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Abstract

Gravity–capillary solitary waves of depression, that bifurcate at the

minimum phase speed on water of finite or infinite depth, while stable to

perturbations along the propagation direction, are found to be unstable

to transverse perturbations on the basis of a long-wave stability analysis.

This suggests a possible generation mechanism of the new class of gravity–

capillary lumps recently shown to also bifurcate at the minimum phase

speed.

1 Introduction

The stability of plane solitary waves to perturbations transverse to the direc-
tion of propagation was examined first by Kadomtsev & Petviashvili [1] on the
basis of a generalization of the classical Korteweg–de Vries (KdV) equation
allowing for weak transverse variations. This model equation, now known as
the Kadomtsev–Petviashvili (KP) equation, predicts that KdV gravity–capillary
solitary waves on shallow water are unstable to transverse perturbations if sur-
face tension is strong enough:

T >
1

3
ρgh2, (1.1)

where T denotes the coefficient of surface tension, h the water depth, ρ the fluid
density and g the gravitational acceleration. When this condition is satisfied,
moreover, the KP equation admits fully localized solitary-wave solutions, com-
monly referred to as ‘lumps’, which thus become the asymptotic states of the
initial-value problem in two spatial dimensions [2].

In more recent work, Bridges [3] obtained a condition for transverse instabil-
ity to long-wave perturbations of solitary-wave solutions of Hamiltonian partial
differential equations formulated as multi-symplectic systems. When applied to
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the water-wave problem with gravity and possibly surface tension present, this
condition implies instability if

∂I

∂V
< 0, (1.2)

where I is a certain quantity related to the total horizontal linear momentum,
or impulse, of the solitary wave and V denotes the wave speed. (Bridges [3]
refers to I as the impulse but this ignores the circulation of the solitary wave
which is non-zero in general; see

�
2 below.)

In the case of pure gravity solitary waves, it was shown by Longuet-Higgins
[4] that V ∂I/∂V = ∂E/∂V , E being the total energy of the solitary wave, so an
alternative form of the instability condition (1.2) is

1

V

∂E
∂V

< 0. (1.3)

Moreover, E is known to be an increasing function of V in the weakly nonlinear
limit, where the KdV equation applies, and also for finite-amplitude waves with
steepness (amplitude-to-depth ratio) below ε = 0.781. Hence, according to
(1.3), transverse instability of gravity solitary waves first arises when the wave
steepness exceeds this critical value which happens to also mark the onset of
superharmonic instability to longitudinal perturbations [5].

It is worth noting that (1.2) and (1.3) apply in the long-wave-disturbance
limit and provide sufficient, but not necessary, conditions for instability. This
is consistent with recent work by Kataoka & Tsutahara [6], who re-visited,
using perturbation expansions, the eigenvalue problem governing the transverse
instability of gravity solitary waves of the KdV type to long-wave disturbances.
While their leading-order solution recovers condition (1.3), at the next order
they find that instability in fact sets in at a somewhat lower wave steepness, ε =
0.713, than the critical value 0.781 furnished by (1.3); according to the refined
stability criterion, therefore, transverse instability arises prior to longitudinal
instability.

The present paper is concerned with the transverse instability of gravity–
capillary solitary waves. Rather than the classical KdV solitary waves on shallow
water, attention is focused on solitary waves of the wavepacket type that are
possible on water of finite or infinite depth in the presence of both gravity and
surface tension, and have been studied extensively in recent years (see Dias
& Kharif [7] for a review). Solitary waves of this kind bifurcate from linear
sinusoidal wavetrains at the minimum gravity–capillary phase speed and, in the
small-amplitude limit, resemble wavepackets whose wave envelope and crests
travel at the same speed [8, 9]. Out of the two symmetric solitary-wave solution
branches that bifurcate at the minimum phase speed, the depression branch
is stable to longitudinal perturbations [10], so it is natural to inquire into its
stability with respect to transverse perturbations.

It is straightforward to show (see
�
2) that the form (1.3), in terms of the

total energy E , of the transverse-instability condition (1.2) obtained by Bridges
[3] remains valid in the case of gravity–capillary solitary waves as well. This
suggests that the solitary waves of interest here, which exist below the minimum

2



gravity–capillary phase speed, are unstable to transverse perturbations, as E
is expected to increase when the wave speed V is decreased. In fact, for a
portion of the depression solitary-wave solution branch in deep water for which
computations of E are available [11], it is clear that ∂E/∂V < 0, implying
instability according to (1.3).

Here we examine in a systematic way the stability of gravity–capillary soli-
tary waves of the wavepacket type to long-wave transverse perturbations and
compute the instability growth rate, using the expansion procedure of Kataoka
& Tsutahara [6] with the added effect of surface tension. The entire branch
of depression solitary waves on water of finite or infinite depth, while stable
to longitudinal perturbations, turns out to be transversely unstable, and the
instability growth rate increases with E .

In analogy with transversely-unstable KdV solitary waves that give rise to
KP lumps in the high-surface-tension regime (1.1), it is likely that the instability
discussed here also results in the formation of gravity–capillary lumps, but of
the type recently found by Kim & Akylas [12] and Parau, Vanden-Broeck &
Cooker [13].

2 Preliminaries

It is customary in studies of gravity–capillary solitary waves of the wavepacket
type (e.g., [8, 10, 14, 15]) to introduce non-dimensional variables such that the
wave speed c is normalized to 1 and trace solitary-wave solution branches in
terms of

α =
gT

ρc4
(2.1)

and an additional parameter, such as

H =
hρc2

T
, (2.2)

that involves the water depth. For the purpose of discussing the transverse
instability of these solitary waves, however, it proves more convenient to use
as characteristic length and time scale, respectively, (T/ρ g)1/2 and (T/ρ g3)1/4,
which do not depend on c; solitary-wave solution branches are thus traced via
the dimensionless wave speed

V = c
( ρ

gT

)1/4

= α−
1

4 , (2.3)

and the water-depth parameter

D = h
(ρg

T

)1/2

= Hα1/2. (2.4)

Gravity–capillary solitary waves of the wavepacket type arise when the minimum
phase speed occurs at a finite wavenumber [8, 9], and this is possible when
condition (1.1) is not met, implying D >

√
3.
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As remarked earlier, the total energy E(V,D) of a solitary wave plays an
important part in the stability analysis. In terms of the velocity potential
φ̄(θ, z;V,D) and the free-surface elevation z = η̄(θ;V,D), where θ = x − V t,
associated with a solitary wave travelling along x with speed V on water of
depth D (−D < z < η̄), E is given by

E = T + VG + VT , (2.5)

where

T =
1

2

∫ ∞

−∞
dθ

∫ η̄

−D
(φ̄2
θ + φ̄2

z) dz (2.6)

denotes the kinetic energy,

VG =
1

2

∫ ∞

−∞
η̄2 dθ (2.7)

the gravitational potential energy and

VT =

∫ ∞

−∞

{(

1 + η̄2
θ

)1/2 − 1
}

dθ (2.8)

the potential energy due to surface tension.
In addition, the total horizontal momentum, or impulse, I(V,D) of the soli-

tary wave is given by

I =

∫ ∞

−∞
dθ

∫ η̄

−D
φ̄θ dz. (2.9)

From (2.9), upon integrating by parts in θ, one then has

I = I +D C, (2.10)

where
C = φ̄

∣

∣

θ=∞
θ=−∞ (2.11)

is the circulation of the solitary wave [4] and

I = −
∫ ∞

−∞
dθ η̄θ φ̄

∣

∣

z=η̄
(2.12)

is the quantity that enters the instability condition (1.2) derived by Bridges [3].
Note that, in water of finite depth, C 6= 0 so I is distinct from the true impulse
in general.

Differentiating expression (2.12) for I with respect to V and combining the
result with (2.10), it follows that

∂I

∂V
=
∂I
∂V
−D ∂C

∂V
=

∫ ∞

−∞
dθ (η̄V φ̄θ − η̄θφ̄V )

∣

∣

z=η̄
. (2.13)

For pure gravity solitary waves, it is known from Longuet-Higgins [4] that

1

V

∂E
∂V

=
∂I
∂V
−D ∂C

∂V
, (2.14)
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so condition (1.2) can be replaced by (1.3), as indicated earlier. This remains
true, however, when surface tension is also present, since it can be readily verified
by differentiating (2.5) with respect to V that

1

V

∂E
∂V

=

∫ ∞

−∞
dθ

(

η̄V φ̄θ − η̄θφ̄V
)
∣

∣

z=η̄
. (2.15)

Hence, according to (2.13),
∂I

∂V
=

1

V

∂E
∂V

(2.16)

so conditon (1.2) is entirely equivalent to (1.3) in the case of gravity–capillary
solitary waves as well.

3 Long-wave stability analysis

To diagnose the stability to long transverse perturbations of gravity–capillary
solitary waves of the wavepacket type, one may appeal directly to condition
(1.2), or equivalently condition (1.3) in view of (2.16). In addition, it is possible
to deduce the associated instability growth rate in the long-wave limit from the
theory of Bridges [3]. For the latter purpose, rather than specializing the general
formalism to the problem at hand, we find it more instructive to directly tackle
the stability eigenvalue problem via a long-wave expansion procedure analogous
to the one followed by Kataoka & Tsutahara [6] for pure gravity solitary waves.
A similar approach was taken in Kim & Akylas [16] for the transverse instability
of solitary waves of the Benjamin equation.

Briefly, assuming that infinitesimal perturbations with wavenumber µ in
the transverse (y-) direction and growth rate λ are present in the free-surface
elevation η and the potential φ,

η = η̄ + η̂(θ) eiµy+λt, φ = φ̄+ φ̂(θ, z) eiµy+λt, (3.1)

we linearize the governing equations about the underlying solitary-wave state.
The perturbation eigenfunctions φ̂ and η̂ then satisfy the Helmholtz equation

φ̂θθ + φ̂zz = µ2φ̂ (−D < z < η̄), (3.2)

subject to the bottom condition

φ̂z = 0 (z = −D) (3.3)

and the following two conditions on the free surface of the solitary wave:

L1(φ̂, η̂) = −λη̂ (z = η̄), (3.4)

L2(φ̂, η̂) = −λφ̂− µ2 η̂

(1 + η̄2
θ)1/2

(z = η̄), (3.5)
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where

L1(φ̂, η̂) ≡
(

− ∂

∂z
+ η̄θ

∂

∂θ

)

φ̂+
{dφ̄θ

dθ
+ (−V + φ̄θ)

∂

∂θ

}

η̂, (3.6)

L2(φ̂, η̂) ≡ (−V +φ̄θ)
dφ̂

dθ
+

{

(−V +φ̄θ)φ̄θz+φ̄zφ̄zz+1
}

η̂−
{ η̂θ

(1 + η̄2
θ)3/2

}

θ
. (3.7)

The boundary conditions (3.4) and (3.5) result from linearizing the kinematic
and dynamic free-surface conditions, respectively. Compared with Kataoka &
Tsutahara [6], the additional effects of surface tension in the dynamic condition
are reflected in the last term in (3.7) and the O(µ2) term in (3.5).

In the long-wave limit (µ� 1), the eigenvalue problem (3.2)–(3.5) is solved

by expanding φ̂, η̂ and the growth rate λ, which acts as the eigenvalue, in powers
of µ:

φ̂ = φ̂(0) + µφ̂(1) + µ2φ̂(2) + · · · , η̂ = η̂(0) + µη̂(1) + µ2η̂(2) + · · · , (3.8)

λ = µλ1 + µ2λ2 + · · · . (3.9)

As in Kataoka & Tsutahara [6], the leading-order solution is readily shown
to be

φ̂(0) = φ̄θ, η̂(0) = η̄θ. (3.10)

Proceeding to O(µ), φ̂(1) and η̂(1) then satisfy the forced problem

φ̂
(1)
θθ + φ̂(1)

zz = R (−D < z < η̄), (3.11)

φ̂(1)
z = 0 (z = −D), (3.12)

L1(φ̂(1), η̂(1)) = r1 (z = η̄), (3.13)

L2(φ̂(1), η̂(1)) = r2 (z = η̄), (3.14)

where
R = 0, r1 = −λ1η̄θ, r2 = −λ1φ̄θ. (3.15)

Since (3.10) is a well-behaved solution of the corresponding homogeneous
problem, the forcing terms (3.15) must satisfy a certain condition for the in-
homogeneous boundary-value problem (3.11)–(3.14) to have a solution that be-
haves acceptably as θ → ±∞. This solvability condition can be derived by
forming the inner product of the forced equation (3.11) with the well-behaved
solution of the adjoint boundary-value problem, and then making use of Green’s
identity along with the boundary conditions (3.12)–(3.14) and the properties of
the adjoint solution. As it parallels closely an analogous derivation in Kataoka
& Tsutahara [6], here we shall omit the details (see [17]) and simply state the
solvability condition:

∫ ∞

−∞
dθ

∫ η̄

−D
φ̄θR dz +

∫ ∞

−∞
dθ

(

r1φ̄θ − r2η̄θ
)∣

∣

z=η̄
= 0. (3.16)
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For the forcing terms (3.15), this condition is trivially met and the well-
behaved solution of the problem (3.11)–(3.14) turns out to be

φ̂(1) = −λ1φ̄V , η̂(1) = −λ1η̄V . (3.17)

At the next order, φ̂(2) and η̂(2) are governed again by a forced problem of
the form (3.11)–(3.14) but with forcing terms

R = φ̄θ, r1 = −λ2η̄θ + λ2
1η̄V , r2 = −λ2φ̄θ + λ2

1φ̄V −
η̄θ

(1 + η̄2
θ)1/2

. (3.18)

Inserting the forcing terms (3.18) in the solvability condition (3.16) now yields
a non-trivial result,

λ2
1

∫ ∞

−∞
dθ (η̄V φ̄θ − η̄θφ̄V )

∣

∣

z=η̄
+

∫ ∞

−∞
dθ

∫ η̄

−D
φ̄2
θ dz +

∫ ∞

−∞

η̄2
θ

(1 + η̄2
θ)1/2

dθ = 0,

(3.19)
which, taking into account (2.15), furnishes the following expression for the
growth rate of long transverse perturbations to leading order in µ:

λ2
1 = −

(

∫ ∞

−∞
dθ

∫ η̄

−D
φ̄2
θ dz +

∫ ∞

−∞

η̄2
θ

(1 + η̄2
θ)1/2

dθ
)/ 1

V

∂E
∂V

. (3.20)

This confirms that (1.3) is a sufficient condition for transverse instability of
solitary waves in the presence of gravity and surface tension.

As remarked earlier, in the case of pure gravity solitary waves, the instability
condition (1.3) is first met when the wave steepness exceeds a certain critical
value [5]; in order to gain information regarding the transverse instability of less
steep solitary waves, it is necessary to carry the long-wave expansions (3.8) and
(3.9) to higher order, as was done in Kataoka & Tsutahara [6]. Fortunately, in
the problem of interest here, as verified below, the leading-order result (3.20)
predicts instability (λ2

1 > 0) for the entire solution branch of depression gravity–
capillary solitary waves, so no higher-order analysis is needed.

4 Results

We now proceed to verify that ∂E/∂V < 0 for gravity–capillary solitary waves of
depression and compute the associated instability growth rate. To this end, we
shall make use of small-amplitude expansions in the vicinity of the bifurcation
point, slightly below the minimum phase speed, and fully numerical computa-
tions in the finite-amplitude regime.

In terms of the non-dimensional variables used here, for a given value of the
water-depth parameter D >

√
3, the minimum gravity–capillary phase speed

V = V0 and the corresponding wavenumber k0 are determined from the equation
system

V 2
0 =

1 + k2
0

k0
tanh k0D, (4.1)
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1− k2
0

k0
tanh k0D −

D(1 + k2
0)

cosh2 k0D
= 0. (4.2)

In the deep-water limit (D →∞), in particular,

V0 →
√

2, k0 → 1. (4.3)

For V slightly less than V0, the bifurcating solitary-wave solution branches
can be computed using perturbation expansions in terms of δ ≡ V0 − V (0 <
δ � 1), and details are given in [8, 11] . Specifically, in the case of deep water,
the leading-order results for the depression solitary-wave branch are

η̄ = − 8

21/4
√

11
δ1/2sech(23/4δ1/2θ) cos θ + · · · , (4.4)

φ̄ = −21/48√
11

δ1/2ezsech(23/4δ1/2θ) sin θ + · · · . (4.5)

Inserting (4.4) and (4.5) in (2.6)–(2.8), we find that

T ∼ 32

21/411
δ1/2, (4.6)

VG ∼
16

21/411
δ1/2, (4.7)

VT ∼
16

21/411
δ1/2; (4.8)

hence,

E ∼ 64

21/411
δ1/2. (4.9)

As expected, E increases as V is decreased below V0 (δ > 0), so ∂E/∂V < 0,
and small-amplitude solitary waves on deep water are unstable to transverse
perturbations. Similarly, from (3.20), making use of (4.4) and (4.5), it follows
that

λ1 ∼ 23/4δ1/2. (4.10)

Therefore, combining (4.10) and (3.9), the instability growth rate of long-
wave transverse perturbations to small-amplitude depression solitary waves,
travelling with speed V slightly below the minimum phase speed V0 =

√
2

in deep water, is given by

λ ∼ 23/4(V − V0)1/2µ, (4.11)

µ� 1 being the perturbation wavenumber.
Figure 1 compares the asymptotic estimates (4.9) and (4.10) against values

of E and λ1, obtained from (2.5)–(2.8) and (3.20) using numerically-computed
solitary-wave profiles close to the bifurcation point V0 =

√
2 in deep water.

Not unexpectedly, the agreement is good only in the immediate vicinity of the
bifurcation point. Numerical computations, nevertheless, indicate that ∂E/∂V
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continues to be negative in the finite-amplitude regime, confirming the presence
of instability, as illustrated in figure 2 for D = 2.5 and D →∞. Moreover, the
instability growth rate increases rapidly with the solitary-wave steepness, and
the instability is stronger (λ1 is larger) in the deep-water limit (D → ∞), at
least for long-wave perturbations (µ� 1).

Solitary-wave profiles and the corresponding values of E and λ1 were com-
puted via a boundary-integral method, similar to the one described in [14],
combined with Chebyshev spectral collocation (see [17] for details). Table 1
illustrates the convergence of E as the number of grid points N is varied, for
different values of the wave speed V in finite depth (D = 2.5) and in deep water
(D → ∞). Our computations of E also are consistent with those presented in
[11] for a portion of the depression solitary-wave branch in deep water. The
results shown in figure 1 were computed using N = 2048, while those shown in
figure 2 using N = 512.

5 Concluding remarks

The preceding analysis has demonstrated that depression gravity–capillary soli-
tary waves on water of finite or infinite depth, while stable to longitudinal per-
turbations [10], are unstable to transverse perturbations, similarly to elevation
solitary waves of the Benjamin equation [16]. In the latter case, it is known that
transverse instability results in the formation of fully locally confined solitary
waves (‘lumps’) of elevation, that also bifurcate at the minimum phase speed
[16]. In analogy, we expect that the instability discussed here leads to depression
lumps of the type recently found in [13, 17].

As it is based on a long-wave expansion, the stability analysis presented
here cannot furnish the maximum instability growth rate which corresponds
to a finite-wavenumber perturbation (µ = O(1)), in general. This task would
require solving the eigenvalue problem (3.2)–(3.5) by numerical means. We re-
mark that, for waves in the gravity–capillary regime, viscous effects may not
be negligible, and, in order to assess the physical significance of transverse in-
stability, it would be useful to compare the maximum instability growth rate
against the decay rate caused by viscous dissipation, as was done in [10] for
longitudinal perturbations. Based on the results shown in figure 2 for long-wave
transverse perturbations, however, it would appear that transverse instability
is quite strong, particularly for steep solitary waves, and warrants further the-
oretical and experimental study.
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mates (4.9)–(4.10) (· · · ) for gravity–capillary solitary waves of speed V near the
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Figure 2: Energy E and instability growth rate λ1 of depression gravity–capillary
solitary waves as functions of wave speed V . Left column: finite depth (D = 2.5,
V0 = 1.402). Right column: infinite depth (D →∞, V0 =

√
2). (a) energy; (b)

instability growth rate.
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D = 2.5
V = 1.0 1.2 1.4

2.95107 1.46376 0.0230997

2.95231 1.46579 0.0232001

2.95269 1.46615 0.0232135

2.95288 1.46642 0.0232221

N

512

1024

1536

2048

D →∞
V = 1.0 1.2 1.4

3.12468 1.93688 0.284594

3.12650 1.94051 0.285844

3.12711 1.94171 0.286144

3.12741 1.94230 0.286265

Table 1: Convergence of energy E as the number of grid points N is varied for
different values of the wave speed V in finite depth (D = 2.5) and in deep water
(D →∞).
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