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Abstract

When developing a new product or process developers may conduct prototyping

experiments to test the technical feasibility of design alternatives.  We model product

and process prototyping as combinations of Bernoulli experiments with known rewards,

costs and success probabilities.  Experimental outcomes are observed and the design

with the highest observed reward is chosen.  The model balances the cost of building

and testing the prototypes against improvements in expected profits.  We present a

prototype design methodology that yields the optimal combination of Bernoulli trials

with varying parameters and show how the mode of experimentation determines the

preferred type of product.
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1.1. IntroductionIntroduction

1.1. Research Objectives

We specify the optimal prototype design, or combination of prototypes, for the

Bernoulli case and demonstrate how the mode of experimentation determines the

preferred type of prototype.

We then consider the prototype design problem, namely: given a menu of possible

prototypes, each characterized by its own payoff, probability of success, and cost, what

prototypes should be built and how many of each should be developed in parallel?

The remainder of the paper proceeds as follows. Section 3 develops optimal hybrid

policies that include parallel and sequential experiments.  Section 4 addresses the

problem of prototype design.  Section 5 concludes the paper with a discussion of the

results and managerial implications.

2.2. Discrete Outcome Homogeneous Parallel PrototypesDiscrete Outcome Homogeneous Parallel Prototypes

In this section we consider the simplest model of parallel prototyping experiments, each

with the same potential reward, cost and success probability, conducted in a single

period.

2.1. Example: Semiconductor Production Equipment

Applied Materials is a leading supplier of chemical vapor deposition (CVD) equipment

and other process equipment used by manufacturers of semiconductor devices.

Applied’s CVD division pioneered the design of modular equipment that deposits and

etches chemicals onto semiconductor wafers.  Chipmakers such as Intel buy process

equipment based on reliability, cost effectiveness, and performance, particularly the
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equipment’s ability to squeeze smaller circuits more densely onto a given wafer.  In

short, improving the process for semiconductor manufacturing is the key to profitability

for firms such as Applied Materials.  Time-to-market matters a lot in this industry,

since chipmakers commit to a highly integrated manufacturing process early on, when

designing their fabs.  After a point, changing the process technology becomes technically

difficult and very costly.

In 1996, the CVD Division faced a competitive threat that was also an opportunity

[Kori 1996].  A competitor had developed a new wafer-heating technology using ceramic

hot plates rather than aluminum ones.  Ceramic could generate higher temperatures

more consistently, allowing the tungsten metal layer to be applied to the silicon wafer in

a more precise manner.  If Applied could develop it own ceramic heater for its modular

CVD equipment the rewards would be significant and relatively predictable.  But

technological feasibility was uncertain due to the difficulty of maintaining a vacuum

within a mixed-material (ceramic and aluminum) wafer-heater chamber.  Engineers

conducted brainstorming sessions, conceived of four potential designs, and identified

several suppliers who could build and test these designs.  The CVD division manager

had to decide which designs to build and test in order to address this opportunity.  We

revisit this example in section 4.2.

2.2. The Single-Period Bernoulli model1

To model the outcomes of prototyping in a single period horizon, we consider a set of

homogeneous Bernoulli trials.  Each of n prototyping experiments costs c and results

either in success with probability p , or in failure with probability p−1 .  Success in at

least one trial gives rise to gross profit R, while failure in all n trials results in gross

                                               

1Model notation is summarized in Appendix 1.
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profit of zero.  No benefits are derived from achieving more than one success.  R and c

are assumed positive and 10 << p .

This model applies when the technology risk dominates and potential rewards are

predictable.  That is, the firm knows how profitable the innovation will be, but is

uncertain as to its feasibility.

Unless specifically mentioned, the number of parallel prototypes, n, is treated as a

continuous decision variable, even though in application it would be integer-valued.

The objective function for the Bernoulli model is given by:

(1)          [ ] ( )( ) ncpRE n
n ⋅−−−⋅= 11π .

It is easy to verify that (1) is strictly concave in n and is maximized at:
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Condition (3) requires that the potential reward exceed the probability-adjusted cost of
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the optimal number of parallel prototypes.  Rather, n* achieves its maximum when

R

ec

ep
⋅−

−= 1 , an interior point of (0, 1).  This result derives from

(4)                    
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−<<− 11 , negative for 11 <<−
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, and zero when

R

ec

ep
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−= 1 .  The fact that n* is maximized for an interior value of p suggests that the

optimal number of prototypes is highest when outcome variability, adjusted for

parallelism, is maximized.  In the case of Bernoulli trials, extremely high or low success

probabilities reduce the variability of outcomes and lead to fewer parallel prototypes

being built.

It is straightforward to verify that reducing the cost per experiment increases the

optimal number of parallel prototypes 







<
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n
, as expected.  Increasing the

potential reward, R, also pushes n* higher 
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How is total R&D spending affected by lower experimentation costs?  We have

                                               

2 Note that R
c

ep
−

−≤ 1  violates condition (3) and, therefore, need not be considered here.
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< .  So reductions in the unit prototyping cost

decrease total spending when c is small.  If prototyping costs are sufficiently high, i.e., if
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, then reductions in the unit cost per experiment will lead to higher

total spending.  Total spending is concave in c 
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a maximum at 
e

pR
c

))1ln(( −−⋅
= , consistent with equation (4)’s result that the

maximum number of prototypes occurs at this same point.

For example, with 100=R  and 2
1=p , optimal total spending peaks when c = 25.5, i.e.,

when the cost of prototyping is approximately one quarter of the potential profit, and

then falls on either side of that unit cost, as seen in Figure 1. cn ⋅*

Total spending Total spending 

0.0
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30.0

40.0

0 5 10 15 20 25 30 35 40 45 50

c
Unit cost per prototype

cn ⋅*
cn ⋅*

Figure 1

Managers may object to the notion of parallel prototyping on the grounds of limited

resources.  Our results quantify the value of an extra dollar of R&D when the budget,
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M, constrains the team to building fewer than n* prototypes.  It is straightforward to

show that shadow price of M, is 1)1))(1ln(( −−−−⋅= c
M

pp
c

R
λ .  Clearly, the shadow

price of a marginal R&D dollar is higher when the potential reward is high and the cost

per prototype is low.  Firms that employ the one-shot mode of prototyping by building

a single prototype, that is by setting cM = , could derive a return of

1)1))(1ln(( −−−−⋅= pp
c

R
λ  on each additional dollar of R&D budget.  For example,

when 1and  , , 10 2
1 === cpR , and M is limited to 1, 47.2=λ .  An additional dollar of

R&D budget yields a 247% return at the margin.  Even when restricting the analysis to

integer values of n, the return is 150% on building a second prototype.  Figure 1 reveals

that the opportunity cost of constraining the budget for R&D is exacerbated when high

prototyping costs begin to decline.  The one-shot firm facing high prototyping costs

starts out with below optimal R&D funding (assuming 2* ≥n ), and experiences even

higher opportunity costs as c declines and cn ⋅*  increases.

3.3. Hybrid Parallel/Sequential PoliciesHybrid Parallel/Sequential Policies

In this section we relax the constraint that all prototypes must be built in a single

period.  We assume an infinite time horizon with discount factor β, 10 ≤< β .  Any

number of i.i.d. prototyping experiments can be run in each period.  We show that for

sufficiently low β, the optimal policy can be characterized as a hybrid

sequential/parallel policy in which n* parallel prototypes are built in each period until a

“good enough” result is achieved.  If β is sufficiently close to 1, that is if delays to

market are not very costly, then a pure sequential policy will be optimal.  We can then

compare the expected profits of the optimal pure parallel, pure sequential, and hybrid

policies.
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3.1. Purely Sequential Experimentation

As a basis for comparison against pure parallel and hybrid parallel/sequential processes,

we use the result in Weitzman [1979] for the optimal sequential search policy, referred

to as Pandora’s rule since it consists of opening boxes (building prototypes) with

unpredictable contents (stochastic outcomes).  Each possible prototype is parameterized

by the cost of running it and the probability distribution of possible rewards.  A

reservation price, z, is assigned to each experiment and is the solution to the following

equation:

(6)          ∫∫
∞

∞−

⋅⋅+⋅+−=
z

z

dxxfxdxxfzcz )()( β ,

where c is the cost of the prototype, f(x) the density function of the profit distribution,

and β the discount factor per period.  Equation (6) reveals that the reservation price

equals the net expected value of running sequential experiments until realizing the first

outcome greater than or equal to the reservation price.

Weitzman proves that the optimal pure sequential search policy is to open the box with

the highest reservation price, observe the stochastic outcome, and stop if the outcome is

higher than the reservation prices for all remaining boxes.  If the highest observed

outcome does not exceed all remaining reservation prices, then the box with the next

highest reservation price is opened. In the case of a finite number of boxes where the

stopping rule is not met, the highest previously observed outcome is kept, i.e., there is

recall.  When replacement is permitted, for example when an unlimited number of the

same box may be opened, Weitzman’s optimal policy suggests opening just one type of

box, the one with the highest reservation price, until exceeding that reservation price.

When delay is of no consequence, 1=β  and there is no economic advantage to building

prototypes in parallel.  The optimal policy is then purely sequential, with one prototype

built at a time, and Weitzman’s Pandora’s rule characterizes the optimal policy.
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We illustrate the optimal pure sequential policies using the Bernoulli and Uniform

distributions.  When 1=β , these distributions yield particularly simple results.

3.1.1. Bernoulli Sequential Policy

Applying (6) to the case of Bernoulli trials, the reservation price is c
p

R ⋅−
1

, i.e., the

reward R minus the cost of building 
p

1
 prototypes, which is the expected number of

Bernoulli trials until the first success.  As long as 
p

c
R > , the expected value of a pure

sequential search is positive.  In this case, single Bernoulli trials are run until the first

success.

3.2. Optimal hybrid Policy

Next we consider a hybrid parallel/sequential policy in an infinite-horizon setting.  The

optimal hybrid policy balances time-to-market, cost of product development and

product profitability.  Higher parallelism in prototyping improves development speed

and profitability, but at the price of higher development costs.  Parallelism makes sense

in situations where prototyping costs are low relative to the potential rewards, and for

which speed-to-market has significant profit impact.  When each prototype is relatively

costly and time-to-market minimally impacts profitability, the sequential approach

dominates.  Given the conflicting costs and benefits of pure parallel and pure sequential

modes, a hybrid policy of building parallel prototypes each period is worth analyzing.

To determine the optimal hybrid policy, we note that n i.i.d. parallel experiments can

be viewed as a single, composite experiment with prototyping cost cn ⋅ and distribution

function [ ]n
n xFxF )()( =  and density [ ] 1)()()( −⋅⋅= n

n xFxfnxf .  Thus, the hybrid problem

becomes a special case of the optimal sequential problem, where the choice of the

number of parallel experiments within a period is recast as a choice from alternative



11

experiments, parameterized by n.  The composite experiment with parameter n

(corresponding to n parallel experiments) has reservation price nz  which solves

 (7)          n
n

nz

n
n xFzdxxFxfnxcnz )]([)]([)( 1 ⋅⋅+⋅⋅⋅+⋅−= ∫

∞
− β .

By maximizing nz  over n, we obtain the optimal composite experiment (consisting of n*

parallel prototypes) with the highest net expected value. Since the experiment with the

highest reservation price, *nz , should be run first, it follows that that the optimal

hybrid policy in the infinite horizon problem is to run n* experiments in parallel in each

period until a result greater than *nz  is observed.  The expected value of the optimal

hybrid policy is *nz , which can be compared with the expected value of pure sequential

and pure parallel policies.

We next consider the optimal hybrid parallel/sequential policies for Bernoulli and

Uniformly-distributed prototyping experiments.  We calculate their expected values and

compare them with the pure parallel and pure sequential cases.

3.2.1. Bernoulli Hybrid Policy

To find n*, the number of prototypes that maximizes the reservation price, nz , we note

that:

(8)          ( )( ) ( ) n
nn

n zpRpcnz ⋅−⋅+⋅−−+⋅−= 111 β , which yields

(9)          
( )( )

( ) n

n

n p

cnpR
z

−⋅−
⋅−−−⋅

=
11

11

β

The first order condition for (9) is:
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(10)          ( ) ( )( ) ccncRpp n =++−⋅⋅−−⋅− ]1)1ln([1 βββ ,

which can be solved numerically for n*.  Figure 2 illustrates the optimal solution as a

function of the discount factor β  for 1and  , , 10 2
1 === cpR .

To determine the effect of time-to-market delays on the optimal policy, we might ask

how low β  would have to be in order for n* to change from one experiment per period

to two or more per period.  Using (9) with n = 1 and n = 2, the breakeven β is:

(11)          
( )

( ) 22

2

cpcppR

cppR
hybrid +−−

−−
=β

If the importance of time-to-market is such that hybridββ ≤ , then two or more prototypes

will be built per period.  If hybridββ > , that is if time-to-market delays are not so costly,

then a pure sequential policy will be optimal.  As R increases, ceteris paribus, so does

hybridβ , meaning that parallelism is favored.  This makes intuitive sense, since the

marginal benefit of receiving R immediately, as opposed to receiving it after a sequential

search, increases in R.  Higher values of c have the opposite effect, favoring sequential

search.

We might ask how low β  would need to be to make the pure parallel policy more

attractive than the pure sequential policy.  Using (9) with n = 1, the pure sequential

policy has an expected net profit of ( )p

cpR

−⋅−
−⋅
11 β

. Combining (1) and (2) yields a

maximum expected profit of ( )
( )

( )
( )

( )p

pR

c

p

pR

c

n cpRE
−

−⋅

−

−









−⋅

−







⋅−















−−⋅=

1ln

1ln
ln

1ln

1ln
ln

* 11][π  for the pure
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sequential case.  Therefore, after a few calculations, the cutoff β  at which parallel and

sequential policies yield the same expected value becomes:

(12)          
][

][][

1

1

*

*

n

n
switch E

EE

p π
ππ

β
−

⋅
−

= , where cpRE −⋅=][π .

When switchββ <  the pure parallel policy outperforms the pure sequential one.

According to (12), switchβ  depends on the incremental expected profit from n* parallel

prototypes compared with that from a single one.  The greater the incremental benefit,

the higher switchβ  becomes, and the likelier that switchββ <  so that parallelism will be

favored.  The incremental benefit of parallelism, ][][ * ππ EE n − , is driven by inequality

(3).  To the extent that the potential reward, R, far exceeds ( )p

c

−− 1ln
, parallelism will

increase, i.e., n* will climb in equation (2) and so too will the incremental benefit from

parallel prototyping.

Comparing the expected net profit from the three policies: pure parallel using equation

(1), pure sequential using equation (9) with n = 1, and hybrid parallel/sequential using

equation (9) with the optimal n* for each level of β , we can see how the hybrid policy

dominates the performance of either pure policy.  We note that for higher β ’s, where

time-to-market is less important, the optimal hybrid policy converges to the pure

sequential policy.  For lower β ’s, where time-to-market is less important, the optimal

hybrid policy converges to the pure parallel, single-period policy.
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Parallel, Sequential and Hybrid Policies
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Figure 2

Figure 2 shows the performance of the three policies for the case of 1,,10 2
1 === cpR  as

β varies between 0 and 1.  Applying (12) to this example, 62.0=switchβ , the point at

which the two pure policy graphs intersect.  Improvements in either of the financial

parameters, i.e., higher R or lower c, increase the value of switchβ , thus making it more

likely that expected profits from parallel prototyping will exceed those from sequential

prototyping.

4.4. Design of PrototypesDesign of Prototypes

So far, we have considered the problem of choosing a policy for prototypes whose

parameters were exogenous.  Specifically, we considered the choice of sequential versus

parallel prototyping, and within parallel prototyping - the choice of the number of

prototypes to build.  The problem of choosing the prototype itself is at least equally

important.  In fact, as we illustrate below, this problem interacts in meaningful ways

with the nature of experimentation: the choice of prototypes depends on the mode of

experimentation.
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We consider pure parallel experiments that are not necessarily identical (but are

stochastically independent).  Combinations of experiments with different parameters

may be run simultaneously.  Is it optimal to build prototypes with high rewards and

low success probabilities, low rewards and high success probabilities, or a combination

of both?

The prototype design problem is formulated as follows.  Given a palette of K possible

types of prototypes, each with a different reward distribution and cost per experiment,

which combination of the K possibilities, and how many of each, should be run to

maximize expected net profit?  The parameters vary from one experiment type to

another as a result of differences in technical feasibility, production cost, and customer

utility of each type of design concept.  Design of prototypes is distinct from traditional

design of experiments in that the former seeks to maximize the expected value of the

highest observed result, while the latter seeks to maximize learning about the

underlying response surface [Box 1978].

We develop a policy that maximizes expected profit by selecting the proper types of

prototypes and the optimal number of each to run in parallel.  In addition, we show

how the prototyping mode affects the types of experiments chosen.

For this section, we employ Bernoulli experiments with a single-period restriction; the

techniques of section 3 show that the extension to the case of hybrid schedules is

straightforward.  In what follows, we first address the case of 2=K  candidate

prototypes and then extend our results to the case of 2>K .

4.1. 2=K  Types of Prototypes

Given the choice of two experiment types of the Bernoulli variety, we consider four

possible cases: (1) build *1n  of the Type-1 prototype ( )0*,0* 21 => nn , (2) build *2n  of

the Type-2 prototype ( )0*,0* 21 >= nn , (3) build *

)2,1(1n  Type-1’s and *

)2,1(2n  Type-2’s
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)0,( *

)2,1(1
*

)2,1(1 >nn , or (4) build neither prototype. We assume, without loss of generality,

that 21 RR ≥ .

The expected net profit from building n1 prototypes of Type-1 and n2 of Type-2 is given

by

(13)       ( ) ( )( ) ( ) ( )( ) 2211
2

2
1

12
1

112,1
11111 cncnppRpRE nnn

nn ⋅−⋅−−−−+−−=π ,

which is jointly concave in n1 and n2.

The solutions to the first order conditions for (13) are:
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(15)          
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21122
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−−−

−−

= .

Expressions (14) and (15) lend themselves to a simple interpretation.  Using the fact

that 0ln <x for 10 << x , we notice that in order for both *

)2,1(1n  and *

)2,1(2n  to be positive,

it must be the case that:

1
)1ln()1ln()(

)1ln()1ln(
0

2121

2112 <
−−−

−−−
<

ppRR

pcpc
 and [ ] 1

)1ln()1ln(

)1ln()(
0

21122

1122 <
−−−

−−
<

pcpcR

pRRc
.

These two conditions simplify to:

(16)          
)1ln()1ln( 1

1

1

2

2

2

p

c

R

R

p

c

−−
⋅<

−−
 and
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(17)          ( )21
1

1

2

2

)1ln()1ln(
RR

p

c

p

c
−−

−−
>

−−
.

If (16) and (17) are both met, then it is optimal to develop a combination of *

)2,1(1n

Type-1 and *

)2,1(2n  Type-2 prototypes.  If (16) isn’t met, but (17) is, then only Type-1

experiments should be run.  The optimal number to run then, is 
( )

( )11ln

11ln1

1ln
*
1 p

pR

c

n
−

−⋅

−







=  from

equation (2).  On the other hand, if (17) is not met, but (16) is, then only Type-2

prototypes, in quantity 
( )

( )21ln

21ln2

2ln
*
2 p

pR

c

n
−

−⋅

−

=






 should be built and tested.  If neither (16) nor

(17) is met, then neither experiment should be run.  This analysis is summarized in

Figure 3 below.  Each of the four possible cases is represented by a region of the graph,

with mixed prototype combinations being optimal when the parameters fall into the

shaded triangle.
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Figure 3

)(
)1ln()1ln( 21

1

1

2

2 RR
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)1ln( 1

1
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)1ln()1ln( 1

1

1

2

2

2

p

c

R

R

p

c

−−
⋅=

−−

(1) Do type 1 only

(2) Do type 2 only

(3) Do both

(R1, R2)

(4) Do neither

NOTE: R1 > R2

We also note that inequality (3) applies individually to each experiment type and is

represented by the dotted lines in region (4) of Figure 3.  Thus, when the pi’s and ci’s

are such that (3) is violated for both sets of parameters, neither prototype is built.

4.2. Example: Applied Materials

Returning to the Applied Materials problem discussed in section 0, consider two

possible engineering solutions to the problem of incorporating a ceramic wafer heating

system into the modular CVD equipment3.  Solution A provides a reward, RA, of $100M

if successful, a probability of success, pA, of 0.3 for each prototype built, and a cost per

prototype, cA, of $4M.  Solutions B ‘s parameters are $75M, 0.4, and $2M, respectively.

Time-to-market is crucial, so all solutions must be built and tested in a single design

cycle.  The parameter values in this example correspond to the “Do both” region as seen

in Figure 4.

                                               

3 The parameter values given are representative of the actual data.
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Figure 4

The optimal policy, using (14) and (15), is for Applied Materials to build Type-A

prototypes at nA* = 3 suppliers and Type-B prototypes at nB* = 4 suppliers.  It is

worth noting that high risk, high reward prototypes and low risk, low reward

prototypes were commissioned by Applied Materials in this instance.  Both kinds of

prototypes offer advantages to the firm.  Type-A prototypes entail greater technical risk

and higher development and testing costs, but offer significantly greater rewards since

customers would buy more units of this particular design.  Type-B prototypes, on the

other hand, are easier to engineer and less costly to develop, but offer reduced customer

utility, resulting in a smaller profit for the firm.

4.3. 2>K  types of prototypes

Applying the analysis of section 4.1 to the case where 2>K , the optimal design of

prototypes for any set of Bernoulli experiments can be specified.  We begin by assuming

that the experiment types have been indexed such that KRRR >>> ...21 .  If ji RR =  for

some ji ≠ , the tie is broken by keeping only the experiment type with the lower value

of ( )i

i

p

c

−
−
1ln

, as is clear from section 4.1.  The objective function for K experiment types

becomes:
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(18)          ( ) ( ) ( )( )∑ ∏
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Consider, for example, the case of 3=K .  Solving the first order conditions yields:
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Several facts are notable about (19) - (21).  First, (19) corresponds exactly to (14), and

(21) corresponds to (15) for the case where only Type-2 and Type-3 experiments are

available. Second, each solution depends only upon its immediate neighbors, those with

rewards just larger ( )1−iR  or just smaller ( )1+iR  than its own reward.  It can be verified

that this last fact holds for all 2>K  and that *

)1,,1(

*

),...,,...,1( +−
=

iiiiKii nn  for all K.  Finally, it

can also be verified that a necessary, but not sufficient condition for a positive number

of experiments of Type- i  (i.e., for 0*

)1,,1(
>

+− iiiin ), is that each pair of experiments,

),1( ii −  and )1,( +ii  fulfill both conditions (16) and (17).

Given these results, the following algorithm defines the profit-maximizing design of

prototypes for the case of Bernoulli trials:

1. Verify that every prototype meets condition (3). This eliminates the

“Do Neither” region of Figure 3.
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2. Sort experiments by R, such that KRRR >>> ...21 .

3. When ji RR = , eliminate the experiment with the higher 
)1ln( p

c

−−
.

4. Check consecutive pairs, ),(),,(),...,,(),,( 1123221 KKKK RRRRRRRR −−− , to

see where they fall in Figure 3 .

5. If a prototype pair lies outside the “Do Both” region of Figure 3, keep

the winner and eliminate the loser (Note: Eliminating a prototype

reduces K by 1). If all pairs fall into the “Do Both” region, proceed to

step 6, otherwise go back to step 4..

6. Check whether all “internal” prototypes, i.e., 12 ,..., −KRR , result in a

positive 

( )
( )

)1ln(

)1ln()1ln())(1ln(
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1111

1111
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= −−++
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.

7. Eliminate prototypes for which 0*

)1,,1(
≤

+− iiiin , in which case go back to

step 4, otherwise continue.

8. Now that all “internal” prototypes have 0*

)1,,1(
>

+− iiiin , the optimal

solution is given by
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4.4. Impact of Prototyping Modes

Parallelism has an important impact on the products that the firm chooses to launch,

not just on the number of prototypes built.  Specifically, whereas we have shown that

parallel prototyping may test a combination of products, the optimal sequential policy

requires that only the best product, ranked by reservation price, be built.  Assuming

unlimited availability of each type of prototype, the optimal sequential policy is to

determine the product with the highest reservation price, 
i

i
ii p

c
Rz −= , and repeatedly

build versions of it until the first success.  A combination of products would never be

utilized under a such a sequential policy.  In some sense, parallel policies foster product

heterogeneity, while sequential policies lead to product homogeneity.

The following example highlights the relationship between the mode of experimentation

and the choice of products.  Consider three Bernoulli experiments, each of which

improves upon one parameter relative to a base case as presented in Table 1.

Table 1: Example of Prototyping Modes

Four types of Products

Base Case Low Risk High
Reward

Easy-to-
Prototype

Probability of success p 0.5 0.60.6 0.5 0.5

Potential Reward R 100 100 110110 100

P
ar

am
et

er
s

Cost per prototype c 5 5 5 11

One-shot ][πE cpR −⋅ 45 5555 50 49

Sequential ][πE
when 1=β p

c
R − 90 92 100100 98

Sequential ][πE
when 9.0=β )1(1 p

cpR

−⋅−
−⋅

β
82 86 9191 89

Parallel ][ *nE π ][ *nE π 74 79 83 9292P
ro

to
ty

p
in

g 
M

od
es

Parallel combination

][ *3*,2 nnE π
][ *3*,2 nnE π - - 9393
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The products in the example have been selected so that each improves upon a single

parameter of the base case.  The Low risk product has a higher probability of success,

High Reward a higher potential payoff, and Easy-to-Prototype a lower cost per

prototype.

The example shows that the preferred product differs for each prototyping mode.  The

one-shot firm prefers the Low Risk product, due to its higher success probability. The

sequential experimenter prefers the High Reward product, because the firm is able to

wait for its higher potential payoff.  And the parallel experimenter prefers the Easy-to-

Prototype product due to its low cost per prototype.  In short, firms constrained to

operate operating under particular development modes choose to build different kinds of

products.

Further, if we allow parallel prototyping of multiple types of products, expected profit

increases and a combination of High Reward and Easy-to-Prototype products are built.

Finally, the importance of time-to-market determine the globally optimal policy.  When

time-to-market has no importance (i.e., 1=β ), a purely sequential policy of building

High Reward products generates the highest expected profit.  But when time-to-market

has value (i.e., 9.0=β ), profit is maximized with a parallel policy.

To summarize, we have shown that the firm’s choice of prototyping mode determines

which types of products to build.  When faced with a large array of potential ideas, the

design team narrows its choices to an optimal combination of heterogeneous, parallel

prototypes.  As in section 3.2, the optimal combination becomes a composite experiment

in the infinite horizon problem (so that policies can be optimized with hybrid parallel

and sequential combinations of prototypes).  For Bernoulli trials, we have presented an

algorithm to identify the optimal design of prototypes, and established conditions under

which heterogeneous combinations are optimal.
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5.5. DiscussionDiscussion

We have shown how the mode of prototyping determines the design of products.  While

sequential experimentation focuses exclusively on products with the highest reservation

price, parallelism promotes heterogeneity.  While firms relying upon the one-shot mode

favor designs with more certain rewards, those employing the sequential mode prefer

designs with high absolute rewards.  Firms implementing parallel prototyping, on the

other hand, favor designs that can be built and tested at low cost.  In summary, the

choice of prototyping mode profoundly impacts the types of products that the firm

develops and the profitability derived from that endeavor.
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Appendix Appendix 11: Model parameters, variables and notation: Model parameters, variables and notation

n Number of prototypes to be built and tested; a decision variable.

*n Optimal number of prototypes to build without the abandonment
option

( )
*

,...,1 Kin Optimal number of Type-i given that types ),...,1,1,...,1( Kii +−  are

built

R The reward if a Bernoulli trial succeeds (0 if it fails)

p The probability of success of a single Bernoulli trial.

c Cost to build and test each prototype

M Budget constraint on total R&D spending, Mcn ≤⋅

λ Lagrange multiplier for the budget constraint

K The number of available types of ),,( iii cpR  experiments, { }Ki ,...,2,1∈

β Discount factor per period, 10 ≤< β

π n Random variable for the maximum net profit available after n draws,

nz Reservation price used to optimally order sequential experiments;

Solves n
n

nz

n
n xFzdxxFxfnxcnz )]([)]([)( 1 ⋅⋅+⋅⋅⋅+⋅−= ∫

∞
− β
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