Long Range Distance Restraints in Spin Labeled Proteins Probed by Solid-State NMR

Christopher Jaroniec Department of Chemistry The Ohio State University

Dipolar Couplings and Molecular Structure

M.H. Levitt, "Spin Dynamics"

α-spectrin SH3 domain (~300 ¹³C-¹³C restraints)

Castellani et al., Nature 420 (2002) 98

- Dipolar coupling measurements are key for structural studies
- "Standard" methodology in solution NMR (e.g., NOESY); analogous methods emerging for MAS solid-state NMR

Long-Range Restraints

- Measurement of long-range (> ~5 Å) distances is critical (e.g., protein fold, intermolecular interactions, etc.)
- Complicated by small D_{IS} and/or multi-spin effects

Studies of Paramagnetic Proteins

- Hyperfine coupling in general leads to contact & pseudocontact shifts, and <u>enhanced nuclear spin relaxation</u> (see Y. Ishii's talk)
- Neglect contact & pc shifts for long-range measurements and paramagnetic species with small g-anisotropy
- Well-known effects: used in solution NMR of proteins since 1960's

Nuclear Spin Relaxation Mechanisms

Modulation of magnetic field at the nucleus leads to relaxation

Solomon Equations: Paramagnetic Relaxation Enhancement (PRE)

$$R_{1} \approx \frac{2}{15} \left(\frac{\mu_{0}}{4\pi}\right)^{2} \frac{\gamma_{I}^{2} g_{e}^{2} \mu_{B}^{2} S(S+1)}{r^{6}} \left(\frac{3\tau_{c}}{1+\omega_{I}^{2} \tau_{c}^{2}} + \frac{7\tau_{c}}{1+\omega_{S}^{2} \tau_{c}^{2}}\right)$$

$$R_{2}, R_{1\rho} \approx \frac{1}{15} \left(\frac{\mu_{0}}{4\pi}\right)^{2} \frac{\gamma_{I}^{2} g_{e}^{2} \mu_{B}^{2} S(S+1)}{r^{6}} \left(4\tau_{c} + \frac{3\tau_{c}}{1+\omega_{I}^{2} \tau_{c}^{2}} + \frac{13\tau_{c}}{1+\omega_{S}^{2} \tau_{c}^{2}}\right)$$

 $\tau_c^{-1} = T_{1e}^{-1} + \tau_r^{-1} + \tau_M^{-1}$ (solution); $\tau_c^{-1} = T_{1e}^{-1}$ (solid); $|\omega_s| >> |\omega_I|$; $T_{1e} = T_{2e}$

• R_1 and R_2 can be related to the electron-nucleus distance (r) if the electronic relaxation time constant (T_{1e}) is known

> Solomon, Phys. Rev. 99 (1955) 559 Bertini & Luchinat, Coord. Chem. Rev. (1996)

Electronic Relaxation Times

- Typical T_{1e} values (solution/RT) are in the range 10^{-13} to 10^{-7} s (larger T_{1e} = larger transverse PRE)
- Exact T_{1e}'s under SSNMR conditions not available: one potential limitation to quantitative distance measurements

Bertini & Luchinat, Coord. Chem. Rev. (1996) Eaton & Eaton, Biol. Magn. Res. (2000)

Calculated SSNMR PRE (S=1/2, 500 MHz)

- Longitudinal and transverse PRE varies strongly with T_{1e}: can be modulated by using different paramagnetic centers
- Significant PRE expected for distances of ~5-20 Å

- Cross-peak intensity reduced by transverse PRE
- Distances between paramagnetic center and all nuclei can be monitored simultaneously via a simple 2D/3D correlation spectrum

- General method, works best for proteins with no native cysteines
- Cysteine introduced via site-directed mutagenesis, followed by reaction with thiol specific paramagnetic reagent (Hubbell, 1989)
- Used routinely for EPR studies; more recently in solution NMR

Kosen, Meth. Enzymol. (1989) Hubbell & Altenbach, Curr. Op. Struct. Biol. (1994)

Spin Labeling of Protein GB1 (56 aa)

 R1/R1' side-chain incorporated at solvent-exposed sites K28 & T53

GB1 plasmid DNA: A.M. Gronenborn (U. Pittsburgh)

No Major Effects on Protein Fold

• Main CS differences ~±2 residues, and in spatial vicinity of R1-site

No Major Effects on Protein Fold

	¹ H ^N	¹⁵ N	¹³ Cα	¹³ Cβ	¹³ C'
$\left \Delta\delta_{28R1}\right _{avg}$ (ppm)	0.02(4)	0.08(18)	0.03(4)	0.03(3)	0.02(4)
$\left \Delta\delta_{53R1}\right _{avg}$ (ppm)	0.05(8)	0.2(6)	0.06(7)	0.09(17)	0.10(21)

SL Protein Samples for SSNMR

Franks et al., JACS (2005)

2D ¹⁵N-¹³C α Spectra of R1/R1' Proteins

- Significant variations in cross-peak intensity for R1-proteins
- No change in resonance frequencies; small changes in LW

PRE Due to Spin Label (T_{1e} ~ 100 ns)

Baldus et al., Mol. Phys. 95 (1998) 1197

 Cross-peaks from residues within ~10 Å of spin label are effectively suppressed during ¹H-¹⁵N and ¹⁵N-¹³Cα CP transfers

¹H/¹⁵N T₁^{*p*} Measurements

2D ¹⁵N-¹³C α Spectra of R1/R1' Proteins

- Significant variations in cross-peak intensity for R1-proteins
- No change in resonance frequencies; small changes in LW

Relation to GB1 Structure: 53R1

• Residues closest to R1 side-chain suppressed most effectively

2D ¹⁵N-¹³Cα Spectra of 53R1/28R1

Different set of lines suppressed in 28R1 relative to 53R1

Relation to GB1 Structure (28R1)

• Residues closest to R1 side-chain affected most significantly

Relation to GB1 Structure: Summary

Nadaud et al., JACS 129 (2007) 7502

Solution vs. Solid-State PRE

- Similar PRE profiles (¹H^N PRE during CP/INEPT is dominant)
- PRE more pronounced in the solid-state ($\tau_{c,solid} > \tau_{c,solution}$)

Estimated SL-Nucleus Distances

Langen et al., Biochemistry 39 (2000) 8396 For R1 helix surface sites (e.g., 28R1):

$$\begin{cases} \chi 1 = -60 \\ \chi 2 = -60 \end{cases} \text{ or } \begin{cases} \chi 1 = 180 \\ \chi 2 = 60 \end{cases}$$

 χ 5 – little effect on distance

PRE vs. Estimated SL Distances

• Reasonable qualitative correlation between expected electronnucleus distance and cross-peak intensity for r_{en} up to ~20 Å

Pulse Schemes for T₁/T₁ Measurement

Giraud et al., JACS 126 (2004) 11422

- Pseudo-3D: 2 chemical shift dimensions + relaxation (easily extended to pseudo-4D)
- Similar schemes for ¹H and ¹³C relaxation measurements

Preliminary Site-Resolved ¹⁵N T_{1ρ} Measurements in 53R1

Paramagnetic Metal Ions

Griesinger & co-workers, Magn. Res. Chem. (2006)

lon	logK EDTA-M	S	T _{1e} (s)	
Ca(II)	10.70	-	-	
Cu(II)	18.86	1/2	~1-5 x 10 ⁻⁹	
Mn(II)	13.95	5/2	~10 ⁻⁸	
Gd(III)	17.30	7/2	~10 ⁻⁸ –10 ⁻⁹	

EDTA-M binding: Anderegg (1977), Powell (1979) T_{1e} data: Bertini & Luchinat, Coord. Chem. Rev. (1996)

Preliminary Data: 53R1 vs. 53EDTA-Cu(II)

- Smaller R_{2,para}, larger ¹⁵N R_{1,para} for Cu(II) as expected
- Similar ¹H R_{1,para} for R1 and Cu(II) likely ¹H spin-diffusion
- Must be careful about metal ion exchange

Conclusions

- No fundamental limitations to MAS SSNMR studies of paramagnetic proteins
- T_{1e} values in protein microcrystals appear to be similar to reported solution values
- Many potential applications:
 - Qualitative distance measurements up to ~20 Å in challenging biological systems
 - Spectral editing
 - Identification of ligand binding sites, ...
- Tune magnitude of PRE by using different paramagnetic species
- Quantitative distance measurements?

Studies of Paramagnetic Solids

Small Molecules (1980's –)

- Bryant & co-workers, JACS (1983, 1986)
- Walter & Oldfield, Chem. Comm. (1987)
- Nayeem & Yesinowski, JCP (1988)
- Campbell & Haw, Inorg. Chem. (1988)
- Groombridge & Perkins, Chem. Comm. (1991)
- Brough, Grey & Dobson, JACS (1993)
- McDermott & co-workers, JACS (1995)
- Heise et al., JACS (1999)
- Ishii & co-workers, JACS (2003, 2005), JMR (2006)
- Emsley & co-workers, JACS (2006)
- Polenova & co-workers, JPC (2006)

Proteins

- McDermott & co-workers, JACS (1998, 2005), Biochem. (1999)
- Bertini, Emsley & co-workers, Angew. Chem. (2007)
- Bertini & co-workers, JACS (2007)
- Ishii & co-workers, JMR (2007)

Acknowledgments

- Philippe Nadaud
- Jonathan Helmus
- Nicole Höfer (visiting, U. Limerick)
- Angela Gronenborn (U. Pittsburgh)
- Ad Bax (NIH)
- Chad Rienstra (UIUC)

alzheimer's \mathcal{O} association