

Problem Set: Dynamics from SSNMR

1. The difference tensor $\Delta = \sigma_A - \sigma_B$ plays an important role in the dependence of the stimulated echo and CODEX signals on the reorientation angle. The directions of the principal axes of the difference tensor between two uniaxial tensors are shown below:

- (a) Generally, how does the n^{th} (n = 1, 2, 3) principal value of an NMR interaction tensor, ω_n , relate to the frequency measured when the B₀ field points along the n^{th} principal axis?
- (b) Calculate the frequencies $\omega_{A,n}$ and $\omega_{B,n}$ for the B_0 field pointing along the n^{th} principal axis of the difference tensor. Express the frequencies in terms of the reorientation angle β , assumed to be < 90°. Use the result in (a) to calculate the principal values ω_n^{Δ} of the difference tensor from the difference of these frequencies $\omega_{A,n} \omega_{B,n}$.
- 2. The CODEX pulse sequence with the basic two-step phase cycle is shown below. Calculate the density operator or magnetization direction, along with its frequency modulation factor, at the points specified below. Do this for the two scans separately, and show that the detected signal after two scans is modulated by $\cos\Phi_1\cos\Phi_2-\sin\Phi_1\sin\Phi_2$, where Φ_1 and Φ_2 are the MAS phases accumulated in the first and second π -pulse trains, respectively,

$$\Phi_1 = N {\textstyle \int_0^{t_r/2}} \, \omega_1\!\!\left(t\right)\!\!dt, \quad \Phi_2 = - N {\textstyle \int_0^{t_r/2}} \, \omega_2\!\!\left(t\right)\!\!dt\;.$$

- 3. Consider fast trans-gauche isomerization of a C-D bond between two sites (e.g. t and g+) at equal population. The jump angle is 109.5°. As a good approximation η = 0 for the rigid-limit 2 H quadrupolar interaction.
- (a) Calculate the three principal values of the motionally averaged quadrupolar interaction. Sketch the resulting $^2\mathrm{H}$ spectrum.
- (b) What is the $\overline{\eta}$ of the averaged lineshape?
- (c) What is the ratio between $\overline{\delta}$ and δ ?
- 4. Consider a C-H vector held rigidly in a peptide that undergoes fast uniaxial rotation around the lipid bilayer normal.
- (a) What is the rigid limit coupling? Use a C-H bond length of 1.10 Å.

- (b) If the C-H vector is 90° from the bilayer normal, what is the averaged coupling? What is the order parameter?
- (c) If the C-H vector is 35° from the bilayer normal, what is the averaged coupling? What is the order parameter?
- (d) What is the $\overline{\eta}$ of the averaged coupling?
- 5. Consider the equation $\sigma_{ZZ}^L = \overline{\delta} \cdot \frac{1}{2} \left(3\cos^2 \Phi_{ZZ} 1 \right) + \sigma_{iso}$ for the measured NMR frequency of a powder sample with uniaxial rotational mobility.
- (a) What is the definition of the angle Φ_{zz} ? Be specific about the two axes.
- (b) Sketch the static CSA lineshape of this system measured by direct polarization. Indicate $\,\overline{\delta}$ in your sketch.
- (c) If you measure the static CP spectrum, how will the lineshape be different from the DP spectrum? (Hint: consider how the motionally averaged X-H dipolar tensor and the motionally averaged CSA tensor are related).
- 6. Consider a non-spinning sample of a singly ¹⁵N-labeled helical peptide in the lipid membrane. The peptide undergoes uniaxial rotation around the membrane normal.
- (a) Sketch the 1D static ¹⁵N chemical shift spectrum of the peptide. Indicate the frequency positions at which the bilayer normal is
 - (i) perpendicular to B_0 , (ii) parallel to B_0 .
- (b) Sketch the 1D motionally averaged N-H dipolar spectrum of the same sample. Indicate the frequency positions at which the bilayer normal is
 - (i) perpendicular to B₀, (ii) parallel to B₀.
- (c) If you measure the 2D dipolar-chemical shift correlation spectrum of this peptide under the non-spinning condition, what is the expected lineshape? Sketch the 2D contour spectrum.
- 7. The $^{1}\text{H-decoupled T}_{2}$ relaxation rate of an X spin depends on τ_{c} as: $R_{2,X} = \frac{\omega_{Hx}^{2}}{5} \frac{\tau_{c}}{1 + \omega_{1H}^{2} \tau_{c}^{2}}$,

where ω_{HX} is the dipolar coupling strength, and $\omega_{1,H}$ is the ¹H decoupling field strength.

- (a) Calculate the τ_c at which R_2 is at the maximum (i.e. at T_2 minimum).
- (b) Calculate the slope of the logR2 versus log τ_c curve for $\tau_c << \omega_{1H}^{-1}$.
- (c) Calculate the slope of the logR₂ versus log τ_c curve for $\tau_c >> \omega_{1H}^{-1}$.
- 8. An activated motional process is characterized by $\tau_c = \tau_0 e^{E_a/RT}$. You conduct a variable-temperature experiment to measure R₂ under ¹H decoupling. Suppose the mechanism of relaxation is dipolar coupling between ¹H and the observed X spin.
- (a) What is the slope of the logR₂ versus 1/T curve in the extreme narrowing limit?
- (b) What does the above answer mean in terms of how to determine Ea?
- (c) How can you obtain τ_0 ?