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2. Fast motion: average tensor & symmetry
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4. Order tensor and order parameter
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7. Determining motional rates from relaxation NMR

8. Practical aspects of protein dynamics study by SSNMR

NMR Theory and Techniques for Studying
Molecular Dynamics

Mei Hong, Department of Chemistry, Iowa State University

Motivations:
• Molecular dynamics cause structural changes and heterogeneity.
• Molecular motion can average spectral lineshapes, reduce
intensities, and affect NMR relaxation properties.
• Molecular motions are abundant in proteins and integral to their
function.



2

Timescales and Amplitudes of Motion from NMR
• Timescale: rate k, correlation time τc ~ 1/k, unit s-1 reflects the stochastic nature
of motion. Rate ≠ frequency.
• Correlation function C(t): provides a smooth curve for the random motion.

  

€ 

C t( ) ~ f 0( ) ⋅ f t( )

• Amplitude: motional geometry, number of sites, and their relative orientation.
• Rotation vs. translation: here we only discuss rotation, or reorientation.
• Diffusive motion: infinite number of sites, infinitesimal step size. e.g. isotropic
diffusion, on a cone and in a cone.
• Discrete motion: e.g. methyl 3-site jump, phenylene ring 2-site jump.

KSR & Spiess.
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Motional Regimes in NMR

• Fast motion:  k >> δ, which is the NMR interaction strength.
• Amplitude and geometry information obtainable from spectral line narrowing
(e.g WISE, DIPSHIFT, LG-CP, CSA recoupling, 2H quad echo);
• Timescale from relaxation times (T1, T1ρ);
• More geometry information from spectrally resolved T1 and T2 in 2H spectra.

• Slow motion: k << δ.
• Exchange NMR: 2D exchange, stimulated echo, CODEX
• Amplitude from the distance from diagonal in the 2D spectra, or Ntr
dependence in CODEX.
• Timescale from the tm dependence of the exchange intensity
• Geometry from the final value in CODEX or the off-diagonal pattern.

• Slow to intermediate motion: k < δ.
• Echo experiments (Hahn echo or quadrupolar echo)
• T2 minimum, T1ρ minimum.

• Intermediate motion: k ~ δ.
• Amplitude and timescale from 2H lineshape and T1ρ relaxation times.
• Interference with 1H decoupling.
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Motional Regimes in NMR

• Fast motion:  frequency view, order tensor S and order parameter.

• All other regimes: time domain view essential.
• Slow motion: occurs during the mixing time, is directly monitored.
• Intermediate motion: explicit time-domain calculation.

Example: equal-population 2-site exchange: 

slow 

intermediate 
  

€ 

τc << 1
δA−δB

  

€ 

τc >> 1
δA−δB

  

€ 

τc ≈ 1
δA−δB

Harris.

fast 
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(Fast) Motional Averaging of NMR Frequencies

  

€ 

ω θ, φ( ) = δ 1
2

3cos2 θ −1− ηsin2 θcos2φ( )• NMR frequency is orientation-dependent:

where (φ, θ) are the powder angles of B0 in the tensor PAS.

• Assuming fast motion among N sites with occupation probability pj, then 
  

€ 

ω = pjω j
j=1

N
∑

e.g: uniaxial interaction (η=0): 

  

€ 

ω θa,φa( ) = δ 1
2

3cos2 θa −1− η sin2 θa cos2φa( )

  

€ 

δ ,η of the averaged tensor usually differ from the δ, η of the original PAS.

€ 

δ of an averaged dipolar coupling tensor can contain sign information.

of an averaged dipolar coupling tensor is generally not uniaxial.

€ 

η 

depend on motional geometry and symmetry.  

€ 

δ ,η 

• The average of a second rank tensor is still a second-rank
tensor. So the average tensor (Σ1, Σ2, Σ3) has          and powder
angles (θa, φa) w.r.t. B0. The averaged NMR frequency is:

  

€ 

δ , η 



6

For uniaxial rotation or jumps with CN symmetry (N≥3), the
unique axis of the average tensor is the symmetry axis:

  

€ 

σPAS  →   σD = R−1 αP,βP, j
360°

N

 

 
 

 

 
 ⋅ σPAS ⋅R αP,βP, j

360°

N

 

 
 

 

 
 

j=1

N
∑

          average →    σ D D: director

Motional Geometry: Symmetry Considerations

of the averaged tensor may be obtained from the symmetry of the motion: 
• Tetrahedral jumps:
• Isotropic diffusion:
• Uniaxial rotation: 
• Discrete jumps over N≥3 sites with CN symmetry:

  

€ 

δ = 0
δ = 0
η = 0

  

€ 

η = 0

  

€ 

How to calculate δ ?
  -  δ  is the frequency obtained when B0 is along the ZD axis. At this 
orientation,  the frequency can be calculated by the equation without motion :

               δ = 1
2
δ 3cos2 βP −1− ηsin2 βP cos2αP( )

  

€ 

δ , η 

KSR and Spiess.
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Symmetry of the Average (Sum) Tensor

Consider equal-occupancy 2-site jumps between two uniaxial tensors (e.g. 13C-1H
dipolar or 2H quadrupolar couplings).

  

€ 

ω n = 1
2
δ 3cos2 Θn −1( ),  Θn is the direction angle between zPAS and Σ1,Σ2,Σ3

Average (or sum) tensor:
- must be invariant under the rotation.

  

€ 

Σ = σA +σB( ) 2 = σB +σA( ) 2

For two uniaxial tensors, the three principal axes are: 
• Normal of the AOB plane, Σ3

• Bisector of the angle AOB, Σ1

• Normal of the bisector, in the AOB plane, Σ2

Once the three principal axes directions are fixed, the three principal values are: 

  σA            σB

Σ3 axis:    90˚,    90˚
Σ1 axis:    β/2,    β/2
Σ2 axis:    90˚+β/2,   90˚-β/2

  

€ 

1,2,3 convention :  left to right,  or large
to small frequencies : ω 1 > ω 2 > ω 3

β < 90˚ and β > 90˚ have different axes labels.
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Phenylene Ring Flip: Motionally Averaged Lineshape

  

€ 

Θ1 = 30°

Θ2 = 60°

Θ3 = 90°

 ⇒  

ω 1 = 5
8
δ

ω 2 = − 1
8
δ

ω 3 = − 1
2
δ

 ⇒
δ = 5

8
δ

η = 0.6

Consider 2H or C-H dipolar spectra (η=0 PAS):
Reorientation angle β = 120˚

  

€ 

ω n = 1
2
δ 3cos2 Θn −1( )

KSR & Spiess.
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Lineshapes of Two Other Common Motions

• Methyl 3-site jumps: β = 109.5˚:

• Equal-population trans-gauche isomerization: β = 109.5˚.
  

€ 

 δ = −δ 3

CD3  jump 

trans-gauche
isomerization

Palmer et al, JPC (1996), 100, 13293.

slow intermediate fast

k      104 s-1               106 s-1 108 s-1
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Orientation and Magnitude of the Difference Tensor

Difference tensor:
- must have sign inversion under switch of the two individual tensors.
- relevant in exchange experiments.

  

€ 

Δ = σA − σB = − σB − σA( )

For two uniaxial tensors, the three orthogonal axes of the difference tensor are: 
• Normal of the AOB plane, Δ2

• In the AOB plane, 45˚ angles from the bisector, Δ3 and Δ1

  σA            σB

Δ1 axis:   45˚-β/2,    45˚+β/2

Δ2 axis:   90˚,    90˚

Δ3 axis:   45˚+β/2,    45˚-β/2

  

€ 

ωn
Δ = 1

2
δ 3cos2ΘA,n −1( ) − 1

2
δ 3cos2ΘB,n −1( )
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Fast Motion Experiments: 1.DIPSHIFT
• a separated-local field (SLF) technique: X
magnetization evolves under X-H dipolar
coupling.

• constant time t1: sampling occurs within one
rotor period.

• 1H homonuclear decoupling: e.g. MREV-8 for
νr<5 kHz, FSLG for νr~ 5-15 kHz, DUBMO, etc.

• X isotropic shift in ω2 gives site resolution.

Original DIPSHIFT

    

€ 

ωexp = δXH ⋅khomo

  

€ 

ΦCH
2x t1( ) = dtω t( )0

t1∫ − dtω t( )t1

τr∫

= dtω t( )0
t1∫ − dtω t( )0

τr∫ − dtω t( )0
t1∫[ ]

= 2 dtω t( )0
t1∫ = 2ΦCH

1x t1( )
• doubling the phase allows higher νr to be used.

Doubled DIPSHIFT

    

€ 

ωexp = 2 ⋅ δXH ⋅khomo

    

€ 

Φ t1( ) = dtω t( )0
t1∫ = δ dt C1cos ωr t + γ( ) + C2 cos 2ωr t + 2γ( )[ ],0

t1∫

δ ≡ −µ0 4π ⋅ γHγxh2 rHX
3 ,and C1,C2 are functions of 

powder angles α,β, γ( ) and the asymmetry parameter η

Munowitz et al, JACS, 103, 2529 (1981).
Hong et al, JMR, 129,85 (1997).
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time (ms) dipolar coupling (kHz) dipolar coupling (kHz)

Original DIPSHIFT

Doubled DIPSHIFT

time (ms) dipolar coupling (kHz) dipolar coupling (kHz)

t1 modulation expt. spectrum simulated spectrum

• Stick spectrum obtained by concatenating f(t1,ωr) over nτr, followed by FT.

• Simulation can be in either frequency or time domain.
• Couplings can in principle be amplified by 2, 4…2n times by more π pulses. 

DIPSHIFT Time and Frequency Signals

Hong et al, JMR, 129,85 (1997).

FT

FT



13

Manifestation of Motion from DIPSHIFT Data

Cady et al, JACS, 129, 5719 (2007). 
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Fast Motion Experiments: 2.WISE
• t1 dimension:1H-1H dipolar coupling > 1H-X dipolar
coupling >> 1H CSA.
• Suitable for νr < 10 kHz.
• Qualitative and quick assessment of mobility.
• In proteins, rigid-limit FWHM are 55-60 kHz for CH
groups, 65-70 kHz for CH2 groups.

e.g: hydration dynamics of elastin (VPGVG)n

e.g: mobility gradient
in poly(n-butyl
methacrylate).

Clauss et al, Macromolecules, 25, 5208 (1992).
Yao et al, MRC, 42, 267 (2004).
KSR and Mao, JACS, 124, 13938 (2002). 
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• 35˚ pulse prepares ρ0 along the tilted 1H effective field.

• 1H homonuclear decoupling by magic-angle spin lock,
removes H-H coupling, reveals X-H dipolar oscillation.

• suitable under fast MAS (νr >~10 kHz).

• symmetrized ω1 and site resolution in ω2.

  

€ 

ωIS,LG = δ ⋅cosθm = 0.577 ⋅ δ

Fast Motion Experiments: 3.LG-CP

Rigid limit CH: 
~13 kHz

Van Rossum et al, JACS, 122, 3465 (2000).
Hong et al, JPC, 106, 7355 (2002).

• simple to use: increment contact time
to obtain t1 dipolar modulation.
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€ 

- in the doubly rotating frame :

     H = ω1IIx +ω1SSx

rf part
1 2 4 4 3 4 4 

+ ΔωIIz + ωIS t( )IzSz

I−S hetero. dipolar
1 2 4 3 4 

+ωII t( ) 3Iz
i Iz

j − Ii ⋅ Ij( )
I-I homo. dipolar

1 2 4 4 4 3 4 4 4 

    

€ 

- In the tilted frame defined by the pulses, R = e
−iθmIye

−iπ
2

Sy
,

    HT = ωeff,IIz +ω1SSz

rf part
1 2 4 4 3 4 4 

+ωIS t( ) sinθmIxSx − cosθmIzSx( ),

under the n=±1 matching condition:   

€ 

ωeff,I − ω1S = ±ωr

    

€ 

where ωIS t( ) = 2δ C1cos ωrt + γ( ) + C2 cos 2ωrt + 2γ( )[ ],  and δ = − µ0
4π

γIγSh2

rIS
3

LG-CP Average Hamiltonian

  

€ 

- In the interaction frame defined by the rf pulses,  HIS
T = eiHrf tHISe−iHrf t

the time-independent average I-S dipolar coupling is: 

  

€ 

where the 0 - quantum 2 - spin operators are :

Ix
23( ) ≡Ix Sx + IySy,   Iy

23( ) ≡Iy Sx − IxSy,    Iz
23( ) ≡ 1

2
Iz −Sz( )

  

€ 

HIS
T = 1

2
δsinθm Ix

23( ) C1cosγ( ) − Iy
23( ) C1sinγ( )

 

 
 

 

 
 = 1

2
δsinθmC1 Ix

23( ) cosγ − Iy
23( ) sinγ

 

 
 

 

 
 

  

€ 

while H  II
T = 0.
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• In the tilted frame, 

  

€ 

ρ0 ∝ Iz = Iz
14( ) + Iz

23( )

⇒ ρ t( )∝ Iz
14( ) + Iz

23( ) cos ωIS,LGt( ) = Iz
2

1+ cosωIS,LGt( ) + Sz

2
1− cosωIS,LGt( )

where ωIS,LG = δ
2

sinθmC1

    

€ 

HIS
T = 1

2
δsinθmC1 Ix

23( ),  Iy
23( ), Iz

23( ) 

 
 

 

 
 

cosγ
sinγ
0

 

 

 
 

 

 

 
 

= 1
2
δsinθmC1

ωIS,LG

1 2 4 3 4 
⋅I

23( ) •BIS,LG

• The averaged I-S dipolar Hamiltonian can be written as a scalar product
between the ZQ spin operator and an effective tilted LG field:

  

€ 

Powder average:  C1 = 3
4

sin2θm sin2βij,

ωIS,LG βij( ) = δ
2

sinθm
3
4

sin2θm sin2βij = 1
2
δcosθm sin2βij

⇒LG−CP splitting= δcosθm = 0.577 ⋅ δ

LG-CP: Evolution of ρ Under the ZQ Hamiltonian
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LG-CP for Studying Membrane Protein Motion
e.g. colicin Ia channel domain, soluble –> membrane-bound state

Improvements of LG-CP #1:

• removes T1ρ effect in ω1.

• lower sensitivity.

Constant-time version

Hong et al, JPC, 106, 7355 (2002);
Yao et al, MRC,42, 267 (2004).
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LG-CP Variants

  

  

If at the end of the first CP period the S-spin has
the same magnetization as the I-spin, then

Improvements of LG-CP #2:

  

€ 

ρ 0( ) = Iz −Sz = 2Iz
(23),   

         compared to original LG - CP ρ 0( ) = Iz
(14) + Iz

(23),

2 − fold sensitivity enhancement
ρ t( ) = Iz cosωIS,LGt −Sz cosωIS,LGt

Improvements of LG-CP #3: 3D LG-CP

e.g. Gln:

PILGRIM

Hong et al, JPC, 106, 7355 (2002).
Lorieau and McDermott, JACS,128, 11505 (2006). 
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Motionally Averaged CSA Lineshape
Main advantage over dipolar coupling:
       - Spectra give asymmetry of the motion: e.g. uniaxial motion –>
       - Can be recoupled by SUPER for isolated labels.  

  

€ 

η = 0

    

€ 

ω t( ) = C1cosωr t + C2 cos2ωr t +

               S1sinωr t + S2 sin2ωr t,
static lineshape : ω ∝C1 + C2
MAS phase under π pulses :  

            Φ = ω t( )f t( )dt
−τr / 2
τr / 2∫

choice of pulse positions :  
to make Φ∝C1 + C2 
⇒  quasi− static lineshape
• f τr 2− t( ) = f τ r 2+ t( ), even function;

• f t( )cosωr t ⋅dt0
τr / 2∫ = f t( )cos2ωr t ⋅dt0

τr / 2∫

f(t)

f(t)

  

€ 

f t( )SUPER
⋅dt0

τr∫ = 1
2

f t( )CRAMA
⋅dt0

τr∫

⇒  scaling factor χ is half that of the 
      original expt.

Under 2π pulses:

Tycko et al, JMR, 85, 265 (1989).
Liu et al, JMR, 155, 15 (2002).
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e.g. M2 peptide of influenza A virus, L40 Cα

Cady et al, JACS, 129, 5719 (2007)

SUPER Lineshape of a Membrane Peptide

immobile

mobile
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Motionally Averaged CSA: U-13C Labeled Proteins

Example: U-13C, 15N-I3,N9-labeled
penetratin in DMPC/DMPG, 303 K.

ω1=4.283 ωr

χCSA= 0.272
χCSA = 0.05
χiso = 0.066

0.0329τr 0.499τr 0.501τr 0.967τr

Chan & Tycko, JCP, 118, 8378, (2003). 
Su et al, unpublished data.
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2. Fast motion: average tensor and symmetry consideration

3. Experiments for measuring amplitudes of fast motion

4. Order tensor and order parameter

5. Experiments for measuring slow motions

6. 2H quadrupolar NMR 

7. Determining motional rates from relaxation NMR

8. Practical aspects of protein dynamics study by SSNMR

NMR Theory and Techniques for Studying
Molecular Dynamics
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Derivation of Order Tensor - Uniaxial Motion

  

€ 

σM Θij →   σD uniaxial motion →      σD Φij →   σL

• Since <σD> is axially symmetric, the only relevant frequency in
the σM –> σD transformation is the frequency along ZD:

      

€ 

σzz
D ≡ ZD

M ⋅ σM ⋅ ZD
M = cosΘ1z cosΘ2z cosΘ3z( )

σ11
M σ12

M σ13
M

σ21
M σ22

M σ23
M

σ31
M σ32

M σ33
M

 

 

 
 
 
 

 

 

 
 
 
 

cosΘ1z
cosΘ2z
cosΘ3z

 

 

 
  

 

 

 
  

= cosΘiz ⋅ σij
M ⋅ cosΘ jz

i,j
∑ ,   averaging →     

σzz
D = cosΘiz cosΘ jz ⋅ σij

M

i,j
∑ = 2

3
3
2

cosΘizcosΘ jz − 1
2
δij

Sij

1 2 4 4 4 4 3 4 4 4 4 
⋅ σij

M

i,j
∑ + 1

3
δijσij

M

i,j
∑

⇒ δ ≡ σzz
D − σiso = 2

3
Si,j

M ⋅ σij
M

i,j
∑

• Info from motionally averaged spectra usually expressed as order parameter S,
which is the simplified version of order tensor S.

• Consider a molecule undergoing uniaxial rotation around a director ZD.

• The measured NMR frequency is the z-component of the interaction σ in the lab
frame. It can be obtained from two coordinate transformations:

M=σ PAS
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Definition of Order Tensor
• The general Saupe matrix (order tensor) S is defined as: 

    

€ 

Sij ≡
1
2

3cosΘicosΘ j − δij

  

€ 

δ = σzz
D − σiso = 2

3
Si,j ⋅ σij

i,j
∑

  

€ 

• For uniaxial motion,  the diagonalized σD  is : σ
D

=

σ⊥ 0 0

0 σ⊥ 0

0 0 σ //

 

 

 
  

 

 

 
  
,  

 where σ // = σzz
D ,  σ⊥ = 3

2
σ iso −

1
2
σ //

is true in any common frame of S and σ. 

• Further transforming <σD> to the lab frame gives the standard expression for
the measured NMR frequency with orientation dependence:

  

€ 

σzz
L − σ iso = cosΦiz ⋅ σ ii

D − σ iso ⋅cosΦiz
i
∑ = − 1

2
δ cos2 Φxz + cos2 Φyz
 
 
 

 
 
 + δ cos2 Φzz

= − 1
2
δ 1− cos2 Φzz
 
 
 

 
 
 + δ cos2 Φzz = δ ⋅ 1

2
3cos2 Φzz −1
 
 
 

 
 
 Φzz: polar angle of the

director in the lab frame.
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Properties of the Order Tensor

• The order tensor is traceless:

• The order tensor is symmetric:

• Thus, S tensor has 5 independent elements, and can always be
diagonalized to give its own principal axis system.

  

€ 

Sii
i
∑ = 3

2
cos2 Θi

i
∑ − 3

2
= 0

Sij = Sji (cosΘi cosΘ j = cosΘ j cosΘi )

  

€ 

δ = 2
3

S
ii
σ,PAS ⋅ σ

ii
PAS

i
∑ = 2

3
δ ⋅Szz

σ,PAS − δ
2

Sxx
σ,PAS + Syy

σ,PAS 
 
 

 
 
 

 
  

 
  

= δ ⋅Szz
σ,PAS = δ 1

2
3cos2 θPD −1
 
 
 

 
 
 ,     where θPD = Θ3Z

• Thus, the order parameter along a tensor’s principal axis,             ,
is directly measurable as the ratio       .

€ 

δ δ
  

€ 

Szz
σ,PAS

• The order parameter along a bond is the “projection” of the
order tensor onto that vector.

• Since                                                                , bond order parameters
contain the same orientation information that is sought after in aligned-
membrane experiments.

  

€ 

ω0° oriented = 1
2
δ 3cos2 θPD −1
 
 
 

 
 
 + ωiso
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Uniaxially Averaged CSA Lineshapes of β-Sheet
Peptides

13CO 15N

Hong and Doherty, Chem. Phys. Lett, 432, 296 (2006).
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Order Tensor and Order Parameter of Limiting Cases 
• Determining a traceless and symmetric S tensor requires 5 independent
NMR couplings; Symmetry considerations may reduce the number of
unknowns.

• If the molecule is rigid (i.e. no segmental motion), then there is a single S
tensor for the whole molecule (all segments have the same order).

• If the rigid molecule rotates about a single director axis, then the S tensor
is uniaxial, i.e. ηS = 0, with the unique axis along the director, and
(complete order).

• If the rigid molecule rotates about its own molecular axis and an external
director axis, then the S tensor is uniaxial along the molecular axis,

  

€ 

Szz
PAS = Smol = 1

2
3cos2 θMD −1

• Smol can be smaller than 1 due to tilt of the molecular axis from ZD or
wobbling of the molecular axis.

• Example:   - Cholesterol rings in the lipid membrane;
             - Lipid chains have additional internal segmental motions.

  

€ 

Sbond θPD( ) ≡ δ 
δ

= 1
2

3cos2 θPM −1
 
 
 

 
 
 ⋅Smol

• In this case, S along a bond, Sbond is related to Smol by:

  

€ 

Szz
PAS = 1
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Slow Motion: 2D Exchange NMR

2D spectrum S(ω1, ω2) is a joint
probability:
•  intensity distribution: geometry of motion
•  geometry encoded in a single angle β
for a uniaxial interaction

•  tm dependence –> correlation time.

S (ω1,ω2 ;β) for
an η=0 tensor

KSR and Spiess.
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2D Exchange of Lipid Membranes

e.g. lateral diffusion of lipids over the curved
surface of liposomes.

• Tensor PAS: uniaxial due to
lipid axial rotation;

• Reorientation-angle distri-
bution R(β; tm).

  

€ 

S ω1,ω2; tm( )
= dβR β; tm( )S ω1,ω2;β( )

0° 

90° 
∫

• tm =0, no exchange.

• tm dependence gives info on the lateral diffusion τc = r2/6DL, which reveals
the vesicle size r.

Marasinghe et al, JPC B, 109, 22036 (2005).
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1D Stimulated Echo: Time-Domain Exchange

• 1D analog of 2D exchange: t1 = τ.

• Allows fast determination of τc by varying tm,
avoids multiple 2D.

• similar to 2D exchange, most often applied to
static samples.

2D time signal: 

  

€ 

f t1, t2( ) = cosω θ1( )t1 − i sinω θ1( )t1[ ] ⋅eiω θ2( )t2 = e
−iω θ1( )t1 ⋅eiω θ2( )t2

...  denotes powder averaging.

1D time signal: t2=t1=te. 
- Segments without frequency change: ω(θ1)=ω(θ2)=ω (diagonal), or tm=0

      

€ 

MSE te( ) = e−iωte ⋅eiωte = 1

2 scans
{

- Segments with frequency change,

  

€ 

MSE te( ) = e
−iω θ1( )te ⋅eiω θ2( )te = e

iω θ2( )−ω θ1( )[ ]te → 0  due to destructive interference.

1D simulated echo intensity = 2D spectrum’s diagonal intensity.
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• Built-in z-filter eliminates T1 effects.
• S0: first tz = 1 ms, then tm
• S:  first tm, then tz = 1 ms

• Second and third 90˚ pulses phase-cycled
together to create cos(ω1t)cos(ω2t) in one
scan and sin(ω1t)sin(ω2t) in another.

Stimulated Echo: An Improved Sequence

  

€ 

MSE(τ; tm) = M0 cos(ω1τ)cos(ω2τ) + sin(ω1τ)sin(ω2τ)

= M0 cos(ω1−ω2)τ) = cos (ω1−ω2)τ( ) ⋅S ω1,ω2; tm( )dω1dω2∫

• Powder averaging: 2D spectrum S(ω1,ω2; tm) is the probability of finding
molecules with freq ω1 before tm and freq ω2 after tm .

  

€ 

ω1 = ω2,  ⇒  cos ω1−ω2( )τ = 1, ⇒  MSE τ;0( ) = S ω1,ω2; tm( )dω1dω2∫

• With increasing tm, ω2≠ω1, echo intensity decreases.
• For symmetric n-site jumps, the stimulated echo intensity decays exponentially
with a time constant τc:

• At tm=0, 

  

€ 

MSE τ >>
1

δ
;tm

 

 
 

 

 
 =

1

n
+ (1−

1

n
) ⋅M0 ⋅e

− tm τc

Every 2 scans:

Rec: y
        y

Marasinghe et al, JPC B, 109, 22036 (2005).
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Stimulated Echo Under MAS: CODEX

• 180˚ pulse train recouples X-spin CSA.

• 90˚ storage and read-out pulses are phase-cycled together; after the
second recoupling period, the accumulated MAS phase for 2 scans is:

cosΦ1 cosΦ2 - sinΦ1sinΦ2= cos(Φ1+Φ2) = cos(|Φ2|-|Φ1|)

where

  

€ 

Φ1 =
N

2
ω1 t( )dt0

tr 2∫ − ω1 t( )dt
tr 2
tr∫

 
 
  

 
 = N ω1 t( )dt0

tr 2∫

Φ2 =
N

2
− ω2 t( )dt0

tr 2∫ + ω2 t( )dt
tr 2
tr∫

 
 
  

 
 = −N ω2 t( )dt0

tr 2∫

• No reorientation: ω1 = ω2, –> Φ1+Φ2 = 0, cos(Φ1+Φ2)=1, a stimulated echo. 

• With reorientation, ω1 ≠ ω2, –> cos(Φ1+Φ2) < 1, echo decay. 

• Same T1 correction by tm/tz switch between S0 and S. 

Rec: y
        y

deAzevedo et al, JCP, 112, 8988 (2000).
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CODEX Sensitive to Small-Angle Reorientation
• The normalized CODEX signal is parameterized by the product of CSA and
recoupling time, δNtr (analogous to REDOR).

• Normalized signal can be considered in terms of the difference phase:

  

€ 

S tm,δNtr( ) S0 tm,δNtr( ) = cos Φ2 − Φ1( ) = cos ΦΔ( )
where ΦΔ = N ω2 −ω1( )dt2

tr / 2∫ = N ωΔ t( )dt2
tr / 2∫

€ 

• The difference tensor of a uniaxial interaction (η=0) has
the symmetry-determined orientation on the right –>

• It can be shown that:

  

€ 

ω22
Δ = 0

ω33
Δ = −ω11

Δ = 3
2
δ ⋅sinβ

       i.e. ηΔ = 1

ω33
Δ −ω11

Δ = 3δ ⋅sinβ = ω33 −ω11 ⋅2sinβ

• Thus, the CODEX signal scales with sinβ or β for small angles. 

• Usual angle dependence is (3cos2β-1)2, which scales as β2 . 
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CODEX: Reorientation Angles and Number of Sites

Total signal is a weighted sum of β-dependent
curves:

  

€ 

E tm,δNtr( ) = R β( )ε δNtr;β( )dt ⋅dβ0
90°∫

  

€ 

ε δNtr;β( )

  

€ 

S
S0

tm >> τc,δNtr >> 1( ) =
1
M

Jump motions: 

3-site jump

Isotropic
jump

Isotropic
diffusion

Uniaxial
rotation

KSR et al, Encyclop NMR, 9, 633 (2002).
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2H NMR for Studying Protein Motion

• Quadrupolar echo

• Anisotropic T2

• Anisotropic T1 : different relaxation rates
across motionally averaged lineshape;
large frequencies give faster relaxation.

• 2D exchange: ω1 symmetrized version
of the η=0 CSA pattern.

• large interaction strength, 160-200 kHz, sensitive to motional geometry.
• anisotropic relaxation experiments probe ns - ms motions.
• requires site-specific labeling.
• no multiplex advantage.
• fast motion amplitude information replaced by C-H dipolar experiments
under MAS, e.g. LG-CP.

CD3 rotation 

Phe ring flip

Palmer et al, JPC, 100, 13293 (1996).
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1. Timescale and Amplitude of Motion from NMR 

2. Fast motion: average tensor and symmetry consideration

3. Experiments for measuring amplitudes of fast motion

4. Order tensor and order parameter

5. Experiments for measuring slow motions

6. 2H quadrupolar NMR 

7. Determining motional rates from relaxation NMR

8. Practical aspects of protein dynamics study by SSNMR

NMR Theory and Techniques for Studying
Molecular Dynamics
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NMR Relaxation - A Primer

• Requirements for relaxation: 
• a magnetic interaction.
• random motion at the appropriate frequency.

• Consider an isolated spin subject to an
isotropic random field BL(t)=<BL>f(t).

  

€ 

• The spatial part of H(t) is γBL ⋅ f t( )
so double commutation means f t( ) ⋅ f t − τ( ) ≡ C τ( )
• Assume C τ( ) =  e−τ τc , i.e. decays to 0, isotropic motion.

• In the rotating frame, H(t) is modulated by e-inω0t

• So Fourier transform C τ( ) :  C τ( )e−iω0τdτ0
∞∫ ≡ J ω0( )   ⇒    J ω0( ) =

τc

1+ω0
2τc

2

• J ω0( ) ≡ spectral density, power available from the fluctuations at frequency ω0

    

€ 

dρ t( )
dt

= −
i

h
H t( ),ρ 0( )[ ]

0
1 2 4 4 3 4 4 

−
1

h2
H t( ), H t − τ( ),ρ[ ][ ]dτ

0

t
∫ = −

1

h2
H t( ), H t − τ( ),ρ[ ][ ]dτ

0

t
∫

Abragam

C(τ)
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€ 

T1
−1∝ γBL

2 τc

1+ω0
2τc

2

Relaxation Rate, J(ω), & Correlation Time

a Lorentzian function
centered at ω0 = 0

J(ω)

log(ω)

Extreme narrowing
limit

Logarithmic plot stretches small ω regime.

• <γBL>: strength of the local field driving relaxation.

• For heteronuclear dipolar relaxation, γBL = ωIS. 

• <γBL>2 dependence: relaxation is second order.

• The above calculations lead to relaxation rates including terms like:

  

€ 

• ω0τc << 1,  T
1
-1∝ τc;          ω0τc ~ 1,   T

1,min
-1 ∝ω2 ω0

log(T1,T1ρ)

log(τc)

T1ρ

T1

no T2 minimum
for undecoupled
systems.

T2

Harris.
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• For X-spin T1 relaxation due to H-X dipolar coupling and X-spin CSA,

• T1 relaxation is sensitive to motion near the Larmor frequencies, ~10-9 s-1
  

€ 

R1,X =
ω

HX
2

4
J ωH −ωx( ) + 3J ωx( ) + 6J ωH +ωx( )[ ] + c2J ωx( ),  where c = Δσ ⋅ωx 3

Inversion
recovery

T1 and T1ρ Relaxation

• For 1H T1ρ relaxation under LG spin lock at ωe, driven
by H-H and H-X dipolar couplings,

  

€ 

R1ρ,H =
1

10
δ

HH
2 J(ωe ) + 2J(2ωe ){ +6J(ωH) + 6J 2ωH( )} 

+ 
1

30
δ

XH
2 2J(ωe ) + 3J(ωx ) + J(ωx −ωH) + 3J(ωH){ + 6J(ωx +ωH)}

• T1ρ is sensitive to motion near ~105 s-1, which is common in membrane proteins.

• X-spin T1ρ is usually not measured due to the need for 1H decoupling, which
causes undesirable reverse CP.

• Main local fields driving relaxation:
• dipolar couplings
• quadrupolar couplings
• CSA

Mehring.
Huster et al, Biochemistry, 40, 7662 (2001).



41

ω1,H=100 kHz

ω1,H=50 kHz
  

€ 

R2 s−1( )

    

€ 

R2,X =
γ
H
2 γ

X
2 h2

5 ⋅ r6
J(ω1,H) =

γ
H
2 γ

X
2 h2

5 ⋅ r6

τc

1+ω
1,H
2 τc

2

ω
1,H
τc << 1,   R2,X ∝ τc

ω
1,H
τc >> 1,   R2,X ∝

τc

ω
1,H
2

• For X-spin T2 under a 1H decoupling field of ω1,H,

Rothwell and Waugh, JCP, 74, 2721 (1981)

• Solids X-spin T2 has a minimum.

1H Decoupled X-Spin T2

• Similar to 1H T1ρ, decoupled X-spin
T2 is sensitive to ~105 s-1 motions.

• Many membrane peptides and
proteins exhibit R2-enhanced line
broadening due to µs motion.
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€ 

  

€ 

• Definition :  C τ( ) = f t( ) ⋅ f t − τ( )
• For example,  f t( ) =

1

2
3cos2 θ t( ) −1
 
  

 
  

   which leads to the 2nd - order correlation function :

       C2 τ( ) ≡ 5 P2 cosθ t( )( ) ⋅P2 cosθ t − τ( )( )

• For discrete jumps, τc(C2) = τc(C4) = τc(C6)…

• For diffusive motion, τc from higher order CL functions differ from τc(C2).

• Determining τc(CL) for different order can distinguish jump motion and
diffusive motion.

• Higher order correlation functions also exist. In general, 

  

€ 

CL τ( )∝ PL cosθ t( )( ) ⋅PL cosθ t − τ( )( )

More about Time Correlation Function
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Determining τc in Anisotropically Mobile Systems

• For activated processes,

• Varying temperature to map out τ0 and Ea.
  

€ 

τ = τ0eEa RT

• For anisotropic motion: C(τ) decays to a finite
value, S2 > 0.

• J(ω) depends on S:

• Varying the field: ω0 for T1, ω1 for T1ρ.

• Relaxation time ratios at different fields
depend only on τc.

  

€ 

J ω( ) = 1−S2 
 
 

 
 
 τc 1+ω2τc

2 
 
 

 
 
 

e.g. hexamethylbezene, 3 phases:
I: CH3 C3 motion (< 116 K),
II: C6 + C3 motions (116-383 K)

antimicrobial
peptide TPF4 Ea = 6.4 kcal/mol

τ0=2 x 10-14 s

Rothwell and Waugh, JCP, 74, 2721 (1981) 
Huster et al, Biochemistry, 40, 7662 (2001).
Doherty et al, Biochemistry, Epub (2008)

  

€ 

T
2
−1

Colicin Ia
channel domain
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Types of Motions in Proteins

Segmental Global

• methyl group rotation (CH3)

• amine rotation (NH3)

• phenylene ring flip (Phe, Tyr)

• no ring flip (Trp, His)

• torsional libration

• sidechains: mobility gradient

• backbone amides (NH-CO)

• trans-gauche isomerization

• large-amplitude diffusion of loops and

termini

• whole-body uniaxial rotation

(membrane peptides)

• near isotropic diffusion (e.g.

elastin)

Practical Aspects of Protein Dynamics From SSNMR
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1. CP versus DP (direct polarization)

• CP: selects immobile species.

• DP: selects mobile species due to narrow
lines, high intensity, and short 13C T1.

• heterogeneously mobile systems give
different T2’s under CP and DP.

e.g. POPC/POPG membrane in the presence
of an antimicrobial peptide

Diagnostic Methods to Identify Motion - 1

Mani et al, Biochemistry, 43, 13839 (2004).
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2. CP intensity loss: intermediate timescale motion interferes with:
• 1H-X CP
• 1H decoupling
• Intensity can be retrieved by varying T.

13C CP

Diagnostic Methods to Identify Motion - 2

Doherty et al, Biochemistry, 2007 (Epub ahead of print)
Cady et al, JACS, 129, 5719 (2007).



47

3. Very large-amplitude motion: J-coupling based techniques can be used to
selectively detect mobile segments.

Other Mobility-Tailored Techniques

J-INEPT HCC

J-INEPT HNCACB

Andronesi, JACS, 127, 12965 (2005).

4. Rigid-body uniaxial rotation of membrane peptides around the bilayer normal
allows orientation determination.


