 
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where the vectors W and P represent the unknown coefficients wn and pn, and the terms of the 
other matrices and vector PI are defined as follows: 
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PI corresponds to the pressure in the incident wave, the Froude-Krylov term. 
 
The Green function G is given [7] by: 
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where sj are the imaginary roots of the dispersion equation.  Apart from the need to truncate 
the series in (8), all the integrals in (7) may be obtained in closed form [8]. 
 
Solution of the linear algebraic system in (6), and substitution of wn and pn into the assumed 
forms (4), yields the required approximations for the deflection of the beam w(x) and the total 
hydrodynamic pressure p(x). The solution has been obtained without any consideration of 
separate diffraction and radiation problems, and indeed it is not immediately evident from the 
system of equations (6) where the hydrostatic effect is included.  We now consider some 
special cases which together yield insight into how terms such as added mass and damping 
feature in the above formulation. 
 
We consider three sub-problems.  In problem I we examine response to an imposed external 
force in the absence of waves.  Such forcing would provide an additional term on the right 
hand side of (1), which would lead to a non-zero vector, say F, replacing the vector of zeroes 
on the right hand side of (6).  Thus for a distributed force f(x), we have the terms 
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We may then eliminate P using the second set of equations in (6), and obtain the response to 
the external forcing as the formal solution of 
 
    [-B+KµA+AH] W  = F,               (10) 
 
where 
 
    H = -(A+KD)-1A.                (11) 
 
In a similar manner, in problem II we obtain the force on the beam when it is oscillated 
(again in the absence of incident waves) by a prescribed displacement.  With a model 
approximated by say (N +1) coefficients wn in (4), we may solve (N +1) problems, each 
defined by the imposition of a unit value of wn with all the other coefficients of the series for 
w(x) set to zero. Let us define the nth column of a matrix Q as the solution to the coefficients 
of the series for p(x) corresponding to the imposed displacement )()( xxw nψ= .  Then, from 
(6), we find 
 



    Q = H,                  (12) 
 
using the definition in (11). 
 
Consider now the hydrodynamic loading on the beam when it responds to external forcing 
according to (10).  This corresponds to the hydrodynamic pressure p in (1), which in the 
discretised form of (10) is represented by the term AHW: this is precisely the term AQW 
obtained in problem II.  It must therefore correspond to both radiation terms (added mass and 
damping) and the hydrostatic restoring force.  The latter, following from (2), is –AW.  Hence 
the radiation term is given by A(Q+I)W where I is the identity matrix.  Expressed in the 
classical form, therefore, (10) would be written as: 
 
 BW  –  Kµ AW  –  A (Q+I)W  +  AW    =    F.               (13) 
 

elastic +    inertia    +     radiation   +  hydrostatic  =  external 
stiffness      term           force   force                 force 

 
Correspondingly, the approximated radiation force pR would be expressed as: 
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analogous to the approximation for p in (4). 
 
For problem III, diffraction by a fixed beam, we proceed in a similar manner. We set W = 0 
in (6) and solve for the total diffraction pressure term, PD, obtaining: 
 
 PD = (A + KD)-1PI.                              (15) 
 
Note that PD includes the effect of both incident and diffracted waves: it arises from the total 
pressure in (2) – in this case with w = 0.  
 
Finally, using the above results, we may rewrite the solution for the floating plate in waves.  
From the second part of (6), and using (15), we have 
 
 (A + KD)-1 AW + P = PD.                  (16) 
 
Inserting (11) and (12) in (16) and transferring terms from one side to the other side of the 
equation, we obtain: 
 
 P = PD + (Q + I) W – W.                  (17) 
 
Hence after changing the signs of each term, the first part of (6) can be written in the form: 
 
 BW  –  Kµ AW  –  A(Q+I)W  +  AW    =    APD.               (18) 
 

elastic +    inertia    +     radiation   +  hydrostatic  =  wave  
stiffness      term           force   force                 force 

 
 



Beam results 
 
Using the above-mentioned methodology, results have been obtained for a case considered by 
Wu et al. [10]. They have shown comparisons between experimental results for a beam 
spanning across the width of a long flume, and a numerical approach based on the 
eigenfunction expansion matching technique. Broadly speaking the experimental data 
confirmed their numerical approach, based on using up to 30 terms of the eigenfunction 
series. Subsequent work [11] showed that at least 50 terms were required to obtain converged 
results to plotting accuracy for the cases considered in [10]. Those converged results are 
compared in Figure 1 with those calculated using the theory of the previous section, with 
different numbers N of sinusoidal functions. The results correspond to a beam with the non-
dimensional parameters δ = 0.11, µ = 0.836x10-3, βref = 4.8025x10-6, and with the series for 
the Green function truncated at 45 terms. The modulus of the displacement of the beam, |w|, 
is shown in Figure 1(a) and 1(b) respectively for two wave periods, corresponding to non-
dimensional wave numbers K = 19.71 and K = 4.870. It is seen that for these cases N = 20 
provides satisfactory agreement in the graphs with the converged results based on [11].  
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Figure 1 Modulus of the deflection of a beam, from [11] and calculated with different 
numerical models. (a) K = 19.71; (b) K = 4.870. 
 
Next we consider the breakdown of the hydrodynamic force into diffraction, radiation, and 
hydrostatic terms, as discussed above. Figure 2 shows the real parts (lower three lines) and 
imaginary parts (upper three lines) of the wave forces (incident plus diffracted) for the same 
beam in the wave corresponding to K = 19.71, for the non-dimensional water depths δ = 0.11, 
δ =  0.0731 and δ = 0.3188 . These are equivalent to depth to wave length ratios in the range 
0.25 to 0.5, the latter being effectively infinite depth. A notable feature of these results is that 
the wave force does not exhibit oscillations corresponding to the incident wave length (for δ 
= 0.11, the dimensionless value of the wave length is 0.311). The effect of diffraction by this 
shallow draft beam roughly cancels the incident wave at its downwave end (the left hand side 
of the figure); the magnitude of the total diffraction force increases almost monotonically 
towards a maximum amplitude at the upwave end.  
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Figure 2 Real and imaginary parts of diffraction force on a beam, in three water depths.  
(a) δ = 0.11; (b) δ =  0.0731; (c) δ = 0.3188. 
 
 
 
Figure 3 shows the real and imaginary parts of the hydrostatic, radiation and total 
hydrodynamic forces for the case considered in [10] and Figure 1, again for K=19.71. 
Corresponding results are illustrated for a more flexible beam with β = 10-3βref in Figure 4, 
and for a stiffer beam, β = 103βref , in Figure 5. The negative of the hydrostatic force 
distribution, the left hand frame in each case, is the deflected shape, so it is unnecessary to 
plot the latter separately. The total force, the right hand plot in each case, has been calculated 
in two ways: it is given directly by the series for p given in (4); and it is obtained from the 
sum of the diffraction, radiation and hydrostatic forces shown in the other figures. The 
graphical results are seen to be the same from the two approaches. These figures confirm the 
major influence on the responses of the beam of its elastic properties over this range. For the 
very flexible case shown in Figure 4, the beam essentially follows the incident wave. At the 
downwave end, where the diffraction force is seen in Figure 2 to tend to zero, the radiation 
force is roughly 180° out of phase with the hydrostatic force (implying low hydrodynamic 
damping). The total hydrodynamic force is seen to be very small along the whole length of 
the beam. The cancellation effects seen here suggest the importance of accurately calculating 
the separate components, if they are evaluated independently. 
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Figure 3 Real and imaginary parts of hydrostatic, radiation and total hydrodynamic force on 
the beam of flexibility βref , for K = 19.71. 
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Figure 4 As for Figure 3, but with β = 10-3βref . 
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Figure 5 As for Figure 3, but with β = 103βref . 
 
 
The plate model 
 
We now extend the previous analysis to the case of a rectangular plate of length L and width 
B.  We will here make the simplification that the plate is rigid in relation to bending about 
axes parallel to the (long) sides of length L.  The flexural rigidity is taken to be EI per unit 
width of the plate about axes parallel to the (short) sides.  The (small) draft is again h.  The 



coordinate system Oxyz has origin O at the centre of the plate, with Ox directed parallel to the 
long side and Oz measured positive upwards from the water plane area. 
 

The equation governing the motions of the plate, analogous to (1), is: 
 

,),(
1

1
4

4
4 ∫

−

=− dyyxpKw
dx

wd µβ               (19) 

 
where now the coordinates x and y are non-dimensionalised by 2

L  and 2
B  respectively. 

Subsequently we use an aspect ratio defined by b = L
B . The pressure is here non-

dimensionalised by AIρgB, and the definitions of β4 and µ are the same as those given after 
(1). The non-dimensional wave number is now K = kL/2. 
 
Proceeding as for the beam, we obtain 
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Here G is the three dimensional Green function for points on the free surface, given [12] by 
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where [ ]½2
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2
0 )()( yyxxKz −+−= .  The functions H0, Y0 and J0 are the zeroth order Struve 

function and the zeroth order Bessel functions of the first and second kind respectively. 
 
Equations (19) and (20) are the coupled equations for the plate deflection w and pressure p, 
which we again solve by the Galerkin method.  We use assumed functions in the x and y 
directions as follows: 
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This choice is governed by the restriction here to responses of the plate in head seas. 
 
 
As before, the representations of w and p in (23) are substituted into (19), the result 
multiplied by )(xpψ , and integrated over the length of the plate.  The same substitution is 
made in (20), which is then multiplied by )()( yx qp χψ  and integrated over the length and 
width of the plate.  The first of the resulting equations is then integrated by parts twice in the 
x direction.  This leads to the following coupled equations for wm and pmn: 
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In matrix form these become: 
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This of course has a similar form to (6) for the two-dimensional problem above, but with the 
terms defined as follows: 
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By solving the matrix equations (26) for any particular frequency ω, it is then possible to 
obtain the plate deflection w and the hydrodynamic pressure p.  The accuracy of the solution 
will depend on the number of terms M and N in the assumed solution, and on the accuracy of 
the integrations.  For the rectangular plate, all of the integrals may be obtained analytically, 
expect for that involving the Green function, which requires special treatment in view of the 
inherent singularity.  This is discussed next. 
 
 
Numerical evaluation of the Green function integral 
 
The Green function )(zG  contains the singularity 1/z and also, because of the second kind 
Bessel function Y0(z), the logarithmic singularity (2/π)ln z.  Fortunately, difficulties 
associated with these may be avoided through partial analytical integration.  The two key 
results, for a point (ξ,η) in the first quadrant, are: 
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The quadruple integrals are obtained by integrating these with respect to x and y over the 
rectangle. For example, over a square (b=1), we can obtain for the rigid body heave mode 
( 0==== qpnm ): 
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The latter double integrals are obtained by straightforward numerical integration using the 
mathematical package Mathcad. 
 
More generally, we may use I21, and I22 to deal with the singularities in the expression for 
Dp’m’  in (27), involving the frequency dependent Green function multiplied by the basis 
functions.  We use: 
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The fourfold integrals still have to be evaluated numerically, for which it is convenient to use 
high order Gaussian quadrature.  The coordinates of the integration points and the weights are 
calculated using the algorithm given by Recktenwald [13].  By choosing the integration order 
NG in one direction to be different from that in the other (e.g. NG and NG -2 where NG is 
even), we may avoid coincidence of the source and field points in the Green function (as 
suggested in [12]).   
 
 
Plate results 
 
First the numerical approach for dealing with the integrals has been checked by making a 
comparison with some results by Campbell [14] for flexible diaphragms.  The integral I4 
corresponds to the added mass of a rigid diaphragm oscillating in a direction perpendicular to 
an infinite rigid plane (the “closed edge” case described by Campbell). He evaluated the 
added masses for a range of deflected shapes of diaphragms using a panel method (with 
constant panels). Several aspect ratios were calculated, and he then provided a parametric fit 
to allow results to be estimated for any aspect ratio. Thus for a plate with side lengths L x B, 
the added mass, M, corresponding to deflection in some prescribed mode is written by 
Campbell in a form equivalent to: 
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where )./ln( BL=τ  Here we have used a similar parametric fit (for two of the cases), but 
calculated the added mass for each geometry and oscillation mode ψ(x) using the simple 
methods described above. The first, (i), uses the analytical result for the double integral I21 in 
(28) followed by a numerical integration in Mathcad; while the second, (ii), uses Gaussian 
integration to perform the fourfold integral, with different numbers of integration points. The 
results are compared with those of Campbell [14] in Table 1. The results from [14] are 
designated (iii). Three cases are shown, corresponding to a rigid body displacement of the 
plate, a parabolic distortion in one direction, and distortion of a square plate (τ = 0) in the 
ninth sinusoidal mode. The approach represented by (30) was used to evaluate the integral in 
the latter cases. Reasonable agreement is found with the published results, and satisfactory 
convergence. 



Table 1  Parameters for added masses of a rectangular diaphragm: (i)  semi-analytical; (ii) by 
Gauss quadrature (with different numbers of integration points), (iii) from Campbell [14]. 
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Next we consider a selection of results for waves incident on a square plate, and on a 
rectangular plate of aspect ratio 0.2, in water of infinite depth. We take µ = 1.67x10-3 and for 
the base case βref = 0.0916x10-3. We also consider stiffer plates of the same geometries, for 
which β=103βref.  The rectangular plate having the latter stiffness is effectively the same as 
that considered by Kashiwagi [15], though in that case the plate was in shallow water depth. 
In all cases the wave frequency corresponds to K = 6.273, which gives a wavelength about 
half the length of the plate. 
 
Figure 6 shows results for the square plate, on the left showing the reference case, and on the 
right the stiffer plate. In each case 5 lines are plotted, representing the results obtained from 
different numerical models. Each is identified by the code n1 n2 n3, where n1 is the number of 
Gaussian points in the x direction; n2 is the number of functions in the x direction; and n3 is 
the corresponding number in the y direction (these are one more than the numbers M and N in 
equation (22)). It may be seen that increasing n1 from 32 to 64 has only a small effect on the 
results. As can be expected, convergence with respect to the number of functions becomes 
quite sensitive at the ends of the plate.  
 
Figure 7 shows the equivalent results for the rectangular plate. Again the increase in the 
number of Gauss points does not change the results much for the parameters examined. A 
larger number of functions in the y direction, however, is now seen to be necessary to achieve 
comparable accuracy. There is little difference between the plots for cases 321206, 321606 
and 321608.  
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Figure 6 Modulus of deflection of square plate, calculated with different numerical models. 
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Figure 7 Modulus of deflection of rectangular plate of aspect ratio 0.2, calculated with 
different numerical models. 
 
Concluding remarks 
 
The origin of this work was an attempt to shed some light on two facets of recent analyses of 
the hydroelastic behaviour of very thin plates in waves. The first related to a reconciliation 
between two mathematical models which have been developed over the last 30 years: one 
model poses the problem in terms of a decomposition of the hydrodynamic behaviour into 
diffraction, radiation and hydrostatic components; but it appears that this approach has not 
been much (if at all) used for the very thin plate problem. The other approach couples the 
plate deflection and the total hydrodynamic pressure, with no explicit representation of 
effects such as added mass and damping. In this paper we have used the second approach, but 
shown how the diffraction and radiation terms may in fact be extracted from the coupled 
equations. This has been illustrated for the case of a beam, using a simple scheme based on a 
Galerkin approximation to obtain the numerical results. In the cases considered, the separate 
diffraction, radiation and hydrostatic components are all much larger in magnitude than their 
combined effect. 
 
The other facet of interest is the relationship between two and three dimensional analyses for 
the floating plate problem. It can be argued that the simple model of a beam provides some 
insight into the complex hydroelastic phenomena exhibited by a long rectangular plate. But if 
the associated hydrodynamic analysis is two-dimensional, the resulting response may be very 
different from what would be predicted with a model in which three dimensional 
hydrodynamic effects can be represented. This has been shown here by comparing results 



from  square and  rectangular plates under the same conditions. It is clear that the overall 
response of the floating plate is extremely sensitive to its aspect ratio. But the limiting case 
where the plate width is extended to approach a case equivalent to the beam model has not 
been attempted, because based on the very simple numerical method described here the 
number of terms required to provide an adequate representation of the hydrodynamic 
behaviour in the transverse direction would appear to be excessive. A more sophisticated 
approach could resolve that issue.  
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