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Abstract

A numerical method is presented for the time-domain simulation of large amplitude motions of a
2-D surface piercing body with arbitrary shape in deep water. Based on potential theory, panels are
distributed on the body and desingularized sources are distributed above the calm water surface. The
body boundary condition is satisfied on the exact submerged body surface. The free surface boundary
conditions are linearized and satisfied on the calm water level. The solution is stepped forward in time by
integrating the free surface kinematic and dynamic conditions. The numerical solutions for the oscillation
problem are compared with experimental results and other numerical results, and found to agree well.
The results for the impact problem are compared with similarity solutions. Finally, results for the large
amplitude sinusoidal motion of a 45-degree wedge are presented.

1 Introduction

The accurate prediction of the wave-induced motions and loads is very important in ship and offshore design.
Severe motions and extreme loads can lead to operability problems and in extreme cases structural failure
and capsize. In the traditional approach to seakeeping calculations potential flow is assumed. The problem
is linearized by assuming that the motions are small. The body boundary conditions are satisfied on the
mean body surface and the free surface conditions are linearized about the calm water level. The problem
can be solved in either the time domain or the frequency domain because in linear potential flow theory
they are directly related by Fourier transforms. Linear system theory and random process theory is then
used to predict the extreme responses and loads. The primary objection to the linear systems approach is
that it often misses important features of extreme responses. For example, linear theory predicts that the
hogging and sagging bending moments acting on a ship in a seaway have the same amplitude. In fact, due
to nonlinearities, the hogging and sagging bending moments are significantly different. Another example is
that linear theory (constant potential on the free surface) predicts that the vertical forces acting on a body
entering or leaving the free surface have the same magnitude.

There are many variations to this linear approach. Strip theory ( see Salvesen et al. [1]) is probably
the most popular for long, slender ships. In this frequency domain approach, the solution to the three-
dimensional problem is approximated by solving a series of two-dimensional problems in the cross-flow plane.
The two-dimensional problem is usually solved using a boundary element method such as the one developed
by Frank [2]. Frank’s method uses constant source strength flat panels distributed over the mean submerged
body contour. For offshore structures and more advance ship motion theories, ‘panel methods’ have been
developed in which the mean wetted surface of the body is divided into panels and Green functions are used
to solve the boundary value problem. The free surface may or may not be panelized depending on whether
a Rankine source Green function or a free surface Green function is used. For example, Prof. Newman [3]
and his students have used the zero-speed free-surface Green function and higher order panel methods to
develop WAMIT, a code widely used in the offshore industry. A complete history of the various methods can
be found in Beck and Reed [4].

The other extreme from linear theory is to retain potential flow, but solve the fully nonlinear problem.
In this case the body boundary condition is satisfied on the exact wetted surface of the body and the fully
nonlinear free surface boundary conditions are used. The computations are carried out in the time domain.
The most common solution method is the mixed Euler-Lagrange, or MEL, method originally developed by
Longuet-Higgins and Cokelet [5]. In this method, a linear mixed boundary value problem is solved at each
time step with the potential given on the exact free surface and the normal velocity is prescribed on the exact
wetted surface of the body. The nonlinear free surface boundary conditions are used to time step the potential
on the free surface and the free-surface amplitude. The body boundary condition is either known for forced
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motions or is determined by solving the dynamic equations of motion for the body. Many results are available
in both two and three dimensions (see for example Beck [6]). The problems with MEL computations are
the instabilities of the free surface and wave breaking. The instabilities can often be eliminated by improved
numerical techniques, but wave breaking is a natural phenomenon that is expected to occur in any large
motion or wave situation. Computations normally are forced to stop when wave breaking occurs. Various
techniques have been proposed to continue the computations after wave breaking, but they are not robust
and can lead to nonphysical solutions.

A compromise between fully nonlinear computations and linear theory is the so-called double-body
approach (see for example Sclavounos [7]). In this approach, the double-body flow is used to linearize the
free surface boundary conditions on a known surface (usually the calm water level, but it can be the incident
wave surface). The body boundary conditions can be solved on either the mean wetted surface or the exact
position. Wave breaking is no longer a difficulty because the free surface boundary conditions are satisfied
on a known surface. However, since free surface Green functions no longer meet the free surface boundary
conditions, Rankine sources must be used and panels are distributed over both the body surface and the
free surface. This in turn leads to difficulties on the edges of the computational domain and a large matrix
inversion at each time step. The methods have shown improved seakeeping predictions, but computational
costs preclude the method being used in preliminary design and optimization.

In order to develop computationally fast seakeeping calculations, but still retaining the important non-
linearities, blended methods in the time domain have been developed by several researchers (see for example
the ISSC report [8], and Finn et al. [9]). Blended methods are a blend of linear and nonlinear approaches
that have little rational basis. It is an engineering solution that combines the nonlinearities that are easily
computed (the rigid body equations of motion, the nonlinear hydrostatic force and the Froude-Krylov excit-
ing force) with linear hydrodynamic computations for the radiation and diffraction forces. Typically, blended
methods use linear theory to compute the radiation and diffraction forces acting on a two-dimensional section
of the ship. Strip theory approximations are then used to determine the three-dimensional hydrodynamic
forces. To improve the validity of blended method computations and still retain the high computational
speeds that are necessary, we have developed a body exact technique. In this approach, the two-dimensional
boundary value problem is solved using an exact body boundary condition and a linearized free surface
boundary condition satisfied on the calm water surface. Similar to the fully nonlinear MEL computations,
at any time step the normal velocity is known on the exact body surface and the potential is given on the
calm water level. The solution is time stepped using the known motions of the body and the linear free
surface conditions. As will be shown, the advantages of the method are that it introduces the nonlineari-
ties associated with the change in wetted surface of the body, while retaining the computational efficiency
of the linearized free surface conditions. In addition, there are no breaking wave problems and numerical
instabilities are minimized.

Another advantage of the present method is that it can deal easily with the water entry and exit problems,
a situation that often exists in the bow and stern regions of high speed ships. The high pressures and impulse
loads that occur during impact often set the structural design limits. Consequently, it is important that a
blended method is able to access rapidly these types of loads. The first classic work on the impact problem
was due to Von Karman [10] who developed an asymptotic theory for the near-flat impact using a linearized
body boundary condition and a constant potential free surface condition. Wagner [11] went a step beyond
Von Karman’s solution by considering the effect of the water splash. Dobroboskaya [12] derived a similarity
solution by using the geometric speciality of the body. The solution is valid only for small deadrise angles,
and such a similarity solution does not exist for arbitrary bodies. Recently, Zhao and Faltinsen [13] used fully
nonlinear free surface simulations to predict the slamming loads. This fully nonlinear method includes the
spray roots that are developed at the intersection of the body and free surface. However, it can not be used
for a long time simulation due to wave breaking. It should be noted that the body-exact calculations in this
paper neglect the details of the spray roots. As will be seen in section 4.3, this can lead to an under-prediction
of the impact force.

In this paper, we will first give the mathematical formulation followed by numerical techniques and
convergence tests. Numerical results for various body shapes are given. It will be shown that the time-domain
results agree with linear frequency-domain results for small amplitude motions. Nonlinear hydrodynamic
forces are found for large-amplitude motions. Impact forces are examined for a wedge entering the water
at high velocity and compared with other results. The problem of a body exiting from the water is also
investigated. Contrary to linear theory, the hydrodynamic forces for the water entry problem are found to
be significantly different from those for the water exit problem.
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Figure 1: Definition Sketch

2 Mathematical formulation

We consider a general two-dimensional body floating on a free surface and undergoing arbitrary three-degree-
of-freedom motions. An earth-fixed Cartesian coordinate system is chosen with the y-axis coincident with the
quiescent free surface, and z-axis is positive upward. The fluid is assumed to be homogeneous, incompressible,
inviscid and its motion is irrotational. Surface tension is neglected and the water depth is infinite. The fluid
motions can be described by a velocity potential Φ(y, z, t). In the fluid domain, Φ satisfies the Laplace
equation

∇2Φ = 0 (1)

On the mean free surface, the linearized free surface boundary conditions are imposed

ζt − Φz = 0 on z = 0 (2)
Φt + gζ = 0 on z = 0 (3)

where z = ζ(y, t) is the free surface amplitude, and g is the acceleration due to gravity. On the instantaneous
body boundary, no normal flux is permitted

∂Φ
∂n

= Vn on Sb (4)

where the unit normal vector into the body n is positive out of the fluid. Vn is the instantaneous velocity in
the normal direction including rotational effects. In the far field, the radiation boundary condition needs to
be imposed that there are no incoming waves. The initial conditions at t = 0 are

Φ = Φt = 0 in the fluid domain (5)

At each time step, a mixed boundary value problem must be solved; the potential is given on the free
surface and the normal derivative of the potential is known on the body surface. In terms of the desingularized
sources above the calm water surface and sources distributed on the body surface, the potential at any point
in the fluid domain can be given by

Φ(x) =
n∑

i=1

σ(ξi) ln |x− ξi|+
∫

Sw

σ(ξ)G(x; ξ)dl (6)

where Sw represents the instantaneous wetted body surface. |x − ξi| represents the distance between any
point in the fluid domain and the desingularized source point. G(x; ξ) is a Rankine source Green function

G(x; ξ) = ln r (7)
r2 = (y − ξ)2 + (z − η)2 (8)

where r is the distance between a source point and a point in the fluid; ξ is the source point on the body
boundary. Applying the boundary conditions, the integral equations that must be solved to determine the
unknown source strengths are
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n∑

i=1

σ(ξi) ln |xc − ξi|+
∫

Sw

σ(ξ)G(xc, ξ)dl = Φ(xc) xc ∈ Γd (9)

n∑

i=1

σ(ξi)
∂ ln |xc − ξi|

∂n
+

∫

Sw

σ(ξ)
∂G(xc, ξ)

∂n
dl = χ(xc) xc ∈ Γn (10)

Where ξ = a source point
xc = a point on the real boundary
χ = the given normal velocity on the body boundary
Φ = the given potential on the free surface (z = 0)
Γd = the free surface
Γn = exact submerged body surface

Once the source strengthes are found, Φ can be evaluated by (6), and the velocity on the body ∇Φ can be
obtained. The total pressure is given by Bernoulli’s equation

p = −ρ(
∂Φ
∂t

+
1
2
|∇Φ|2 + gz)

= −ρ(
δΦ
δt
− V · ∇Φ +

1
2
|∇Φ|2 + gz) (11)

Where δΦ
δt is the change in Φ on a given node at each time step. V is the moving ‘node’ velocity due to

repanelization. The forces acting on the body can be obtained by integrating (11) over the instantaneous
submerged body surface, which can be written as

F =
∫

Sw

pn dl (12)

3 Numerical method

In the usual manner, the integrals shown in equations (9) and (10) may be discretized to form a system of linear
equations to be solved at each time step. As shown in Figure 1, on the desingularized boundary, the sources
are distribution outside the domain so that the source points never coincide with the collocation or node
points and the integrals are nonsingular. In addition, because of desingularization, isolated sources are used
rather than a source distribution. This greatly reduces the computation complexity of the influence matrix.
The isolated sources are distributed a small distance above the calm water surface. The nondimensional
desingularized distance is given by

Ld = D0.5
m (13)

where Dm is the measure of the local mesh size, Ld is the desingularized distance [14]. In order to resolve
the leading order radiated waves and minimize any wave reflection from the outer boundary, an inner and
outer region is introduced in accord with the work of Lee [14]. The inner domain spans eight wavelengths,
with the body in the center. The wavelength is determined by the wave dispersion relation λ = 2πg

ω2 . Here
ω is the oscillation frequency of the body. To properly resolve the radiated waves, 30 nodes per wave length
are uniformly distributed over the inner domain. Near the intersection between the free surface and body,
special care needs to be taken to match the size of the panels on the free surface and the body surface.

In order to prevent wave reflection and maintain continuity, numerical beaches are placed near the
truncation boundaries. An additional 20 nodes are spread out over 80 wavelengthes beyond the inner domain.
The spacing of these nodes increases exponentially from the constant spacing of the inner domain to the end of
the outer domain. The spacing, in equation (14) was determined by Lee [14] to minimize the wave reflections.

dxouti
= dxin × 1.0378

i(i−1)
2 , i = 1..20 (14)
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On the other hand, panels are distributed on the body surface, which are more suitable for any arbitrary
body shape than the desingularized sources. The integral equations (9) and (10) are satisfied at the nodes
on the free surface and body surface such that

NF∑

j=1

σF
j ln |xF

ci
− ξF

sj
|+

NB∑

j=1

σB
j

∫

∆Sj

ln |xF
ci
− ξB

j |dl = Φ(xF
ci

) (15)

−πσ(xB
ci

) +
NF∑

j=1

σF
j

|xB
ci
− ξF

sj
| +

NB∑

j=1,j 6=i

σB
j

∫

∆Sj

1
|xB

ci
− ξB

j |
dl = χ(xB

ci
) (16)

Where ∆Sj is the jth panel on the body surface. Equations (15) and (16) can be solved either by a direct
or an iterative method depending on the size of the matrix. The LU decomposition method is used for
calculations in this paper. Once the source strengthes are determined by solving the above equations, the
fluid velocity on the free surface can be computed. Then the free surface elevation and the potential are
updated by using the free surface boundary conditions (2) and (3). The time stepping is accomplished using
a 2nd-order Adams-Bashforth scheme as in equations (17) and (18). The updated free surface locations and
potentials are then used to start the mixed boundary value problem at the next time step and the evolution
continues.

ζ(t +4t) = ζ(t) +
4t

2
[3(

∂ζ

∂t
)t − (

∂ζ

∂t
)t−4t] (17)

Φ(t +4t) = Φ(t) +
4t

2
[3(

∂Φ
∂t

)t − (
∂Φ
∂t

)t−4t] (18)

In order to ensure consistent free surface resolution over time for the body exact problem, the free surface
nodes are relocated to a distribution consistent with the original distribution relative to the current displaced
body. This is accomplished by interpolating both ζ and Φ by a cubic spline for the newly distributed nodes.

The force acting on the body is evaluated by integrating the pressure over the instantaneous submerged
surface using equation (11). The ∂Φ/∂t on the body is evaluated by

(
∂Φ
∂t

)n
i =

δΦi

δt
− V n

i · ∇Φn
i =

Φn
i − Φn−1

i

∆t
− V n

i · ∇Φn
i (19)

where Φn
i is the velocity potential of ith node at the nth time step on the body. V n

i is the moving velocity
of the grid points due to the repanelization on the body surface at each time step. When the panel number
changes between time steps for extremely large motion amplitudes, equation (19) can not be used directly.
Before the the (j + 1)th time step when the panel number changes, the potential on the body nodes at the
jth time step should be calculated again with the same panel number as at the (j + 1)th time step. The
recalculated potential will be used to calculate the pressure at the (j +1)th time step by using equation (19).

4 Results

4.1 Linear radiation problem

To verify the method, forced small amplitude motions of a circular cylinder of radius R and a box (B/T = 2.0)
are calculated including heave, sway, and roll motions. The body boundary condition is satisfied at the mean
body position. The area of cylinder section is A. The motion amplitude of the circular cylinder in heave and
sway is a = 0.1R. The motion amplitude of the box in heave and sway is a = 0.1T . The motion amplitude
of the box in roll is a = 0.1π. Once the force time histories are calculated, the added mass and damping
coefficients can be obtained by using Fourier analysis. The calculated added mass and damping coefficients
are compared with the experimental results of Vugts [15] and the results computed using a free surface Green
function (see for example Frank [2]).

Figure 2 shows the convergence of the added mass of a circular cylinder both for the time step number in
one time period and panel number on the body surface. The convergence curves suggest the good convergence
characteristics of this method. The panel number is N = 40 on the body surface, and the time step size 4t
is Tperiod/100. Figure 3 and Figure 4 show the added mass and damping of the circular cylinder. Figure 5,
Figure 6 and Figure 7 show the added mass and damping of a box in heave, sway, and roll respectively. The
comparisons shown in these figures are satisfactory and verify the accuracy of the present method for the
linear problem.
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Figure 2: Convergence of added mass of a circular cylinder in heave motion, a = 0.1R
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Figure 3: Added mass and damping coefficients of circular cylinder in heave motion
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Figure 4: Added mass and damping coefficients of circular cylinder in sway motion
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Figure 5: Added mass and damping coefficients of a box in heave motion
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Figure 6: Added mass and damping coefficients of a box in sway motion
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Figure 7: Added mass and damping coefficients of a box in roll motion

4.2 Body-exact problem

As an example, the forced large amplitude motion of a circular cylinder of radius R is studied here. The
cylinder is initially submerged such that the center is at the calm water line. The forced heave motion is
z(t) = −a sinωt, where a is the motion amplitude. We set ωR

g = 1.0. Again, the panel number is N = 40
on the submerged body surface, and the time step size 4t is Tperiod/100. As addressed earlier, at each time
step, the submerged portion of the cylinder is repanelized, and the influence matrix is reevaluated.

Figure 8 shows the different components of the vertical force acting on the circular cylinder for the case
of a/R = 0.5. The steady state is rapidly reached. As shown, the hydrostatic force is the largest part of the
force. The inertia term ∂Φ/∂t shows a higher-harmonic component. The quadratic component (−|∇Φ|2/2)
is primarily a second-order harmonic. It’s magnitude is very close to the moving grid term.

The frequency components of the total force can be obtained by using Fourier analysis. The force
coefficients are nondimensionlized according to Yamashita [16]

F 2
0 =

|F (0)| − ρgAs

2ρgA2
(20)

F 1
a =

|F (ω)|
2ρgRA

(21)

F 2
a =

|F (2ω)|
2ρgA2

(22)

where |F (ω)| is the amplitude of the Fourier component of the force at that frequency and is determined
using a Fourier transform. As is the mean submerged cross section area. F 2

0 is the second-order mean force;
F 1

a is the first-order harmonic force; F 2
a is the second-order harmonic force.

For a/R = 0.2, the frequency components of the vertical force are given in normalized form in the
Table 1. The values are compared with the experiments of Yamashita [16] and numerical results of Kent [17]
obtained by using a 3rd-order pseudo-spectral method. The comparisons in Table 1 show good agreement for
the mean force and the first-order force. Present calculations also capture the main part of second order force.
The agreement is surprisingly good considering only a linearized free surface boundary condition is used. It
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Figure 8: Vertical force acting in the circular with a = 0.5R, ω2g/R = 1.0

a/R=0.2 ω2R
g F0 F1 a33 b33 F2

Yamashita (1977) 0.5 -0.01 / 0.66 0.72 0.15
Kent (2005) 0.5 -0.01 0.821 0.60 0.796 0.194
Present calculation 0.5 -0.013 0.815 0.61 0.62 0.163
Yamashita (1977) 1.0 -0.08 / 0.60 0.39 0.45
Kent (2005) 1.0 -0.086 0.615 0.58 0.375 0.491
Present calculation 1.0 -0.097 0.632 0.59 0.41 0.428
Yamashita (1977) 1.5 -0.15 / 0.69 0.22 0.8
Kent (2005) 1.5 -0.16 0.36 0.62 0.209 0.796
Present calculation 1.5 -0.20 0.378 0.65 0.28 0.62

Table 1: Comparing frequency component amplitudes of the vertical force on circular for large amplitude
motion

also suggests that in this case, the nonlinear effects associated with the geometry play a more important role
than the wave nonlinearities.

4.3 Water entry and exit problem

The impact problem for 30, 45, and 60 degree wedges was investigated. The pressures over the wedges and
slamming forces were compared with the similarity solutions presented by Zhao and Faltinsen [13]. The
initial conditions were set such that wedges had negligible initial draft and a constant downward velocity
of 10 meters-per-second. The pressure values are only plotted once the solution reaches a relatively steady
state. The relative steady state can be seen in Figure 12. As can be seen, the slamming force reaches an
almost constant value after the initial large impact force that occurs as the body initially enters the water.
The pressure distributions on the wedges during impact are shown in Figure 9, Figure 10, and Figure 11 for
wedges of 30, 45, and 60 degrees respectively. As can be seen, there is significantly disagreement between the
similarity solution of Zhao and Faltinsen [13] and the pressure distribution to z = 0. It is proposed to improve
the solution by ‘stretching’. Using equation (3), the intersection of the free surface and the wedge can be
calculated. Once the wetted surface is known, the pressure distribution can be stretched up to that point.
The stretched pressure distributions are also shown in Figure 9, Figure 10, and Figure 11. The agreement
with the similarity solution is greatly improved. Figure 12 shows the impact force acting on a 45-degree
wedge found by integrating the pressures. All these values are compared with the similarity solution. As can
be seen, the unstretched values in these figures are the smallest, which are very close to the Von Karman’s
solution, nearly half of the similarity solution. The comparisons also suggest that impact pressures and forces
calculated using the stretching technique are much better than the unstretched results. While the agreement
is not perfect, the results do show that this computationally fast, simplified model gives reasonable results.
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Figure 9: Pressure distribution over a 30-degree wedge
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Figure 10: Pressure distribution over a 45-degree wedge

Figure 13 and Figure 14 show the force time history acting on a 45-degree wedge undergoing large
amplitude sinusoidal motion. The body enters the water at t = 0 sec, and reaches the bottom of the down
stroke at t = 0.5 sec. At t = 1 sec the body exits the water and remains out of the water until it reenters
at t = 2 sec. The cycle then repeats itself. Figure 13 shows the force time history for a Φ = 0 free surface
boundary condition. This is the free surface boundary condition normally used for the impact problem. The
dashed curve shows the displacement of the wedge as a function of time. As can be seen, the exit force and
entry force are identical. Figure 14 shows the force time history due to the same displacement time history
as in Figure 13, but using the linearized free surface boundary conditions. On the water entering phase of
the motion, the stretching technique is applied. As the wedge starts to exit the water the computed wave
amplitude near the body reverses and becomes negative. The negative wave amplitude may become larger
than the body draft. Consequently, the stretching is turned off as soon as the predicted wave amplitude near
the body becomes negative. As shown in Figure 14, for small times, the impact force is consistent with the
water entry problem. In addition, the shape of the entry force curve in Figure 14 has the same form as in
Figure 13. However, the water exit force curve in Figure 14 shows a significant difference from the exit force
curve in the Φ = 0 problem (Figure 13). The differences are due to the free surface boundary conditions and
the formation of free surface waves.

5 Conclusions

Two-dimensional, large amplitude body motion is studied in this paper with a linearized free surface and
exact body boundary conditions. Numerical results are obtained for small amplitude motion, large amplitude
motion, water entry and water exit. Convergence and accuracy are verified for small amplitude motions.
Compared with the experiments and other numerical solutions, good agreement was found for the large
amplitude oscillation problem of a circular cylinder. For the wedge impact problem, the calculated values
are smaller than the similarity solutions due to the lack of spray roots. The results of the water exit problem
demonstrate that the memory effects of the free surface are important.
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