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Outline

• A.  Basic Concepts
 What is CSA?
 Why is CSA important, interesting, and/or useful?
 Can it be calculated accurately?

• B.  CSA Measurement Methods
 Single crystal goniometer experiments
 Slow magic-angle spinning
 Recoupling in 2D and 3D

• C.  Interpretation and Utility
 Relationships to ab initio quantum calculations
 Structure determination
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Principal References

• Oldfield, Ann. Rev. Phys. 
Chem., 2002, 53:349

• Laws et al., Ang. Chem. 
2002, 41:3096

• Wylie Ph.D. thesis & 
recent pubs (J. Chem. 
Phys., in press)
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The “Chemical Shift”

• Not called “NMR emission 
frequencies”

• More useful
than that!

• Explicit, predictable 
relationship to 
electronic
structure

Silverstein, Bassler, and Morrill, 
Spectrometric Identification of 
Organic Compounds, Appendix B
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Some things the CSA is not

• Community-supported 
agriculture

• Certified senior advisors
• Confederate States of 

America (a Spike Lee joint)
• Controlled substance act
• Canadian space agency
• Continuous symmetry 

analysis
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Basic Qualitative Description

• In a magnetic field (Ho) 
valence electrons are 
induced to circulate, which 
generates a secondary 
magnetic field that 
opposes the applied field 
near the nucleus. Thus a 
higher field is needed to 
achieve resonance. This 
is shielding.
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Extreme Shielding, Stowe Edition

• New J. Chem., 1998, 331

7

8:  homotropylium cation
9:  1,6-methano[10]annulene
11:  1,2,8,9-tetrahydro[14]annulene
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Elements of the Chemical Shift Tensor

Spinning Sidebands under MAS

Schmidt-Rohr and Spiess (1994)

Origins of CSA
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Chemical Shift Anisotropy

• CSA means orientation 
dependence of the chemical 
shift, and arises due to the 
fact that in a nuclei, the 
charge distribution is rarely 
spherically symmetrical.

• The degree to which 
electron density affects 
resonance frequency (also 
known as shielding) of a 
nucleus depends on the 
orientation of the electron 
cloud.
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Goniometer Probes
• Must have single crystal
• Shift is a function of 

orientation, as discussed 
by KWZ yesterday

• Useful for small 
molecules

• Can determine absolute 
orientation to the crystal 
frame

• Impractical for larger 
molecules 

http://www.nmr-service.de/?Solids_NMR_Probes:Low_Temp._NMR%2FNQR
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Static Powder Lineshape

• Resolution limited:  glycine (1-13C, as below)
• Overlapping lineshapes
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CSA under Magic Angle Spinning
• Slow spinning produces spinning 

sidebands spaced ωr from the 
isotropic line in the spectra

J. Herzfeld, A. E. Berger, J. Chem. Phys., 1980, 73, 6021- 6030.
Schmidt-Rohr, Spiess, Multidimensional Solid State NMR and Polymers; Academic Press, 1994

a) νROT = 0 kHz

b) νROT = 0.94 kHz
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Herzfeld-Berger Convention

Principal Components, δ11, δ22 and δ33 
are ordered from highest to lowest 
frequency:
 δ11 ≥ δ22 ≥ δ33 

Isotropic chemical shift:  
 δiso = (δ11 + δ22 + δ33)/3

Span:  
 Ω = δ11 - δ33 

Skew: 
  κ = 3(δ22 - δiso)/Ω  (-1≤ κ ≤ +1)

J. Herzfeld, A. E. Berger, J. Chem. Phys., 1980, 73, 6021- 6030.
Schmidt-Rohr, Spiess, Multidimensional Solid State NMR and Polymers; Academic Press, 1994

δ11

δ22

δ33

ωr = 0 kHz

ωr = 0.5 Hz

ωr = 1.0 kHz

ωr = 4.0 kHz

ωr = 15 kHz
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Haeberlen Convention
• Principal Components are ordered according to their magnitude 
  in the traceless representation:

|δzz - δiso| ≥ |δxx - δiso| ≥ |δyy - δiso| 

• Isotropic Chemical Shift:  δiso = (δxx + δyy + δzz)/3

• Reduced Anisotropy:  δ = δzz - δiso

• Chemical Shift Anisotropy:  Δδ = δzz - (δxx + δyy)/2 = 3/2 δ

• Simplifies simulations in the basis of spherical irreducible tensors

Haeberlen, U. High Resolution NMR in Solids: Selective Averaging; Academic Press, 1976.

€ 

ρ00 = δiso,ρ20 =
3
2
δ,ρ2±2 =

1
2
ηδ
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Measurement Strategies
• Single crystal goniometer 

 Extremely precise and accurate
 Orientation relative to crystal frame

• Powder lineshapes (directly measured)
 High accuracy and precision
 Low signal-to-noise and resolution

• Slow MAS:  Herzfeld Berger
 Slightly reduced accuracy and precision
 Resolution for ~10 to 20 sites; good sensitivity

• Recoupling methods
 High accuracy and precision (if done well)
 Resolution for hundreds of sites
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Methods to Measure CSA Parameters 

 Static lineshape and sideband manifold
 Goal:  measure CSA throughout protein
 Site resolution is essential

Recoupling Slow MAS

Wylie, Franks, Graesser, Rienstra, JACS 2005, 127, 11946-11947.
Wylie, Sperling, Frericks, Shah, Franks, Rienstra, JACS 2007, 129, 5318-19.
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SSNMR Spin Hamiltonian

Rotating frame eliminates Zeeman term
Internal terms of the Hamiltonian

 Anisotropic terms (solid): ~1 to 50 kHz
 Isotropic terms (solution):  ~1 to 100 Hz

Experimental control
 Radio frequency pulses:  Up to 125 kHz 

€ 

H = HZ + HCSA + HD + HCS, iso + HJ

500 MHz 1 to 50 kHz <100 Hz
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Magic-Angle Spinning (MAS)
maximum
structural

information

maximum
resolution

and
sensitivity

Lowe, I.J., Phys. Rev. Lett. 1959, 2, 285.
Andrew, Bradbury, Eades, Nature 1958, 182, 1659. 18
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High-Resolution Protein SSNMR

56 residue protein (GB1), 6 kDa, 750 MHz 1H frequency; ~380 peaks shown

Heather Frericks Schmidt and Donghua Zhou
19
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Unique Chemical Shifts in Proteins

• 1H and 13C shifts depend on:
 1.  amino acid residue type (~20 ppm)
 2.  conformation (~5 ppm)
 3.  residue type of neighbors (~2 ppm)
 4.  hydrogen bonding (varies)
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Amino Acid Structures
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Residue Type Dependence

 Always clear:
G, A, S, T, P, I

 Usually clear:
L, V, D/N 

 Aromatics:
use Cβ-Cγ to
distinguish

 Ambiguous:
C, M, K, R, E/Q
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Signal Patterns by Amino Acid Type

56 residue protein (GB1), 6 kDa, 750 MHz 1H frequency; ~380 peaks shown

Heather Frericks Schmidt and Donghua Zhou
23
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Secondary Chemical Shifts

• Spera & Bax, JACS 1991
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Assignments:  Backbone Walk

Bennett, Rienstra, Auger, Lakshmi, Griffin, J. Chem. Phys. 1995, 103, 6951.  Hohwy, Rienstra, 
Jaroniec, Griffin, J. Chem. Phys. 1999, 110, 7983-7992 and 2002, 117, 4973.  Baldus et al., Mol. 
Phys. 1998, 95, 1197.  Morcombe and Zilm, JACS 2004, 126, 7196. 

H-N-CO
H-N-(CO)-CA

H-N-CA

H-N-CA/CO
H-N-CA/CB

Solution

N-CA-CX

CO-N-CA/CB

N-CO-CX

Solid
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GB1 Chemical Shift Assignments

Franks, Zhou, Wylie, Money, Graesser, Frericks, Sahota, Rienstra, JACS 2005, 127, 12291-12305. 
Wylie, Franks, Graesser, Rienstra, JACS 2005, 127, 11946-11947.26
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500 MHz 750 MHz 900 MHz

DsbA, 21 kDa Microcrystals

200 ms100 ms50 ms

F(1H):

DARR:

Microcrystalline
Linewidths ~ 1/B0
Quadratic benefit in 2D 13C-13C spectra

27
27Tuesday, January 22, 2008



DsbB:  20 kDa, Membrane Protein

Li, Berthold, Frericks, Gennis, Rienstra, ChemBioChem 2007, 8, 434-442.
Li, Berthold, Gennis, Rienstra, Protein Sci., in press.28
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αS Fibrils:  13C-13C 2D Spectra
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Secondary Chemical Shifts

• Spera & Bax, JACS 1991
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Glycerol Labeling Scheme

Castellani et. al., Nature 420, 
98-102 (2002)

2-13C Glycerol

1,3-13C Glycerol
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High-Resolution 2D 13C-13C (GB1)

Scroll resonator probe:  Stringer, Bronnimann, Mullen, Zhou, Stellfox, Li, Williams, Rienstra, J. 
Magn. Reson. 2005, 173, 40-48. 32
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15N-13C’ Site Resolution

Each piece of the checker board 
exhibits site-resolved peaks with 
line widths of ~0.2 to 0.3 ppm.

Slow MAS of 15N,13C labeled GB1 
grown in 1,3-13C-glycerol provides 
a 2D manifold of 15N and 13C 
sidebands

Wylie, Sperling, Frericks, Shah, Franks, Rienstra, JACS 2007, 129, 5318-19.
33
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2.5 kHz 3.0 kHz

4.0 kHz 5.0 kHz

Slow Spinning 15N-13C’ 2D
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Slow Spinning Analysis
• Each peak in the spectrum is integrated
• A 1D manifold is reconstructed by summation along each dimension
• Repeated for 42 sites in the protein
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1D Fits From SPINEVOLUTION
• Results from D40N-V39C’ cross peaks
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Dipolar Recoupling

 MAS averages couplings to zero
 Multiple pulse sequence  
    restores dipolar couplings

€ 

H (0) = ωm,µeimω r t

0

τ

∫
m,µ
∑ eiµω1N teiµω1C tdt

MAS
Desired 

Information
(Hamiltonian
spatial term)

15N Pulses
13C Pulses
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Tycko’s “CRAMA” Experiment
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Tycko’s CSA Recoupling Sequence

• JMR 1989, 85:265 
• 2D correlation
• π pulse schemes
• Scaling factor depends 

on π pulse duration 
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SUPER (K. Schmidt-Rohr et al.)

• Separation of Undistorted 
Powder patterns by 
Effortless Recoupling

• JMR 2002, 155:15-28
• Better stability than π 

pulse schemes
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SUPER Lineshapes

• Robust with respect to 
variations in RF amplitude

• 2π rotations on 13C 
require less 1H decoupling 
power (factor of 2 
mismatch; π pulses 
require factor of 3)

• Disadvantage:  
homonuclear coupling still 
present
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ROCSA:  Symmetry-Based Sequence

• Chan & Tycko, J. Chem. Phys. 2003, 118:8378 
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3D ROCSA Experiments

• Cross peaks from SPC5  
  mixing  

• Gaussian pulse improves  
   resolution

• ROCSA trajectories extracted 
  from third dimension

Chan, J.C.C.; Tycko, R.; J. Chem Phys 2003 118 8378-8389
Wylie, B.J., Franks W. T., Graesser, D.T., Rienstra, C.M; JACS 2005, 127, 11946-11947.
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Stable Amplifiers & Air Compressors

€ 

H (0) = ωm,µeimω r t

0

τ

∫
m,µ
∑ eiµω1N teiµω1C tdt

€ 

S t1( ) = cos ωm,µt1( )e−t1 /T2
€ 

S t1 = 0( ) =1

Franks, Kloepper, Wylie, Rienstra, J. Biomol. NMR 2007, 39, 107-131.
44
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13C ROCSA Lineshapes
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Fitting Strategy: Spectra to Structure

Veshtort, M. Griffin, R. JMR, 178, 248-282, 2006. F. James and M. Winkler. CERN, Geneva. 2004.

NMR Data
NMRPipe Integrated 

Peak Lists

Trajectories

Pulse Sequence
SPINEVOLUTION

Simulated 

Curves

MINUIT

Fortran Code 

Combining 

Spinevolution 

and Minuit

Output
Fit Trajectories

Xplor 

Restraints
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Lineshape Acquisition and Analysis
Chemical shift anisotropy
Aliphatic 13C 

 Local conformation
 Very good QM methods

Carbonyl 13C 
 Hydrogen bond length
 Harder to calculate

Amide 15N 
 Critical for NMR dynamics
 Benchmarks needed for QM

δ = 17.0,  η = 1.0
φ  = -121, ψ = 140

gauche +
(β-sheet)

V29V54

δ = -10.8,  η = 0.4
φ = -62, ψ = -49

trans
(α-helix)

Wylie, Franks, Graesser, Rienstra, JACS 2005, 127, 11946-11947.
Sun, Sanders, Oldfield, JACS 2002, 124, 5486-5495.47
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Alanine Cα and Cβ Tensors

φ = -156,ψ = 154 (β-turn)

φ = -63,ψ = -37 (α-helix)

A20

A26

φ = -59,ψ = -24 (turn)

A48

δ= -24.5
η= 0.8 δ= 26.0

η= 0.7

δ= 20.0
η= 0.85

δ= -17.5
η= 0.4

δ= -19.5
η= 0.8

δ= -17.75
η= 0.55

Cα Cβ
A20

A26

A48

Wylie, B.J., Franks W. T., Graesser, D.T., Rienstra, C.M; JACS 2005, 127, 11946-11947.

• δ = δzz -δiso 
• δ larger in β-sheet relative to    
  α-helix
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Valine Cα Tensors

δ = 17.0,  η = 1.0
φ  = -121,ψ = 140

gauche +
(β-sheet)

V29 V21

V39

δ = -16.75,  η = 0.8
φ  = -91, ψ = 140

trans
(turn)

δ = -10.75,  η = 0.4
φ = -62, ψ = -49

trans
(α-helix)

δ = -11.75,  η = 0.6
φ = -60, ψ = -38
rotameric hopping

(turn)

V5

V3
V2

V2

Wylie, B.J., Franks W. T., Graesser, D.T., Rienstra, C.M; JACS 2005, 127, 11946-47.

• δ and η greater in β-sheet  
  relative to α-helix

• Also depends upon χ1 for β-
  branched residues

V54
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• Traceless representation

• Theoretical values assume 1PGA crystal structure geometry

• Val and Thr show the greatest variation

Elements of CSA tensors of Cα Resonances
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Aliphatic 13C CSA Agreement with Theory

Wylie, Franks, Graesser, Rienstra, JACS 2005, 127, 11946-11947.
Sun, Sanders, Oldfield, JACS 2002, 124, 5486-5495.51
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Wylie, B. J.; Franks, T.; Rienstra, C. M., J. Phys. Chem. B 2006, 110, 10926-10936. 

15N ROCSA

ROCSA incorporated into 
15N-13C correlation 
experiment

• U-15N,13C sample

• 50 15N sites resolved 

• 15N CSA trajectories extracted      
  from third dimension and fit in the     
  time domain
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Variations in 15N Tensors

Wylie, B. J.; Franks, T.; Rienstra, C. M., J. Phys. Chem. B 2006, 110, 10926-10936. 
53
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15N CSA Tensor Results

N-Cα Plane N-CO

Wylie, Franks, Rienstra, J. Phys. Chem. B 2006, 110, 10926-10936.
Wylie, Sperling, Frericks, Shah, Franks, Rienstra, JACS 2007, 129, 5318-19.

• Reduced anisotropy magnitude varies with structure 
• Magnitude greater in helix, although dependence is complex
• Backbone 15N tensors are most used probes of motion in NMR
• Asymmetry, η, slightly smaller in α-helix compared to β-strands
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Carbonyl Tensor Sensitive to H-Bonding

Wylie, Sperling, Frericks, Shah, Franks, Rienstra, JACS 2007, 129, 5318-19.

• Tensors depend upon secondary structure
• δyy tensor element increases linearly with isotropic shift 

• C’ chemical shift correlated to H-bond length
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Computing Structure from CSA

• Wylie et al., unpublished
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Comparison with Crystal Structure

• RMSD = ~3 ppm (variation between predicted and 
observed)

• Noise in data ~1 ppm
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Wylie’s CSA Refined GB1 Structure

• Before (left) and after (right) CA CSA refinement
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