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Appendices A-F present the theory behind the TASOPT methodology and code. Appendix
A describes the bulk of the formulation, while Appendices B-F develop the major sub-models
for the engine, fuselage drag, BLI accounting, etc.
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Appendix A

TASOPT — Transport Aircraft
System OPTimization

A.1 Introduction

A.1.1 Background

There is a vast body of work on conceptual and preliminary aircraft design. The more
traditional approaches of e.g. Roskam [1], Torrenbeek [2], Raymer [3], have relied heavily on
historical weight correlations, empirical drag build-ups, and established engine performance
data for their design evaluations. The ACSYNT program [4],[5] likewise relies on such
models, with a more detailed treatment of the geometry via its PDCYL [6] extension.

More recently, optimization-based approaches such as those of Knapp [7], the WINGOP code
of Wakayama [8],]9], and in particular the PASS program of Kroo [10] perform tradeoffs in
a much more detailed geometry parameter space, but still rely on simple drag and engine
performance models.

The recent advent of turbofan engines with extremely high bypass ratios (Pratt geared tur-
bofan), advanced composite materials (Boeing 787), and possibly less restrictive operational
restrictions (Free-Flight ATC concept), make it of great interest to re-examine the overall
aircraft /engine/operation system to maximize transportation efficiency. NASA’s N+1,2,3
programs are examples of research efforts towards this goal. In addition, greater empha-
sis on limiting noise and emissions demands that such aircraft design examination be done
under possibly stringent environmental constraints. Optimally exploiting these new factors
and constraints on transport aircraft is a major motivation behind TASOPT’s development.

A.1.2 Summary
Overall approach

To examine and evaluate future aircraft with potentially unprecedented airframe, engine,
or operation parameters, it is desirable to dispense with as many of the historically-based



methods as possible, since these cannot be relied on outside of their data-fit ranges. The ap-
proach used by TASOPT is to base most of the weight, aerodynamic, and engine-performance
prediction on low-order models which implement fundamental structural, aerodynamic, and
thermodynamic theory and associated computational methods. Historical correlations will
be used only where absolutely necessary, and in particular only for some of the secondary
structure and for aircraft equipment. Modeling the bulk of the aircraft structure, aerody-
namics, and propulsion by fundamentals gives considerable confidence that the resulting
optimized design is realizable, and not some artifact of inappropriate extrapolated data fits.

Airframe structure and weight

The airframe structural and weight models used by TASOPT treat the primary structure
elements as simple geometric shapes, with appropriate load distributions imposed at critical
loading cases. The fuselage is assumed to be a pressure vessel with one or more “bubbles”,
with added bending loads, with material gauges sized to obtain a specified stress at specified
load situations. The wing is assumed to be cantilevered or to have a single support strut,
whose material gauges are also sized to obtain a specified stress. The resulting fuselage, wing,
and tail material volumes, together with specified material density, then gives the primary
structural weight. Only the secondary structural weights and non-structural and equipment
weights are estimated via historical weight fractions.

Aerodynamic performance

The wing airfoil performance is represented by a parameterized transonic airfoil family span-
ning a range of thicknesses, whose performance is determined by 2D viscous/inviscid CFD
calculation for a range of lift coefficients and Mach numbers. Together with suitable sweep
corrections, this gives reliable profile+wave drag of the wing in cruise and high climb and
high descent. The fuselage drag is likewise obtained from compressible viscous/inviscid CFD,
suitably simplified with axisymmetric-based approximations. A side benefit is that detailed
knowledge of the fuselage boundary layers makes it possibly for TASOPT to reliably predict
the benefits of boundary layer ingestion in fuselage-mounted engines.

The drag of only the minor remaining components such as nacelles is obtained by traditional
wetted area methods, but corrected for supervelocities estimated with vortex sheet models.
Induced drag is predicted by fairly standard Trefftz-Plane analysis.

The primary use of CFD-level results in the present TASOPT method makes it more widely
applicable than the previous more traditional approaches which have typically relied on
wetted-area methods for major components of the configuration.

Engine performance

A fairly detailed component-based turbofan model, such as described by Kerrebrock [11], is
used to both size the engines for cruise, and to determine their off-design performance at
takeoff, climb, and descent. The model includes the effects of turbine cooling flows, allow-
ing realistic simultaneous optimization of cycle pressure ratios and operating temperatures



together with the overall airframe and its operating parameters. The overall aircraft and
engine system is actually formulated in terms of dissipation and power rather than drag
and thrust [12], which allows a rigorous examination of advanced propulsion systems using
boundary layer ingestion.

The use of component-based engine simulation in the present TASOPT method differs from
previous approaches which typically have relied on simple historical regressions or established
engine performance maps. The more detailed treatment is especially important for examining
designs with extreme engines parameters which fall outside of historical databases.

Mission profiles

Integration of standard trajectory equations over a parameterized mission profile provides
the required mission weight, which completes the overall sizing approach. The end result is
a defined aircraft and engine combination which achieves the specified payload and range
mission. Off-design missions are also addressed, allowing the possibility of minimizing fuel
burn for a collection of fleet missions rather than for just the aircraft-sizing mission.

Takeoff and noise

A takeoff performance model is used to determine the normal takeoff distance and the bal-
anced field length of any given design. The balanced field length can be included as a
constraint in overall TASOPT optimization. Noise estimates are also calculated using a
few published methods, e.g. [13], [14], [15]. These are used only for run-time rough esti-
mates, and are not well suited for use as constraints. Much more detailed noise analyses can
typically be performed as a post-processing step using the ANOPP method, for example.

Restriction to wing+tube aircraft

The description of the structural and aerodynamic models above explains why TASOPT is
restricted to tube+wing configurations — most other configurations would be quite difficult
or impossible to treat with these models. For example, a joined-wing configuration [16] has
a relatively complex structure with out-of-plane deformations and the possibility of coupled
twist /bend buckling in the presence of eccentricity from the airloads, which requires a greatly
more complex structural analysis than straightforward beam theory. A blended-wing-body
configuration [17] with non-circular cabin cross sections likewise has non-obvious critical load
cases and load paths, and its transonic aerodynamics are dominated by 3D effects. For these
reasons such non-traditional configurations are simply outside the scope of the present work.

A.2 Model Derivation
A.2.1 Weight Breakdown

The weight breakdown is summarized in Figure A.1, to serve as a convenient reference.
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Figure A.1: Aircraft weights and weight fractions breakdown.

A.2.2 Fuselage pressure and torsion loads

The fuselage is modeled as a side-by-side “double-bubble” pressure vessel with an ellipsoidal
nose endcap and a hemispherical tail endcap,gwhich is subjected to pressurization, bending,



and torsion loads, as shown in Figures A.2 and A.3. The loaded cylindrical length of the
pressure vessel shell is from Zghen, 10 Tshelr,-

lshell. = Tshell, — Tshell, (A1)

The horizontal-axis moment My, (z) distributions on the front and back bending fuselage are
assumed to match at location g, as shown in Figure A.2. Theoretically this is the wing’s
net lift—weight centroid, which varies somewhat depending the fuel fraction in the wings,
the wing’s profile pitching moment and hence the flap setting, and on the aircraft Cy,. For
simplicity it will be approximated as the wing’s area centroid. Note that for a swept wing
the wing box location o Will be centered somewhat ahead of Zying, but it will then also
impart a pitch-axis moment at its location, so that the front and back My ) distributions
must still match at Tying.

RN (Wpay + Wpadd+ VVshell"' VVI\IiﬂdOW + VVinsul + Wloor + Vvseat)
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Figure A.2: Fuselage layout, loads, and bending moment and inertia distributions. Bending
material and 75 Inpena («) is added wherever the horizontal-axis bending moment My, () exceeds
the capability of the pressure vessel’s bending inertia I,gnen, and likewise for the vertical-axis
moment and inertia.

Figure A.3 shows the fuselage cross section. The pressure-vessel skin and endcaps have
a uniform thickness tq,, while the center tension web has an average thickness tq,. The
cross-sectional area of the skin is Agy, and has stiffening stringers which have a “smeared”
average area Agin fstringPskin/Poend, specified via the empirical stringer/skin weight fraction
fstring- The enclosed area Sy, enters the torsional stiffness and strength calculations. The
fuselage cross section also shows the possibility of added bottom bubbles or fairings, extended
downward by the distance A Ryge.
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The skin and stringers constitute the “shell”, which has bending inertias lygnen, Jvshen about
the horizontal and vertical axes. Figure A.3 does not show any hoop-stiffening frames which
are typically required, and whose weight is a specified fraction fgame of the skin weight.
These typically may be offset from the skin inside of the stringers, and hence are assumed
to not contribute to the skin’s circumferential tensile strength.

To address the weight and aerodynamic loads of the tail group on the fuselage, the horizontal
and vertical tails, the tailcone, and any rear-mounted engines are treated as one lumped mass
and aero force at location x,;, shown in Figure A.2.

The bending loads on the shell may require the addition of vertical-bending material con-
centrated on top and bottom of the fuselage shell (typically as skin doublers or additional
stringers). The total added cross sectional area is Appena (=), and the associated added bend-
ing inertia is Iypena(z). Corresponding added material on the sides has A pend(z) and Iihend(z).
Because the wing box itself will contribute to the fuselage bending strength, these added
areas and bending inertias do not match the M) distribution there, but are made linear
over the wing box extent, as shown in Figure A.2.

LVmax

added bending material

OSKin tSkin TCOnet cone
—_— —
7~ TwT > ~

| Oskin tdb
Avbend < +
Askin Afuse
Anbend A

Figure A.3: Fuselage cross-section, shell/web junction tension flows, and torsion shear flow
from vertical tail load. An optional bottom fairing extends down by the distance ARfge-
Fuselage frames are not shown.

stringers Wb

tskin —" Rfuse

Cross-section relations

The fuselage pressure shell has the following geometric relations and beam quantities.

Hdb = arcsin(wdb/Rfuso) (A 2)
hdb = Rfuse w(zib (A 3)
Askin = (27T + 4‘9db) Rfuso tskin + 2ARfuse tskin (A 4)
Aapr = (2hap + ARfuse) tan (A.5)
Afuse = (7‘(‘ + 29db -+ sin 29db) R?use + 2Rpuse ARfuse (A 6)

The skin has some modulus and density Fgyin, pskin, While the stringers have some possibly
different values Fyend, prend- The effective modulus-weighted “shell” thickness ¢y, can then
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be defined as follows, assuming that only the skin and stringers contribute to bending, but
not the frames.

(Et>5kin Pskin
tshe = tskin 1 string™ AT
hell Eskin 5 N & f ' gpbond ( )
E en
where ry = —>nd (A.8)
Eskin

This is then convenient for determining the modulus-weighted horizontal-axis and vertical-
axis bending inertias. The center web, if any, is assumed to be made of the same material
as the skin.

(ET)nshen
Eskin

m/2+0qy, . 9 2 3
= 4[) (Rfuse sin 6 + ARfuse/Q) Rfuse Lshell o + g(hdb + ARfuse/Q) tab

]hsholl -

= { (71' + 29db+5in 2edb) R?use

+ 8 cos edb (ARfuse/Q) Rfuse
2
+ (27 +4041,) (A Rpuse/2)? } Riyse tshen  + g(hdb + ARpuse/2)3tan (A.9)
(ET)yshen
Eskin

/2404y, 9
= 4 (Rfuso cos 6 + wdb) Rfuse tshell de
0

[Vshell

= { (7T + 2edb —sin 2edb) R?uso
+ 8 cos bap Wan Riuse

+ (2m+46a,) wh, } Riuse tshen (A.10)

It’s useful to note that for the particular case of wq, = 0 and AR = 0, the cross-section
circles merge into one circle, and the tension and hence the thickness of the center web go
to zero, tq, = 0. The areas and bending inertias then reduce to those for a single circular
cross-section.

Askin = 271-‘P'«fuse tskin (1f Wap = 07 ARfuse - 0) (All)
Sgin = 7RI (if wap = 0, ARpyee = 0) (A.12)
Ishet = Lyshen = TRE . tehen (if wap = 0, ARgyse = 0) (A.13)

Hence, no generality is lost with this double-bubble cross-section model.

Pressure shell loads

The pressurization load from the Ap pressure difference produces the following axial and
hoop stresses in the fuselage skin, with the assumption that the stringers share the axial
loads, but the frames do not share the hoop loads. This assumes a typical aluminum fuselage
structure, where the stringers are contiguous and solidly riveted to the skin, but the frames

12



are either offset from the skin or have clearance cutouts for the stringers which interrupt the
frames’ hoop loads.

Ap Rfuso
Oy = — A.14
2 Tshen ( )
og = Ap Fituse (A.15)
skin

An isotropic (metal) fuselage skin thickness ¢, and the web thickness tq;, will therefore be
sized by the larger oy value in order to meet an allowable stress og,.

lskin = % (A16)
Oskin
A

ty, = 2L (A.17)
Oskin

This particular tq, value is obtained from the requirement of equal circumferential stress in
the skin and the web, and tension equilibrium at the 3-point web/skin junction.

The volume of the skin material Vg, is obtained from the cross-sectional skin area, plus the
contribution of the ellipsoidal nose endcap and the spherical rear bulkhead. The nose uses
Cantrell’s approximation for the surface area of an ellipsoid.

12 (e VT

Snose ~ (2744604, R2.. S+3 ( Rfuse> ] (A.18)
Spae =~ (27 +404,) R3 . (A.19)
Vest = Asiin lshen (A.20)
Viose = Snose tskin (A.21)
Vouk = Sbulk tskin (A.22)
Vab = Aab lshen (A.23)
Vet = 5 (Tehen, +Tshent,) Vey (A.24)
Whose = 3(Tnose+ Tshell;) Viose (A.25)
Wouk = (Tohell, + %ARfuse) Vhulk (A.26)
Vap = 3(Tshell, T sheltz) Vab (A.27)

The total fuselage shell weight then follows by specifying a material density pg, for the skin
and web. The assumed skin-proportional added weights of local reinforcements, stiffeners,
and fasteners are represented by the fr,qq fraction, and stringers and frames are represented
by the fsuing, frrame fractions.

Wskin = pPskin 9 (chl + Vnose + Vbulk) ( )
Wab = Pskin 9 Vab ( )
W, skin = Pskin g (chyl + anose + vaulk) ( )
Wap = pekin g WVan (A.31)
(A.32)

(A.33)

Wshell - Wskin ( 1+ fstring + fframe + ffadd) + de
leheH = Mskin (1 + fstring + fframo + ffadd) + Mdb

13



Cabin volume and Buoyancy weight

At this point it’s convenient to calculate the pressurized cabin volume.
Vcabin = Afuse (lsholl + 0.67 lnoso + 0.67 Rfuse) (A34>

The air in the cabin is pressurized to either the specified minimum cabin pressure peapin, OF
the ambient pressure at altitude pg(n), whichever is greater. The resulting negative cabin
buoyancy increases the effective instantaneous weight of the aircraft by the added buoyancy
weight Whyey (r) Which varies with altitude.

1

Peatin(®) = e max ( Peabin  Po(h) ) (A.35)

Wbuoy = (pcabin(h) - pO(h))chabin (A36>

This is then added to the physical weight to give the net effective aircraft weight used for
cruise wing sizing and performance calculations.

W = W + Wbuoy (A37)

Windows and Insulation

The window weight is specified by their assumed net weight /length density W,
with the cabin length lgep.

together

indow
Wwindow == W\:vindow lshell (A38>
:Z‘WWinOW - %(xshelll +xshe112)WWindow (A39)
The W, qow Value represents the actual window weight, minus the weight of the skin and

insulation cutout which is eliminated by the window.

The fuselage insulation and padding weight is specified by its assumed weight/area density

> together with the cabin+endcap shell surface area.

VVinsul = i/r/lsul { (117T + 2‘9db)1i:£fuso lsholl + 0.55 (Snoso_'_Sbulk) } (A40)
:LVVinsul - %(Ishelll _I'Ishellg)VVinsul (A41)

The 1.1 and 0.55 factors assume that 55% of the fuselage circle is over the cabin, and the
remaining 45% is over the cargo hold which has no insulation.

Payload-proportional weights

The APU weight W, is assumed to be proportional to the payload weight, and is treated
as a point weight at some specified location Zpy.

Wapu = Wpay fapu (A42)
IWapu = Tapu Wapu (A43)

14



The seat weight is also assumed to be proportional to the payload weight, uniformly dis-
tributed along the cabin for a single-class aircraft.

Wsoat = Wpay fseat (A44>
Mseat == %(xshelll _'_xshcllz)Wsoat (A45>

Another payload-proportional weight W,,qa is used to represent all remaining added weight:
flight attendants, food, galleys, toilets, luggage compartments and furnishings, doors, light-
ing, air conditioning systems, in-flight entertainment systems, etc. These are also assumed
to be uniformly distributed on average.

Wpadd = Wpay fpadd (A46)
Wpaad = 3 (Tsnell, +Tsnels) Wada (A.47)

The proportionality factors fapu, fseat, fpada Will depend on generator technology, seat tech-
nology, passenger class, and slightly on long-haul versus short-haul aircraft.

Fixed weight

A specified fixed weight contribution Wi, is assumed. This represents the pilots, cockpit
windows, cockpit seats and control mechanisms, flight instrumentation, navigation and com-
munication equipment, antennas, etc., which are expected to be roughly the same total
weight for any transport aircraft. To get the associated weight moment, a specified weight
centroid g, is also specified. Typically this will be located in the nose region.

Wax = ... specified (A.48)
lWﬁx = Tfx Wﬁx (A49>

Floor

The weight of the transverse floor beams is estimated by assuming the payload weight is
distributed uniformly over the floor, producing the shear and bending moment distributions
shown in Figure A.4. The weight of the floor itself is typically much smaller than the payload
and is neglected. The floor beams are assumed to by sized by some load factor Ny,,q, which
is typically the emergency landing case and greater than the usual in-flight load factor Ny
which sizes most of the airframe. This gives to following total distributed load on the floor.

7Dﬁoor = Nland(Wpay + Wseat) (A5O)

The floor/wall joints are assumed to be pinned, with the double-bubble fuselage having an
additional center floor support. The single-bubble fuselage can of course also have center
supports under the floor. The maximum shear and bending moment seen by all the floor
beams put together are then readily obtained from simple beam theory.

1
Shoor = §Pﬂoor (w/o support) (A.51)
Sfoor = 1% Phoor (with support) (A.52)
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Figure A.4: Distributed floor load Ppoor, resulting in maximum shear Sgoor and maximum
bending moment Mg, in all the floor beams, without and with a center support.

1
Mﬁoor = Z 7Dﬁoor WAoor (W/O support) (A53)
9
Mﬁoor = % Pﬂoor WAoor (Wlth support) <A54)
Whoor =~ Wdb + Rfuse (A55)

Note that wg, =0 for a single-bubble fuselage, so that the expression for the floor half-width
Waoor above is valid in general.

For a given floor I-beam height hg,,,, and max allowable cap stress ogoor and shear-web stress
Thoor, the beams’ total average cross-sectional area and corresponding weight are then deter-
mined. The added weight of the floor planking is determined from a specified weight/area
density W/

floor*

20 Mﬁoor + 15 Sﬂoor

A oor — A.56
i Ofloor hﬂoor THoor ( )
Vﬁoor = 2 WAoor Aﬂoor (A57)
lﬁoor = Tshello — Lshell | + 2Rfuse (A58)
Wﬁoor = Ploor 9 Vﬂoor + 2 WAoor lﬂoor flli)or (A59>
Mﬂoor == %(xshell 1 _'_xshellz)wﬁoor (A60>

Relation (A.56) assumes the beams are uniform in cross-section. Suitable taper of the cross
section would reduce the 2.0 and 1.5 coefficients substantially, especially for the center-
supported case for which the bending moment rapidly diminishes away from the center.

It’s also important to recognize that if clamped ends rather than the assumed pinned end
joints are used, and if the center support is present, then the hoop compliance of the fuselage
frame cross-section shape will become important. Without doing the much more complicated
deformation analysis of the entire fuselage frame + floor cross section, the conservative
pinned-end and uniform beam assumptions are therefore deemed appropriate.
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Tail cone

The tail cone average wall thickness is assumed to be sized by the torsion moment Q,
imparted by the vertical tail, defined in terms of its maximum lift L span b,, and taper

Vmax ?

ratio \,.
LVmax = QNE SV CLVmax (A61)
L, b,14+2A,
v = = A.62
< 3 1+, ( )

Referring to Figure A.3, this Q, produces a shear low Teone teone according to the torsion-shell
relation

QV = QAconc Teone beone (A63>

where the cone’s enclosed area Aeone is assumed to taper linearly with a taper ratio of A2 ..

The cone radius Reone then tapers to a ratio of A.oue, but nonlinearly. The taper extends
from Zgshen, 1O Teonend, the latter being the endpoint of the cone’s primary structure, roughly
at the horizontal or vertical tail attachment.

Acone@ = Atuse l1+(A2 1) ehell: 1 (A.64)

cone
Lconend — Lshell 5

B 1/2
Rene@ = Rinse [1+(A§m—1) T Lhell, 1 (A.65)

Lconend — Lshell o

Setting Q, to the moment imparted by the vertical tail lift gives the cone wall thickness t.one
and corresponding material volume and weight.

Qv

teonelt) = —————— A.66

@ 27—v:ono Aconc (z) ( )
Vcone - / e 2 (ﬂ- + 2edb ) Rcone tcone d!lﬁ'
Tshell 2
v 20 conend ~ “she 2
_ Q T+ db Zconend — Tshell 5 (A.67)
Tcone T + 2Hdb +sin 2Hdb Rfuse 1 + >\cono

Wcone = Pcone 4 Vcone ( 1 + fstring + fframe + ffadd) (A68)
Mcono = %(xshollg + xconond) Wconc (A69>

A.2.3 Fuselage Bending Loads

In addition to the pressurization and torsion loads, the fuselage also sees bending loads
from its distributed weight load plus the tail weight and airloads. In the case where the
pressurization-sized shell is not sufficient to withstand this, additional bending material area
is assumed to be added at the top and bottom (total of Appena(x)), and also sides of the shell
(total of Aypena(@)), as shown in Figure A.3. If the shell is sufficiently strong, then these areas
will be zero.
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Lumped tail weight and location for fuselage stresses

For simplicity in the fuselage bending stress analysis to be considered next, both the horizon-
tal and vertical tails, the tailcone, and any APU or rear-engine weight loads (if present) are
lumped into their summed weight W.;;, which is assumed to be located at the corresponding
mass centroid location x,;. The tail aero loads are also assumed to act at this point.

VVtail = Whtail + thail + Wcone [ +Wapu + Weng] (A70)
xhtaﬂWhtail + xvtailwvtail + %(xsholl 2+xconcnd)Wconc [ +xaquapu + xongWong]
Tail = W, 1 (A71)
tai

For the overall aircraft pitch balance and pitch stability analyses to be presented later, this
lumping simplification will not be invoked.

Tail aero loads

An impulsive load on the horizontal or vertical tail will produce a direct static bending load
on the aft fuselage. It will also result in an overall angular acceleration of the aircraft, whose
distributed inertial-reaction loads will tend to alleviate the tail’s static bending loads. These
effects are captured by the inertial-relief factor r,; evaluated just to the right of the wingbox,
which takes on the two different values r,, and r, due to the different wing inertias about
the horizontal and vertical axes. Typical values are ry, ~0.4 and 7, ~0.7, with the latter
applied only over the rear fuselage. The resulting net bending moment distributions are
shown in Figure A.5, where the static case is the limit for an infinitely massive wing.

The maximum tail loads are set at a specified never-exceed dynamic pressure gz, and some
assumed max-achievable lift coefficient for each surface.

Lhmax = qNE Sh CLhmaX (A.72>
LVmax = (Qne SV CLVmax (A73)
T'Mu Lh (xtail - LIZ‘) , X > xwing
— max A. 4
(Mh)aero { T'vin Lhmax (;Ij‘ + Ltail — 2xwing) , T < xwing ( 7 )
. Ty Lvmax (xtail - .CL’) , X > xwing
(M )aero = { 0.0 < (A.75)
]use 2 use 4
. C o Tse/2 e/ (A.76)
Ifuse + Iwing Miuse + Mying
ran =~ 0.4 (A7)
ray =~ 0.7 (A.78)

Landing gear loads

The maximum vertical load on the landing gear typically occurs in the emergency landing
case, and subjects the fuselage to some vertical acceleration N = Nj,,q which is specified.
The fuselage distributed mass will then subject the fuselage to a bending load shown in
Figure A.2.
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Figure A.5: Fuselage bending moments due to unbalanced horizontal and vertical tail aero
loads. The static bending moment (dashed lines) is partly relieved by reaction loads from
the overall angular acceleration.

Distributed and point weight loads

The fuselage is loaded by the payload weight Wy, plus its own component weights Wyaqd,
Winen - - - etc. which are all assumed to be uniformly distributed over the fuselage shell length
lshen- The overall tail weight Wi,y is assumed to be a point load at xi,;. With all weights
scaled up by a load factor N, plus the impulsive horizontal-tail aero load moment (A.74),
gives the following quadratic+linear horizontal-axis fuselage bending moment distribution,
also sketched in Figure A.2.

Mh( ) = N Wpay + Wpadd + Wshell + Wwindow + VVinsul + Wﬁoor + Wsoat
v 2 lshen

+ (NWhiait + L) (Trail — 7) (A.79)

(Ishellg - I)2

Expression (A.79) has been constructed to represent the bending moment over the rear
fuselage. Since the wing’s inertial-reaction pitching moments are small compared to those of
the tail and fuselage, the horizontal-axis bending moment is assumed to be roughly symmetric
about the wing’s center of lift at zing, as sketched in Figure A.2, so that (A.79) if reflected
about Zyiye also gives the bending moment over the front fuselage. For the same reason, the
fixed weight Wy, is assumed to be concentrated near the aircraft nose, and hence it does
not impose either a distributed load or a point load on the rear fuselage, and hence does not
appear in (A.79).

Added horizontal-axis bending material

The total bending moment My, (=) defined by (A.79) is used to size the added horizontal-axis
bending area Appena(z). Two loading scenarios are considered:
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1. Maximum load factor at Vyg

N Niige (A.80)

Ly, = Ly, (A.81)
2. Emergency landing impact

N = Nuna (A.82)

L, =0 (A.83)

The scenario which gives the larger added structural weight will be selected.

The maximum axial stress, which is related to the sum of the bending and pressurization
strains, is limited everywhere to some maximum allowable value openq.

Ebendem (z) = Ebcnd (Ebond (=) + 6pross) S Obend (A84>
Mh(:c) h'fuse Ap Rfuso)
T + —- S Oben A85
" (I hshell T 75 Ihbend (%) 2 fonen bend ( )
where htuse = Rpuse + %ARquC (A86)

Relation (A.85) can then be solved for the required Iypena(z) and the associated Append(z)-

€z huso [ she
Ihpena(@) = maX<M() fee el 0) (A.87)
OMu Te
A RUSC
where Ovn = Obend — T e i (A.88)
2 tgnen
[ end ()
Anpend(@) = h22d = Ay(Tenenn, —7)° + Ai(za—2z) + Ao (A.89)
fuse
N W ) W a WS €. WWIH ow VVinsu W oor Wsea
where Ay = X Woay+ Woaaat Wanent Waindow + Winsu & Whoor &+ Weeat) (o)
2 lshell hfuse Onn
NWiai L
A, = tail T "vnlon (A.91)
hfuse OnMn
Tnshen
Ay = — A 92
’ e h’%use ( )

The volume and weight of the added bending material is defined by integration of Append,
from the wing box to the location x = Tppena Where Appenga = 0 in the quadratic definition
(A.89). If this quadratic has no real solution, then the inequality (A.79) holds for My, (z)=0
everywhere, and no added bending material is needed.

Two separate integration limits are used for the front and back fuselage, to account for the
shifted wing box for a swept wing. The integral for Vipena, for the front fuselage is actually
computed over the back, by exploiting the assumed symmetry of My ) and Appena(x) about
T = Tying. The wing box offset Azyn, is computed later in the wing-sizing section, so here
it is taken from the previous iteration.

Ty = Zwing + Axwing + %CO’U_J (A93)
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Ty = Tying — DAlying + %cow (A.94)

Thbend
Vibend; = / Append(@) dx
T
1 3 3
= A g {(xshcllg —SCf) - (ZCsheuQ —Ihbend) }
1
+ A 3 [(xtaﬂ_xf>2 - (xtail_xhbond)ﬂ
+ Ao (xhbcnd —xf) (A95)
Thbend
Vibend, = / Append(z) d
Ty
1
- A2 g [(xshellg _Ib)g - (xshellg _zhbend)g}
1
+ A 3 [(xtaﬂ_xb)2 — (Itaﬂ—xhbend)z}
+ Ao (Thbena —Tp) (A.96)
1
Vibend. = 5 [Abbend (@) + Ahbend (@5)] CoW (A.97)
Vibend = Vibend; + Vibend. + Vibend, (A.98)
Whbend = Pbend 9 Vibend (A.99)
Mhpenda = xwingthcnd (A100>

Added vertical-axis bending material

The vertical-axis bending moment on the rear fuselage is entirely due to the airload on the
vertical tail (A.75), reduced by the ry, factor to account for inertial relief.

M@ = T Ly (Thail — ) (A.101)

Since the wing is assumed to react the local M, via its large yaw inertia, as sketched in
Figure A.5, the moment distribution (A.101) is imposed only on the rear fuselage. The
required bending inertia I penq(x) and area A penq(x) are then sized to keep the axial stress
constant. The defining relations follow the ones for the horizontal-axis case above.

MV(I) Wrtuse % Rfuse >

shell + 75 Iybend (@) 2 tshell
where Wrse = Fuse + Wap (A.103)

Epend€z@) = 75 < 7 < Obend (A.102)

vz use IVS e
Ivbond(x) = max ( M (@) tr - hell ) O) (A104>
UMV TE
A Ruse
where Omy = Obend — TE—p d (A.105)
2 tshen
[V end (%)
Avpend(z) = 2}2(1 = Bl(xtail —SL’) + By (A106>
fuse
L,
where B, = v (A.107)
Wryse Omv
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Te Whyge

The volume and weight of the added bending material is defined by integration of A,pend(z)
over the rear fuselage, from the rear of the wing box x;, up to the point & = xypeng Where
Aypena =0 in definition (A.106).

Zyvbend
)}Vbendl7 = / Avbend (x) dz
T

b

1
- Bl 5 [(ZL’tail_l’b)2 - (xtail_vaend)ﬂ + BO (vaend_xb) (Alog)

1
1}vbendC = §Avbend (zp) CoW (A110>
vaend - vaendc + ])Vbendg7 (A 11 1)
Wvbend = Pbend ngbend (A 1 12)
:LWVbend - %(2$Wing + vaend)Wvbend (A113)

For simplicity, the Wipend, Wibena Weights’ contributions to My, are excluded from (A.79)
and the subsequent calculations. A practical reason is that the added material does not
have a simple distribution, and hence would greatly complicate the My (x) function, thus
preventing the analytic integration of the added material’s weight. Fortunately, the added
bending material is localized close to the wing centroid and hence its contribution to the
overall bending moment is very small in any case, so neglecting its weight on the loading is
well justified at this level of approximation.

A.2.4 Total Fuselage Weight

The total fuselage weight includes the shell with stiffeners, tailcone, floor beams, fixed weight,
payload-proportional equipment and material, seats, and the added horizontal and vertical-
axis bending material.

Whise = Wiax + Wapn + Whadd + Wieat
+ Wahetl + Weone + Waindow + Winsu + Whoor
+ Whbend + Wibend (A.114)
WWige = Wax + Wapy + IWpada + Wiear
+ Wapen + MWeone + MWVyindow + Winsut + Whoor
+ @Whbend + MWV ibena (A.115)

A.2.5 Wing or Tail Planform
The surface geometry relations derived below correspond to the wing. Most of these apply
equally to the tails if the wing parameters are simply replaced with the tail counterparts.

The exceptions which pertail to only the wing will be indicated with “(Wing only)” in the
subsection title.
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Chord distribution

The wing or tail surface is assumed to have a two-piece linear planform with constant sweep
A, shown in Figure A.6. The inner and outer surface planforms are defined in terms of the
center chord ¢, and the inner and outer taper ratios.

As = Cs/co (A.116)
)\t = Ct/CO (All?)

Similarly, the spanwise dimensions are defined in terms of the span b and the normalized
spanwise coordinate 7.

n = 2y/b (A.118)
Mo = bo/b (A.119)
ns = bs/b (A.120)

For generality, the wing center box width b, is assumed to be different from the fuselage
width to allow possibly strongly non-circular fuselage cross-sections. It will also be different
for the tail surfaces. A planform break inner span b, is defined, where possibly also a strut
or engine is attached. Setting b,=0b, and c,=c, will recover a single-taper surface.

~
reference (™ -
axis
Q area
| centroid

‘____ 7
| by/2 .

\J

~ N =2y/b

0 No Ns 1
Figure A.6: Piecewise-linear wing or tail surface planform, with break at n;.

It’s convenient to define the piecewise-linear normalized chord function C(n).

1 , 0<n<n,

et 14 (A—1) <n<

c = C(n§77077737>\37>\t) == S Ns— Mo v Mo n Ts (A121>
)\S+()\t_)\s);_]:zs , Ms <7’]< 1
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The following integrals will be useful for area, volume, shear, and moment calculations.

“cdy =, (A.122)
s 1
Cdn = 51+ (15 =n,) (A.123)
Tlo
1
Cdp = SO+A)1-7) (A124)
MNs
T]O
C*dn = n, (A.125)
ns 1
i Crdn = S(1+AA+X) (1:—10) (A.126)
1
02 dn = %(Aiﬂs&ﬂf)(l—ns) (A.127)
Ns 1
/ C(n—mno)dn = 6(1+2As)(n5—770)2 (A.128)
1 1
: Cn=ns)dn = (AF2X)(1=1,)" (A.129)
1
/ C? (n=no) dn = 75 (1+2A +3X2) (15— 1) (A.130)
1
C? (n—ns)dn = E(A§+2A8At+3xf)(1—ns)2 (A.131)

Ns
Surface area and aspect ratio
The surface area S is defined as the exposed surface area plus the fuselage carryover area.
b/2
S = 2/ cdy = c,bK. (A.132)
where K., = ; Cdn = no+ 5(1+X)(Ms—n0) + 5(As+A)(1—1n5) (A.133)

The aspect ratio is then defined in the usual way. This will also allow relating the root chord
to the span and the taper ratios.

AR = = (A.134)

It is also useful to define the wing’s mean aerodynamic chord c¢,,, and area-centroid offset
AZwing from the center axis.

Cma, o 2 b/2 2 o ch
™= g /0 Gy = T (A.135)
9 (b/2 K.,
ATwing = 5 | /2c(y—yo) tan A dy = e b tan A (A.136)
Twing = Lwbox + Al wing (A137)

1
where K. = /C2dn
0
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1 1
= 1o+ (AN (0=10) + S ATH AN AN (1=17) (A.138)

1
K, = /C(n_nO)dn

1 1 1
= S m) + SO+ 20 (=) + 1+ A (L=7.) (7~ 1, A 139)

The wing area centroid is used in the fuselage bending load calculations as described earlier.

Reference quantities

The aircraft reference quantities are chosen to be simply the values for the wing.

bref = (b)wing (A 140)
Sref = (S)Wing (A141)
ARrof = (AR)wing (A 142)

For normalizing pitching moments the mean aerodynamic chord is traditionally used.

Cref = Cpa (A.143)

2 b2, 2b

= dy = S /C2d

Cuta Sof/o ¢ Y Sref 0 g
s

b 1 1
- SAFAAX) (0 =n0) + SNFANFA)(L=ns) | (A144)

A.2.6 Surface Airloads
Lift distribution

The surface lift distribution p is defined in terms of a baseline piecewise-linear distribution
p(n) defined like the chord planform, but with its own taper ratios v and ~,. These are
actually defined using local section ¢, factors r.,, and r,,.

Vs = Tep s (A.145)
Y= Tenh (A.146)
1 , 0<n<mn,
G Pinonsyse) = 1+ (s=1) — » Mo <1< Tls (A.147)
Do Ns—No
Vs + (%—%)717:2: ;s <n<1

To get the actual aerodynamic load p, lift corrections AL, and AL; are applied to account
for the fuselage carryover and tip lift rolloff, as sketched in Figure A.7. The detailed shapes
of these modifications are not specified, but instead only their integrated loads are defined
by the following integral relation.

b/2 b/2

Lo
0 0
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AL,
o, 3 _ P

Pm) =Pm)

~— » n=2ylb

0 No Ns 1

Figure A.7: Piecewise-linear aerodynamic load p(y), with modifications at center and tip.

The corrections are specified in terms of the center load magnitude p, and the fz,, f,
adjustment factors.

b b

A[’O = fLopOEO = fLopoinO (A149)
ALt = thptCt = thpoCo%)\t (A150>
fro ~ —0.5 (A.151)
fr, =~ —0.05 (A.152)

Lift load magnitude (Wing only)

The wing’s p, center loading magnitude is determined by requiring that the aerodynamic
loading integrated over the whole span is equal to the total weight times the load factor,
minus the tail lift.

b/2 1
2 [ Bwdy = pob /0 Peydn + 2AL, + 2AL, = NW — (Lugail)y (A.153)

For structural sizing calculations N = Ny is chosen, and the appropriate value of (Lyai)n
is the worst-case (most negative) tail lift expected in the critical sizing case. One possible
choice is the trimmed tail load at dive speed, where Ny is most likely to occur.

The wing area (A.132) and aspect ratio (A.134) definitions allow the root chord and the tip
lift drop (A.150) to be expressed as

cw = bK, (A.154)
AL, = th Pob Ko e Ay (A'155)
where K, = KclAR (A.156)

so that (A.153) can be evaluated to the following. The P(») integrals have the form as for
C'), given by (A.122)—(A.131), but with the \’s replaced by ~’s.

popr = NW — (Lhtail)N (A157)
where Ky, = 1o+ 3(147) (05—10) + 3 (vs+7) (1—1ns5)
+ froMo + 2f1, Kovide (A.158)
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The root and planform-break loadings can then be explicitly determined.

NW — (Litai) N
o — Al
P K0 (A.159)
Ps = DPo7s (A160>
Pt = Dot (A.161)

Surface pitching moment

The surface’s reference axis is at some specified chordwise fractional location &,,, as shown in
Figure A.6. The profile pitching moment acts along the span-axis coordinate y,, and scales
with the normal-plane chord ¢, . These are shown in Figure A.6, and related to the spanwise
and streamwise quantities via the sweep angle.

y, = y/cosA (A.162)
¢, = ccosA (A.163)
V., = V,_ cosA (A.164)

The airfoil’s pitching moment contribution shown in Figure A.8 is

1
M, = §pr & e dy, (A.165)
Cm, ; 0<n <o
—"o
Cm(n) = Cmy T (Cmy = Cim, >778—770 s Mo <1 <7s (A.166)

N—"1s
1—n;

Cmy + (Comy —Crmy, ) , Ms<n<l1

and including the contribution of the lift load p with its moment arm gives the following
overall wing pitching moment AM;,, increment about the axis center location.

dAMying = P [cL (gax—i)cosA — (y—1,) tanA} dy + dM,, cosA (A.167)

Integrating this along the whole span then gives the total surface pitching moment about its
root axis.

AMuying = (Poby+2AL0) o (€x—1)

1
+ cos’Ab [ pw) cm) (fax— %) dn

To

b 1
) tanA b / pm)(n—",) dn
n

o

+ 2AL, [cokt (gax—i) cos’A — g(l—%) tanA
1 1
+ §pV£ cos* A b [ e co)? dn (A.168)

To

AMwing = pobcono (1+fLo>(£aX_i)
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1
1 2 1
+ pobco (gax_z) cos”A g { (1 + 3 ()\5+st) + )\sfys) (ns_no>
+ ()\578 + 3 ()‘s’yt_l"}/s)\t) + )\t’}/t) (1_778)}
= Pobeo o 15 [ (1429) (1 =0)° + (352%) (1=m)* + 3 (3a+) (s —10) (171

+ 2pobey fr, My [Kode (Sax—1) cos®A — L(1-n,) tanA]
cos?A 1
K, 12
+ (Cm, BAZH2ANAAD) + 0, BATH2AN D)) (1-1)|  (A.169)

tanA 1

+ §pvjsco [(ema(B+2X422) + €, (3AZ+2X,+1)) (5 —0)

By using the relation

_ = el Al
pob = VIS & (C’L K C’Lh) (A.170)
equation (A.169) gives the equivalent pitching moment coefficient constant and Cy, derivative.
AM,; dCM Sh
ACy,. = =Mvis _ Ag (0 alg) ) A1T1
Mwnng %pVo%SCO M() dCL L S Lh ( )
dCyy

dcy, = Ki{no(l‘f‘fLo)(gax_i)

p

+ (Gwt) cos®h 2 [ (144 ) +A) (m )
+ ()\sfys + 3 (>‘S’Yt+’>/s>\t) + )‘tfyt) (1—773)}

- R (04200 =) + (20 (-
+3 (Ya+%) (0 —10) (1—75) |
+ 2 fr, My [Bode (Sax—1) cos®A — 3(1—73,) tanA}} (A.172)
cos*A 1

ACy, =

5 [(Cm, (BH2Xs4A2) + i, (BAZH2X:+1)) (7= 170)

+ (Cmy BAZH2ANAAD) + G, BAT+200+A2)) (1—7)] (A173)

A.2.7 Wing or Tail Structural Loads

Figure A.9 shows the airload p again, partly offset by weight load distributions of the struc-
ture and fuel, producing shear and bending moment distributions.

Shear and bending moment magnitudes

The S,, M, magnitudes at 7, are set by integration of the assumed p() defined by (A.147),
with the tip lift drop AL, is included as a point load at the tip station. The weight loading
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Figure A.8: Wing pitching moment quantities.

w(n) is also included via its overall outer panel weight W,z and weight moment ayWW,, which
are typically taken from a previous weight iteration.

b rtl

Ss = 5 P) dT} + ALt - NWout
175
N
= p4 (Vs+7)(1=ns) + ALy — NWoy (A.174)
b? 1 b
M, = 1 pm) (n—ns) dn + ALt§(1_7]s> — N xyWout
Ns
Po b? ) b
= 5 (s t29%)(1=n0.)" + ALig(1=n,) — N 3Wou (A.175)

Similarly, the S, and M, magnitudes at 7, are obtained by integrating the inner loading
p(m), and adding the contributions of the strut load vertical component R and the spar
compression component P. The latter is applied at the strut attachment point, at a normal-
offset distance ng, as shown in Figure A.9.

b s
SOISS_R+§np(W)dn_NMnn
Mo
o b
- S, - R + p4 (1+75) (s —10) — NWinn (A.176)
b b2 s
Mo == Ms _Pns+ (85_7?/)5(773_770) + Z p(n) (77_770> d77 - NAyVVinn
To
Po b’

b
= Ms _Pns + (SS_R>§(US_770) + (1+2%)(77s—770)2 - NAymnr(A177>
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Outer surface shear and bending moment distributions

Rather than obtain the exact S(;) and M) distributions by integration of the assumed p(),
Ss and M are simply scaled with the appropriate power of the local chord.

2
Sm = S (3) ., ms<n<1) (A.178)



»~, Engine weight alternative
to strut forceR

structural box

~ N =2y/b

Figure A.9: Aerodynamic load p() and weight load w(n), with resulting shear and bending
moments. An optional strut modifies the shear and bending moment as indicated.

3
Mm = M, <£) . (s<n<l) (A.179)

S

These approximations are exact in the sharp-taper limit )\;, 7z — 0, and are quite accurate for
the small \; values typical of transport aircraft. Their main error is to slightly overpredict
the loads near the tip where minimum-gauge constraints are most likely be needed anyway,
so the approximation is deemed to be justified. Their great benefit is that they give a
self-similar structural cross section for the entire cantilevered surface portion, and thus give
simple explicit relations for the cross-section dimensions and the surface weight.
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Strut or engine loads

The vertical load R applied at location 7, can represent either a strut load, or an engine
weight. The two cases are described separately below.

Inner surface shear and moment — strut load case

In principle, both the strut anchor position 7, and the vertical strut load R can be optimized
so as to achieve some best overall aircraft performance objective. A complication here is that
multiple load conditions would need to be considered during the optimization, since a strut-
braced wing optimized for a straight pullup case may not be able to withstand significant
downloads, or may be too flexible in torsion and be susceptible to flutter. To avoid these
great complications, it is assumed here that the strut is prestressed so as to give equal
bending moments at the ends of the inner panel in level flight. The particular R which is
then required in level flight is determined from (A.177).

M, = M, — Pn, (assumed) (A.180)
o
R = L2 (1429)(-n) + S, (A.181)

Referring to Figure A.9, this required R then gives the projected strut tension 7 and the
inner-wing projected compression P loads from the strut front-view geometry.

2
ly, = \/Zf + bz(ﬁs—ﬁo)2 (A.182)
T - b (A.183)
Zs
b/2
P = RZ/ (1s—17o) (A.184)

The applied vertical load (A.181) implicitly contains the strut’s own weight, although this is
immaterial in the present formulation. The associated strut tension force (A.183) which will
be used to size the strut cross-section will still correctly give the maximum strut tension at
the wing strut-attach location.

Although the inner shear and moment distributions can be obtained by integrating the inner
loading p(n) and including the contribution of the strut tension, these inner S() and M) are
not appropriate for sizing the inner wing structure at each spanwise location, since buckling,
torsional stiffness, etc. typically come into play here. Instead, the inner wing structure will
be sized to match the S, and M, values.

Inner surface shear and moment — engine load case

For the case of an engine attached at location 7, the vertical load R is simply the engine
weight times the load factor N. The new inner wing compression load is zero in this case.

R = NWeng/Neng (A.185)
T =0 (A.186)
P =0 (A.187)
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The wing root shear and bending moment S, and M, are then obtained immediately from
(A.176) and (A.177). Unlike in the strut case, these root loads will in general be greater
than S and Mg, so the inner wing panel structural elements need to be sized accordingly.

A.2.8 Wing or Tail Stresses

Normal-plane quantities

The wing and tail surface stress and weight analyses are performed in the cross-sectional
plane, normal to the spanwise axis y, running along the wing box sketched in Figures A.6 and
A.9. Together with the normal-plane coordinate and chord relations (A.162) and (A.163),
the shear and bending moment are related to the corresponding airplane-axes quantities and
to the sweep angle A as follows.

S =S (A.188)
M, = M/cosA (A.189)

Wing or tail section

The assumed wing or tail airfoil and structural box cross-section is shown in Figure A.10.
The box is assumed to be the only structurally-significant element, with the slats, flaps, and
spoilers (if any), represented only by added weight. It is convenient to define all dimensions
as ratios with the local normal-plane chord c, .

7 hW OX
ho= =2 (A.190)
CL
@ = Lwbox (A.191)
CL
n tca
tcap = L (A192)
Cy
- Lwe
byt =~ b (A.193)
1
Leap Atuel
* A
= =
_ ;/ A I—,+ ‘ =T

Figure A.10: Wing or tail airfoil and structure cross-section, shown perpendicular to spar
axis. Leading edges, fairings, slats, flaps, and spoilers contribute to weight but not to the
primary structure.
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The maximum height hypex at the box center corresponds to the airfoil thickness, so that h
is the usual “t/¢” airfoil thickness ratio. The height is assumed to taper off quadratically to
a fraction rj at the webs, so that the local height h) is

W) = o | 1 — (1=74)8? | (A.194)

where ¢ = —1...1 runs chordwise over the sparbox extent. Typical metal wings and airfoils
have w ~ 0.5, r, ~ 0.75, although these are left as input parameters. For evaluating areas
and approximating the bending inertia, it’s useful to define the simple average and r.m.s.
average normalized box heights.

_ 1 1 - 1
= = ~ nl1-z0- Al
hs = — [ hdg = b [ ~ rh)] (A.195)
_ 1 _ 5 1
2 _ 2 _ 2 21 1 2

The areas and the bending and torsion inertias, all normalized by the normal chord, can
now be determined.

1 A ue n 7 -
Afuel = Cf2 1 = (U_) - 2twob)(havg - 2tcap) (A197>
1
1 Aca T
A = =2 — 2w (A.198)
¢l
n AWC N 7
Aweb = 2 b =2 Tweb T'h h (A199)
CJ_
7 ]Cap W g3 7 I \3
[cap — le_ - E {h'rms - (hrms_thap) } (A200)
- Lo Lwen 75 3 _
Ly = 4b = bgh < eap (typically) (A.201)
cr
T 4__two 2}_7'av _Eca 2
GJ = (w _ b) ( g7 < p) (A.QOQ)
rhh_tcap + Qw_tweb
Gwcbfwcb Gcapt_cap

Outboard surface stresses

The wing or tail surface outboard of the strut-attach location 7 is a simple cantilever, whose
local shear and bending stresses can be obtained explicitly.

S, S, 1
= — o A.203
Trveb chb C2L 2twebsh ( )
M bypor /2  Mihges/2 M, 6h 1
ca — ~ = e = — A2 4
“ P [cap+TE[wob Icap C?i w h’?ms - (hrms_2tcaps)3 ( 0 )
Ewe
s o= b (A.205)
cap
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With the assumed triangular chord distribution (A.121), and the simplified shear and bend-
ing moment distributions (A.178) and (A.179), the shear and bending stresses become

S 1 1
o= 2t A.206
Tweb 2 2tyeb, Th h cos? A ( )
M, 6h 1 1
. 6h 1 A.207
Tesp 3w hd g — (hims—2teap,)? cos® A ( )

which are spanwise constant across the outer wing. This great simplification was the major
motivator behind assuming the simple triangular planform and loading and the chord-scaled
shear and moment (A.178), (A.179) for the outer wing. The optimally-sized wing sections
at all spanwise locations then become geometrically self-similar, and only one convenient
characteristic cross-section, e.g. at the strut-attach location 7, needs to be sized to fully
define the outer wing’s structural and weight characteristics.

For a wing or tail surface without a strut, the outer surface constitutes the entire surface.
In this case, the strut and inner-surface sizing below is omitted.

Inboard surface — strut case

The inboard surface structure is defined by its two end locations 7, and 7, with linear
material-gauge variation in between. The shear webs of the inner surface are assumed to be
dominated by torsional requirements rather than bending-related shear requirements. Hence
the inner panel is sized for the shear distribution shown dashed in Figure A.9, defined by
the strut-attach value S;.

S = &8, (A.208)

S’ 1 1
o _ A 209
€2 2tyep, Th h cos? A ( )

Tweb

Similarly, the inner panel bending stiffness must not only withstand the normal-flight bending
loads, but also landing downloads and buckling loads from the strut compression. Hence, the
sparcaps are sized to the linear bending moment shown dashed in Figure A.9, and defined

by the end values M, and M.

With the strut assumed to be attached to the bottom sparcap at ng=h/2, the strut’s com-
pression load P cannot influence the compression stress on the top sparcap. An equivalent
alternative view is that the offset-load bending moment reduction —Pny is cancelled by P’s
own added compression stress. In any case, P does not explicitly enter into the sparcap siz-
ing, provided M is positive everywhere on the inner panel, which is a reasonable assumption
for a structurally-efficient wing. Hence, the strut-attach outer moment M, is used for sizing
the bending structure of the inner panel.

M, = M, (A.210)
M’ 6h 1 1

o MO _ _ A211

Teap 3 0 B2, — (Brs2leap,)? oS A ( )
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Inboard surface — engine case

In the case of an engine mounted at 7,, the root shear is simply offset by the single-engine
weight, as shown in Figure A.11.

M(n)

-~ n=2ylb

Figure A.11: Surface loads modified by load R equal to engine weight attached at 7.

R = NWeng/Neng (A.212)
P = 0 (A.213)
The root shear and moment S, and M, are then given immediately by (A.176) and (A.177).

The root web and cap stresses are then obtained with the same relations (A.206) and (A.207)
used for station 7;.

S, 1 1
Teb = 2 2lyen, T b cos? A (A.214)
M, 6h 1 1
= Lo O S A.215
Teap 3w hdg — (hams—2leap,)® cost A ( )

The 7., and 7, factors are estimated or known max/average stress ratios, and account
for the fact that the material in a realistic structure is never all at the same stress, due to
approximate detailed design or analysis, or from manufacturing or cost considerations.

Strut

The full strut length ¢, and full tension 7, are determined from the strut geometry.

b2 s — 1o 2
0, = \/z2 + Z% (A.216)
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ls

T =T EL (A.217)
The strut stress is then simply related to 7, and the strut cross-sectional area Ag ;-
7.
strut  — A.218
Ostrut Astrut ( )

A.2.9 Surface Weights

Surface material volumes and volume moments

The surface structural weight is obtained directly from the total volume of the caps and webs,
and the corresponding material densities. The volume V of any element of the swept surface
is computed using the element’s normalized cross sectional area A, and the local streamwise
chord c(n). The volume x-moment offsets az) from the center box are also computed for
mass-centroid calculations. The volume y-moment offsets ay) from y, or y, are computed
for their contributions to the structural shear bending moment (A.174) and (A.175).

dy b dn

dy. = cosA 2 cosA (A-219)
A = A = A cos® A (A.220)
/AalyL = g/[lcz cos A dn (A.221)
b2 _
Ay = /A (T—Twpox) Ay, = Z/Ac2 (n—mn,) sin A dn (A.222)
b? _
Ay = /A(y —Yo) dy, = T /A02 (n—mn,) cos A dn (A.223)

Using the assumed three-panel chord distribution (A.121), the unit-area (A=1) volume and
volume moments evaluate to the following for each of the three panels of one wing half.

Viw = [ dn = 2oy, (A.224)
2 Jo 2
b s, 5 b 9
Vion = 5/ ¢ cosNdn = 6 (14 X4+ X3)(ns—mo) cos A (A.225)
b 1 5 b
Vour = 5/ c® cosAdn = 6 (A2 XA+ A7) (1—n,) cos A (A.226)
b2 Ns 9 X b2 2 .
AWV = 1), c“(n—mno) sinAdn = @ (14 2X+3A3) (1n5—1n,)? sin A (A.227)
b? , b
AV out = 1 & (n—n,) sinAdn = ¢ 48 (AZ4H2X0, 0 +3X7) (1 —n,)? sin A
()\2 + A+ A7) (ns—no)(1—n,) sin A (A.228)
b? 62
AVipn = Z/ (n—n,) sinAdn = ¢ T (14 2X0s+3X3) (1n5,—1,)? cos A (A.229)
7o
b? 5 b
Vot = 2/7702 (n—ns) sinAdn = ¢ yr (A2 20, +3)02) (1 —n,)? cos A (A.230)
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Surface weights and weight moments

For the structural sizing calculations it’s necessary to determine the contributions of the
structure and fuel separately for the inner and outer panels. These are calculated by applying
the material densities and actual area ratios to the unit-area volumes calculated previously.

CaPinn

Awebinn

WSCCH

Wsinn
AV, sinn
AyVVsinn

Wsout
AW sout
AyVVsout

chen

Afuol

inn

Wﬁnn
AWV, finn
AyI/Vﬁnn

Acap, + Acap N2
1+ A2
Ageb, + Agen, N2
14 A2

_pcap Acapo + Pweb chbo} g Vcen

o

Pcap Acap;,, + Pweb Awebinn g Vinn

N

Pcap

)
CaPinn + Pweb chbinn} g Mvinn
:p cap ACapinn + Pweb AWObinn} g AyVinn

_pcap Acap R + Pweb Awobs} q Vout
_pcap Acap R + Pweb Awobs] q Axvout

_pcap Acap s + Pweb Awebs] g Ay)}out

Ptuel Afuelo 9 Vinn

Agel, + Atuet, A2
1+ A2

Ptuel Afuelinn 9 Vi

Pruel Atuclyny § AV inn

Ptuel Afuelinn 9 5Vinn

Ptuel /4fuelS g Vout
Ptuel /4fuelS g A'ﬁ}out

= Pfuel Afuels g Ay]}out

(A.231)
(A.232)

(A.233)

(A.234)
(A.235)
(A.236)

Assuming chord?-weighted average areas A;,, over the inner panel is deemed to be adequate
for approximating the material and fuel volumes, since A, and A, will be very similar for
any reasonable wing/strut configuration, and in fact are equal for the small taper ratio
cantilevered wing case like for the outer panel.

The total structural wing weight and z-moment is obtained by summing the weights for
all the panels for the two wing halves, with added wing weight accounted for by the fyaqq

fraction components.

fwadd
Wwing =
AW ing =

fﬂap + fslat + faile + flete + fribs + fspoi + fwatt
2 (Wscon + Wsinn + Wsout) (1 +fwadd)
2 (A:LWsinn + A*:ﬂ/vsout) (1+fwadd)
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The maximum (volume-limited) wing fuel weight and z-moment is computed the same way.

Whnax = 2 (chon + Whnn + Wfout) (A251>
AZLVmeaX = 2 (A*IWﬁnn + A:LVVfout) (A252)

This can be modified if only some of the wingbox volume is chosen to hold fuel.

Total panel weights

The wing structural shear and bending moment relations (A.174) — (A.177) require the
weights and weight y-moments of the individual wing panels. These are assembled by sum-
ming the structure’s and maximum fuel’s weight contributions derived previously, with the
latter simply scaled by the max-fuel usage fraction 7pyax.

Pimax = vail (A.253)
Wisn = Wainn(1+ fwadd) + Tfmax Whnn (A.254)
Wour = Wiout(1+ fwadd) + Ttmax Wrout (A.255)
MWinn = 8Weinn(1+ fwadd) + Thnax 29Wenn (A.256)
MWour = 8Wsout (14 fywadd) + Tmax 29Wsout (A.257)

Using a single rgpnax value assumes the partial fuel load is uniformly distributed percentage-
wise in all the available volume. Of course, rq,a, could be varied between the panels to reflect
other fuel distributions.

Strut weight

The weight of the strut is computed directly from its cross-sectional area and total length
for the two sides.

Wstrut = Pstrut gAstrut QESJ_ (A258)
b
AlWStTUt = Z (778_770) tan A Wstrut (A259)

Wingbox component weights

The overall sparcap and web weights for the entire wing can also be determined, although
these are merely informative and are not needed for any other calculations.

Wcap = 2pcapg [Acapovcen + %(Acapo"i_lecaps)vinn + AcapSVout} (A260>
Wweb = 2pWebg [Awebovcen + %(A’leebo“'/_lwebs)vinn + Awebsvout} (A261)
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Tail surface weight

All the wing wing stress and weight analyses above apply equally to the vertical and hori-
zontal tail surfaces, with the appropriate span and load definitions. It is assumed that no
strut is used, so that

Csy, Coy, (A.262)
by, = by, (A.263)

Sh

and likewise for the vertical tail. The main difference is the derivation of the root loading
magnitude p,, which is set by the maximum design loads at qyz, defined by (A.72) and
(A.74). Specifically, we have

2

Ly,
= Zhmax A.264
Por by 1+ ( )

where the ()}, subscript denotes the horizontal tail/ The same relation is used for the vertical
tail. Gravity and inertial loads are neglected here, since for tails they are typically much
smaller than the airloads at ¢y;. Of course, they could be included as was done for the wing.
With the tail p, values defined, the structural-box sizing and weight estimation proceeds
using the same relations as for the wing, starting with S,. The vertical tail is treated by
assuming its mirror image exists, so that the b value in (A.174) and (A.175) is actually twice
the actual vertical tail span. No other adjustments need to be made. The net result is the
overall horizontal and vertical tail weights, and tail weight moments.

—  Whtail (A.265)
— Witai (A.266)
— ALEWhtaﬂ (A267)
~ sV (A.268)

A.2.10 Engine System Weight

The bare engine weight Wepae is calculated using an assumed dependence on the engine
design core mass flow rp, overall design pressure ratio OPRp, and the design bypass ratio
BPRp. The model’s constants have been calibrated with listed weights for existing turbofans.
The added weight We.qq, specified via the empirical fraction fea.qq, accounts for the fuel
system and miscellaneous related equipment.

Webaro = TNeng W61 (mD7 OPRD; BPRD) (A269>
Weadd - Webare feadd (A270)

The nacelle plus thrust reverser weight is calculated using an assumed dependence on the
engine fan diameter dy and the nacelle surface area, the latter being specified by the empirical

area ratio rgnace relative to the fan area.
s

Snaccl = TSnace 4 d? (A271>
Wnace = TNeng Wn1 (df7 Snac01> (A272>
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The pylon weight Wiion, specified via the empirical fraction fpyion, accounts for the pylon
and other mounting structure.

Webare = Neng We, (tip, OPRp, BPRp) (A.273)
Wpylon - (Webare + Weadd + Wnace) f pylon (A274)

The total engine system weight and weight moment is then defined as follows. The engine
weight fraction is also defined, and is used in the overall weight iteration procedure.

Weng = Webare + Weadd + Wnace + Wpylon (A275)

xWong = Teng Wong (A276>
Wong

en = T A.277

f & WI\{TO ( )

A.2.11 Moments and Balance

Weight moment and aerodynamic moment calculations are used to size the horizontal tail to
meet stability or trim-limit requirements, to determine allowable CG limits, and to determine
the required pitch-trim tail lift.

Overall weight moment

The overall flying weight is summed as follows. Partial payload and partial fuel are specified
with the arbitrary 7, and 7 ratios relative to maximum design values.

W = Tpay Wpay + Tfueleuel
+ quse + Wwing + Wstrut + Whtail + thail
+ WCng + Whpcsys + I/Vlgnosc + VVlgmain (A278>

The partial passenger payload distribution in the cabin is specified by the parameter &y
which can take on any value 0...1. Specific instances are

0.0 , passengers packed towards the front
Epay = 0.5 , passengers centered in cabin (A.279)
1.0 , passengers packed towards the back

This then determines the passenger payload weight centroid xp,y.

Lcabin — %(xsholll + xshollg) (A280>
lcabin = Tshell, — Lshell (A281)
Tpay = Zcabin + lcabin (gpay - %) (1 - /rpay) (A282)

Note that with a full passenger load, 7,y =1, the mass centroid is always at the center point
Zcabin, regardless of &,ay. The overall aircraft weight moment is then computed as follows.

W = Tpay TpayWhay
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T'fuel (waofouel + W fuel)
W fuse

a:wbowaing + AV, wing
Twhbox Wstrut + AZLWstrut
Thtail Whtail + 20Whtail
xvtailwvtail + AJj/vvtail

v, eng

Thpesys Whpesys

+ o+ o+t

Tlgnose VVlgnoso
xlgmain I/Vlgmain (A283)

_|_

The aircraft CG location then follows.

W
— A.284
= (4.284)

Leg —

Overall aerodynamic moment

The overall aerodynamic pitching moment about the origin comes from the wing, the hori-
zontal tail, and the fuselage. For simplicity, the wing root chord ¢, is used as the reference
moment arm rather than the more traditional m.a.c.

— M Lwhbox Sh
O = pimss, = O+ (O = (0 - 36)
S o. 0. O S
n hChCMhO " (c_h Cam — Thb )_hCLh
Sec, Co Co S
CMV,
+ Scof (CL - CLMfO) (A'285>

and CMVs, and Cr,,,, give the fuselage’s pitching moment volume dependence on aicraft Cr,.

Mfuse
3PV2

= CMVf = CMVfl (CL _CLMfO) (A286>

From slender body theory, a fuselage of volume V; isolated from the wing has

CMVy ~ 2V (a0 — apeo) (A.287)
2Vr
CMVy, ~ ic, /da (A.288)

but this will typically be considerably modified by the interaction with the wing. Ragardless,
the aircraft center of pressure (or lift centroid) is given as follows.
Co CM

T = =& (A.289)
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Neutral point

The neutral point is estimated by first translating the aerodynamic pitching moment (A.285)
to some arbitrary reference x location.

Culz) = Cu + 2Cp (A.290)

(]

The neutral point is the x location which makes (A.290) stationary with respect to Cr, or

0Cym (xNP) 0Cym Tnp

aC;, = a0 T e T 0 (A.291)
Tnp = —c()%%f (A.292)
where 00%%‘:[ = (c,Crvwy — waox)(l — %%)
+ (caCim, — o) 2 20
+ Cj\év“ (A.293)

Pitch trim requirement

Every operating point must meet the requirement of pitch trim, which is equivalent to the
centers of weight and pressure cooinciding. This is enforced by requiring that the following
total-moment residual is zero.

aV Co C M

RA{(xWbOX7 ShacLha CLarfuelarpayagpay) = o — Top = — + =0 (A294)
w Cp,

The argument list of the residual indicates the variables which have the strongest influence
on pitch trim.

Pitch stability requirement

An aircraft must also have some minimum amount of static pitch stability, which means
that the rearmost center of gravity must be ahead of the neutral point by the static margin
fraction fg,, of the mean aerodynamic chord. This is met when the following stability residual
is zero.

Rs(waoxaSharfuelarpay>€pay) = ZTog — Twp + fouCua = 0 (A-295)

The argument list indicates the variables which have the strongest influence on pitch stability.

A.2.12 Tail Sizing

The tail areas can be sized by a number of alternative requirements. The most common
approaches are outlined here.

42



Specified tail volumes

This is the simplest approach. The stability margin or damping requirements are assumed
to be quantified by the horizontal and vertical tail volumes,

lh = ZThtail — Twing (A296>
lv = Tytail — Twing (A297>
G o= b b (A.298)
b S Cmac .
Sy 1
V, = <+ A.299
S ( )

which when specified give the necessary S or S;. Defining the tail arms from the center of
wing centroid rather than from the CG or the wing’s aerodynamic center is reasonable for
these rather simple sizing relations.

Design-case: Horizontal tail sizing and wing positioning

For the design case, both Sy, and xypox are determined so as to drive the pitch trim and
stability residuals (A.294) and (A.295) to zero simultaneously. Their remaining arguments
are set for the appropriate worst-case situations:

RM - RM(waoxa Sh ) (CLh)mim (CL)maxa (Tfuel)fwda (Tpay)fwda 0) =0 (Agoo)
RS = ,R/S(waoxash; (Tfuel)afta(rpay)aftal) =0 (A301)

Specifically, for pitch trim the most-forward CG and most-negative flaps-down wing airfoil
Cm, at maximum flight (7, are assumed. For stability the most-aft CG is assumed. The 7p,,
values which give the extreme forward and aft CG locations are obtained by solving the
extremizing relation

0 RI\/I

OTpay

-0 (A.302)

which is a quadratic for rp,y. It is solved twice, with £,y =0 chosen to give (7pay)fwa, and
then &,y = 1 chosen to give (7pay)as.- Zero fuel, or rqe =0 is assumed for both cases, as
this typically gives the most extreme CG locations together with the worst-case payload
distributions.

The two residuals (A.300) and (A.301) are simultaneously driven to zero by varying the wing
position xynox and the horizontal tail area Sy, by solving the 2x2 Newton system. The four
Jacobian elements are readily calculated.

[— e IR s
%_7;‘5 ag?jb ox oz wbox 7—\)fS
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Off-design case: Tail lift setting

For off-design calculations where the wing location and horizontal tail area is set, pitch trim
is achieved by adjusting Cr,. The pitch-trim residual (A.294) is therefore driven to zero with
a Newton step on Cr, .

OR 1 S S
acy, = FL —(coChp, — Iwbox)gh + (ConCrny — SChbox)gh (A.304)
RA{
(CLh)new - C1L (A305)

b OR,/OC,

Vertical tail sizing via engine-out yaw power

An alternative to the specified vertical tail volume (A.299) is to size the vertical tail so that
it can achieve yaw trim with one engine out. The requirement is

QminCLvyaw Sv lv = (Fong + qminCDonngng) Yeng (A306>

where iy is the minimum takeoff dynamic pressure, Cp,,,, is the maximum lift coefficient
of the vertical tail with some yaw control margin, Fg,, is the thrust of one engine, Cpepg is
the drag coefficient of a windmilling engine with reference area Aeng, and Yeng is the lateral
distance of the outermost engine from the centerline.

A.2.13 Dissipation (Drag) Calculation

Power-based formulation

The performance calculations used here are based on the power balance and dissipation
analysis of Drela [12]. In brief, the usual streamwise force balance equation in constant-
velocity flight is replaced with the power balance relation

F'V., = DV, + Wh (A.307)

where h is the climb rate, F’ is an effective thrust, and D’ is an effective drag. These
two effective forces are actually defined in terms of the net propulsive power and the net
dissipation and vortex kinetic energy loss rate.

F'V., = Py, + P+ Py, — it (A.308)
D/voo = (I)surf + (I)wake + Evortex (A309>

The advantage of this power-balance approach is that it naturally handles the presence of
boundary layer ingestion (BLI) without the ambiguities or complications which arise with
a force-balance approach. If no BLI is present then the two approaches become entirely
equivalent, and F’, D’ become the conventional thrust and drag F, D. The BLI accounting
is described in more detail in the separate document “Power Accounting with Boundary
Layer Ingestion”. Only the relevant results will be used here.
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The disspation and power loss terms in the above power equations are used to define the
following convenient coefficients.

q>surf + q>wake

Ch = —Tmes (A.310)
aPVES
Evor eX
Cp, = lpV;’S = Cp, (A.311)
2 o
D'V
Cl, = —= = C) + Cp, A.312
D V38 p, t Cb; ( )

As with “F” and “D”, the “Cp” notation is used as a reminder that if there is no BLI, the
above definitions reduce to the conventional drag coefficients and the primes can be simply
dropped in that case.

In the following subsections, the various contributions to the overall power-loss coefficient
C}, will be computed. Most of these rely on traditional drag models and terminology, hence
the “Drag” label will be used in the sections titles, mostly out of habit. As a useful indicator,
the prime ()’ will be retained only for those contributions which are potentially influenced by
BLI. Unprimed contributions will thus also correspond to the conventional drag coefficients.

Fuselage Profile Drag

The fuselage profile drag is determined by an pseudo-axisymmetric viscous/inviscid calcu-
lation method, which is described in the separate document “Simplified Viscous/Inviscid
Calculation for Nearly-Axisymmetric Bodies”. This gives reliable viscous flow and fuselage
drag predictions for any reasonable fuselage shape, without the need to rely on effective
wetted area or fineness-ratio correlations.

The method requires the geometry to be specified in the form of a cross-sectional area
distribution A(z) and also a perimeter distribution by(z), shown in Figure A.12. For a round
cross-section these are of course related, but to allow treating more general fuselage cross-
sections, they are assumed to be specified separately. The cross section sizes and shapes can
vary along the body, provided the variation is reasonably smooth.

A 9 GQX)
) AD o, (ﬂx)

Figure A.12: Fuselage defined by cross-sectional area A(x) and perimeter by(z) distribu-

tions. Viscous calculation produces displacement, momentum, and kinetic energy areas
A*, 0, 0%q)

45



The cross-sectional area over the center cylindrical portion is A, which has already been
defined by (A.6). This also defines the radius of the equivalent round cylinder.

A use
Ry = | — (A.313)

™

The equivalent radii over the tapering nose and radius are then defined via the following
convenient functions.

r aql/a
Rcyl 1-— (M> ‘| ; Tnose < T < Lblend
Tblend; — Lnose
Rax) = Rcyl s Tblend; < T < Tblend o (A.314)
i b
L — Tblen
Reyi | 1— —Dlendz y Tplendy < T < Tiail
Lend — Tblend o
a ~ 1.6 (A.315)
b o~ 2.0 (A.316)

The Zplend, and Tplend , locations are the nose and tailcone blend points, and do not necessarily
have to be exactly the same as the zge, and Tghen, locations which define the loaded pressure
shell. Likewise, x.nq is the aerodynamic endpoint of the tailcone, and is distinct from its
structural endpoint Zconena- The a and b constant values above give reasonable typical
fuselage shapes.

If the fuselage is nearly round, the necessary area and perimeter distributions follow imme-
diately.

A@) = 7 R@)? (A.317)
This would be suitably modified for non-circular cross-sections.

With this geometry definition, the viscous/inviscid calculation procedure provides the mo-
mentum and kinetic energy area distributions along the body and wake,

{O6), O"(9)} = fro F(Mo, Reg; A), bo()) (A.319)
where F denotes the overall viscous/inviscid calculation procedure, and f; . > 1 is an
empirical factor to allow for fuselage excrescence drag sources.

Specific values of interest are the far-downstream momentum area Oy, at the wake end-
point, and the kinetic energy area O, at the body endpoint or trailing edge.

@wako = G(Swakc) (A320>
O, = O (sm) (A.321)

The fuselage surface + wake dissipated power in the absence of BLI is then evaluated as
follows, consistent with the usual wake momentum defect relations.

(I)fuse (I)surf + (I)wakc .
@ = = thout BLI A.322
Druse %pvois %pvszs (Wl ou ) ( )
Dfuse 2(—)Wake .
@ = = thout BLI A.323
Druse %pvgs S (Wl ou ) ( )
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If BLI is present at or near the trailing edge, the upstream boundary layer and corresponding
surface dissipation ®@g,¢ will be mostly unaffected. But the viscous fluid flowing into the
wake is now reduced by the ingestion fraction fgi; £s SO that the wake dissipation P will
be reduced by the same fraction. This then gives the following overall fuselage dissipation
coefficient for the BLI case.

_ (I)fuse (I)surf + (I)wakc(l - fBLI f> .
éfusc = %pViS - %pvois (Wlth BLI) (A324>
beusc = C1'<I)surf + Cq>wake (1 - .fBLI f) = CDfuse - C<1>wake fBLIf (Wlth BLI) (A325)
where Cop_ ., = % (A.326)
20 yak o
Cowse = —5— — o A.327
Dyake S S ( )

Wing Profile Drag

The power dissipated in the wing’s surface and wake for the non-ingesting case defines the
wing’s profile drag coefficient.

— (I)wing - (I)surf + (I)wako
Ve T 1pVES spV3S

Cp (without BLI) (A.328)

Any ingestion of the wing boundary layer is captured by the ingestion fraction fg,,,, in the
same manner as for the fuselage.

(bwing (bsurf + éwake ( 1— fBLI W)

/ _ o .

Chyme = VsS ToV3S (with BLI)  (A.329)

Chang = CPuing = Coyefoury  (with BLI) (A.330)

where Copme = Taoy CDuing (A.331)
Popee =~ 0.15 (A.332)

The wake dissipation is assumed here to be r,__ =15% of the total airfoil dissipation, which

is typical of optimized modern transonic airfoils.

The actual calculation of Cp, —is via the drag using infinite swept wing theory, which
also gives the lift in term of the perpendicular-plane velocity V, and lift coefficient ¢, .
Figure A.13 shows the relations. These quantities are related to the local loading via

V. = V., cosA (A.333)
dL = pdy = pVici e dy, (A.334)
po Py = pV2c,Cap ey, () cos® A (A.335)

excluding the wing center and extreme tip where the lift adjustements AL, and AL, are
located. The loading scale p, in level flight is obtained from (A.159) with N =1 as follows.

W =1L = Lv2sg (A.336)
Lytan = %onz Sh Cr, (A.337)
1
Po = (L — Lugai) (A.338)
K,b ‘
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Using (A.338) to substitute for p, in (A.335) and rearranging gives an explicit expression for
the local section lift coefficient.
CLhtail = o CLh (A339)

CL - CLhtail S P(W)
cos? A K,bc, Cm

(A.340)

)

potential flow
streamline

Figure A.13: Friction and pressure drag forces on infinite swept wing

Using this ¢, and also M, the perpendicular-plane friction and pressure drag coefficients
are then obtained from a 2D airfoil drag database having the form

i i ( Ree \™
Cdf = fWexcr Cdf(CZJ_7MJ_7 E) (%) (A341)
‘Rec GRe
Cdp = fWexcr Edp (CZJ_? MJ_? Z) ( > A342
¢ Reref

( )

where M, = M, cosA ( )
L= h (A.344)

R, = P2 (A315)
( )

Hoo
ap. =~ —0.15

and fy.... > 1is an empirical specified factor to account for wing excrescence drag sources,
and Re. is a reference Reynolds number at which the database functions ¢4 ;> Cd, Were com-
puted. The chord Reynolds number Re. could of course be treated as an additional parameter
in the database, but at a considerable increase in the size of the database and the compu-
tational effort needed to construct it. The value of the Re-scaling exponent a,, ~ —0.15 is
appropriate for fully-turbulent flow.

Note that the database includes the airfoil thickness/chord ratio £ = h, which is crucial for
obtaining a realistic wing thickness/sweep/Cy, /Mach tradeoff. The thickness dependence is
determined by viscous MSES [18] calculations on a number of transonic airfoils or varying
thickness, such as the ones shown in Figure A.14. Each airfoil has been designed indepen-
dently for a well-behaved transonic drag rise, so that the database returns ¢4, and cgq, values
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representative of the best transonic airfoil technology. A piecewise-linear airfoil thickness
distribution is assumed, defined by the three values h,, hg, h;.

heo , 0<n<n,

7 ho + (hy—hy) Lo <n<

hey = 0 s Mo <1< Ts (A.347)
hs + (he—hs) 717__7777 y o< <1)s

On typical transport wings most of the thickness /chord variation occurs inboard, so in that
case, only h, and hg would be considered as design variables, and h; =h, would be assumed.

NCOSO0 NC100 NC110 NC120 NC130 NC140
area = 0.06210 0.06836 0.07464 0.08093 0.08723 0.08355
thick. = 0.09001 0. 10000 0.11000 0.12000 0.13000 0.13999
camber = 0.02142 0.02036 0.01830 0.01826 0.01722 0.01620
re = 0.01457 0.01489 0.01522 0.01556 0.01580 0.01632
ABrg = 11.78° 11.74° 11.71° 11.68° 11.64° 11.62°

Figure A.14: Airfoil family used to generate airfoil-performance database.

The 2D profile drag coefficients are applied to the swept wing using infinite swept-wing
theory, illustrated in Figure A.13. This treatment is exact for laminar flow on untapered
wings, and quite accurate for turbulent flow. The friction drag is assumed to scale with
freestream dynamic pressure and to act mostly along the freestream flow direction, while
the pressure drag from the shock and viscous diplacement is assumed to scale with the
wing-normal dynamic pressure and to act normal to the wing-spanwise axis. The total local
streamwise drag element is then given as follows.

dDying = dDy + dD, = dD; + dD,, cosA
= 1pV2eceydy (A.348)
Ca = Cq + Cq,CO8°A (infinite swept wing) (A.349)
However, this relation is not realistic near the fuselage. Here the potential flow is forced
parallel to the freestream direction which causes the wing shock to become locally unswept,
as shown in Figure A.15. Also, the full streamwise dynamic pressure (as opposed to the
wing-normal dynamic pressure) acts at the trailing edge where most of the displacement-

effect pressure drag occurs. Hence, the sweep correction is dropped off towards the fuselage
via the heuristic “unsweep” function fguns(n).

Cq(n) = {Cdf + Cd, {fSuns + (1—fSunS) COSzA} COSA} (actual swept Wing) <A'350)
1 Y—Yo ) 1 =" b
o g _ B A.351
fS (77) exp ( kSunS C Y ( kSunS 0(77) 2CO ( )
s (A.352)
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The ksuns decay constant controls the area of the wing most influenced by the shock unsweep
correction, as shown in Figure A.15.

ksLmSCg ( unswept-shock wing portion )

potential flowl
streamlines

Figure A.15: Wing shock unsweeps near the fuselage, roughly over the area kynsc?.

The overall wing profile drag is then obtained by numerical integration of (A.348), using
(A.350) for the c4(n) function and (A.121) for the chord c¢(y function.

Dy be, [1
Cp,. = —vims _ 2o / Co d A.353
Dums = Ty g 5 | catn Co dip ( )

o

Tail Profile Drag

The viscous dissipation of the tail surfaces is computed using the same relations as for the
wing, giving the equivalent tail drag coefficients Cp,,.., and Cp_, .. No BLI is assumed, but
could be included in the same manner as for the wing. Because tail surfaces typically do
not have significant shock waves, the shock-unsweep correction (A.350) is inappropriate.
Instead, the 2D friction and pressure drag coefficients cq, and cg4, are specified directly and
are used in the infinite-wing relation (A.349), and are assumed constant over the surface so
that numerical spanwise integration is unnecessary.

Chpan = Cdp, t Cdyy, COS3Ah (A.354)
Cp Cdpy T+ Capy cos® Ay (A.355)

vtail

Strut Profile Drag

In the absence of any BLI on the strut, its dissipation is fully captured by its conventional
drag coefficient, scaled by the local mean-cube-average velocity ratio r,_,, ., to allow for the
fact that a strut is typically in the decreased flow velocity below a lifting wing. Simple sweep
corrections are also used as for the wing.

Astrut
stru == - T 9 k ~ 065 A356
ot kA hstrut 4 ( )
Sstrut = 2Csprut gsL (A357>
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ls

cosA; = (A.358)
Uy,
SS ru

CDstrut = ;« ’ (Cdfs + Cdps COS3AS) Tgstmt (A359>

Picking a strut thickness/chord ratio hegys =~ 0.15. .. 0.20 typically gives the minimum overall
drag for a given strut cross-sectional area Ag,. The k4 area factor of 0.65 is typical of most
symmetric airfoils.

Engine Nacelle Profile Drag

The nacelle viscous dissipation accounts for the external nacelle low only, since the internal
flow is represented by the engine diffuser and nozzle losses. The external wetted area and
corresponding area fraction is determined as an assumed fraction rgy... of the engine fan
area.

Snaco = TNeng TSnace % d?an (A360>
Snacc
fSnace = S (A361)

The skin friction coefficient can also be calculated based on the nacelle-length Reynolds
number and a standard turbulent skin-friction law, with an excrescence factor f, ... > 1
included as for the fuselage and wing.

Enace = 0.15 TSnacedfan (A362)
gnaco

Rﬁnace = M (A363)
MC)O

Chisce = Joexer Gy (Fenace) (A.364)

The nacelle is assumed to be immersed in the potential nearfield of a nearby wing or fuselage,
with a local effective freestream V... which differs somewhat from the true freestream V__,
and is specified via the ratio Viaee/V.. Depending on the flight condition and engine power,
the fan-face Mach number M, will in general differ considerably from the corresponding local
M!_, The nacelle is therefore effectively a loaded ring airfoil, which can be represented by a
ring vortex sheet whose resulting external nacelle-surface velocity is approximately

Viee =~ 2Viace — Vo (A.365)
‘/nace

Voo = TVnacc (A366>
‘/Yn Vnace V M

V;E = 9 v V_: ~ max(2rvnacc — M—: : O) (A.367)

at the lip, as sketched in Figure A.16. Limiting V;,, above zero avoids unrealistic results

for low airspeed, high-power operation situations.

LE

Assuming a linear acceleration or deceleration from V;, . to Viace at the nacelle nozzle gives
the following mean-cube velocity ratio on the nacelle surface.

B = v [ Vi + (s~ Viae) (1-0)] (A368)

Vnsurf V3
oo
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Vp |
A
! LE nacelle dissipation
Voo Vnace j p
—_— — o--»
—
\

Figure A.16: Velocity distribution on inside and outside of engine nacelle. Outside velocity
determines nacelle dissipation and implied nacelle drag. The V;, , > V5 case shown is for a

typical cruise condition, while V;,, . <V, will occur at low speeds and high power.

11V, Vi s\
T ﬁf+”levf>+&W1 (A0

The nacelle-surface dissipation, expressed as the equivalent nacelle drag coefficient, is now
estimated using a turbulent wetted-area skin-friction coefficient, weighted by the mean-cube
velocity ratio.

C1Dnace = fSﬂaCe Cfnace Tg (A370)

nsurf

Induced Drag

The induced drag is calculated using a discrete vortex Trefftz-Plane analysis. The circulation
of the wing wake immediately behind the trailing edge is

D) )
Cyin = 2V~ 2Tk A.371
2 oV — pV. 7 ( )

ke ~ 16 (A.372)

where the approximation realistically represents the tip lift rolloff for typical taper ratios,
and is consistent with the assumed f;, ~ —0.05 value for the tip lift loss factor. This
circulation is convected into the wake along streamlines which will typically constrict behind
the fuselage by continuity. Figure A.17 shows two possible aft fuselage taper shapes, giving
two different wake constrictions.

An annular streamtube at the wing contracts to another annular streamtube in the wake
with the same cross-sectional area. The y and 3’ locations on the wing and wake which are
connected by a streamline are therefore related by the correspondence function.

Y = Jyr—y2+yl? (A.373)
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rwing( y)

Figure A.17: Wake streamline contraction due to fuselage thickness, carrying wing circulation
into the wake. Two shaded streamtubes are shown. Wake center radius ¥/ is nonzero due to
the fuselage viscous wake displacement area.

The Trefftz Plane circulation ['(y) is then given by the coordinate shift. The mapping
function g/ (y) is not defined for y <y,, so the circulation there is simply set from the y, value.

1—‘win ! 9 > Yo
Fwake(y/) = { L. & ELZ(Z; )) y-y (A374)
wing \Yo

The Trefftz Plane analysis uses point vortices. The circulation (A.374) is evaluated at the
midpoints of n intervals along the wake trace, spaced more or less evenly in the Glauert angle
to give a cosine distribution in physical space. The wake’s vertical z positions are simply
taken directly from the wing.

mi—1/2 ,
9i+1/2 = 5 n/ , 1= 1...n (A375)
yi+1/2 = 5 COS 9i+1/2 (A376)
Vi = \WPap— 92+ (A.377)
Zijip = Zip1)e (A.378)
Livi2 = Dwing(Yit1/2) (A.379)
The locations of n + 1 trailing vortices are computed similarly.
mi—1
0, = — , 1=1 1 A.380
5 o n+ ( )
b
yi = gcos 0; (A.381)
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yi = -yl (A.382)

2=z (A.383)

(2

The circulations of these trailing vortices are the differences of the adjacent bound circula-
tions, with the circulation beyond the tips effectively zero.

B —Lli—172 1=1 (left tlp)
Fi = Fi+1/2 — Fi—1/2 y 1=2...1n (A384)
Liv1)2 , i=n+1 (right tip)

The above definitions are also applied to the horizontal tail, with its discrete points simply
appended to the list and n increased accordingly.

z

e mod
@\@\ Fi ri+1 /r/@
\@\\\ﬂ\ o) — /Tévi+1/2
e L TNT

b —

- Y

Figure A.18: Trefftz Plane vortices i,i41... and collocation points i+1/2 used for velocity,
impulse, and kinetic energy calculations. Left/right symmetry is exploited.

The Trefftz plane calculation proceeds by first calculating the y-z wake velocity components
fit the Y;_ 1 /9; 2/11 o interval midpoints, induced by all the trailing vortices and their left-side
images.

vy = 7§ I _(Z§+1/2_Z;‘) _(z£+1/2_23‘> (A.385)
i+ = Py - .
jo12m _(y§+1/2—y§-)2 + (Z£+1/2_Z§')2 (y§+1/2 +y5)% + (Z£+1/2_Z§')2_
ntl o[ Y=Y, Ty ]
J i+1/2 I i+1/277 Y5
Wiy1/s = —L — (A.386)
/ 32:31 2 _(y§+1/2—y§-)2 + (Z£+1/2_Z§')2 (y§+1/2 +y5)% + (Z£+1/2_Z§')2_

The overall lift and induced drag are then computed using the Trefftz Plane vertical impulse
and kinetic energy. The sums are doubled to account for the left side image.

2 n

Copp = V25 ; PV Livrpa (Yi1 — i) (A.387)
Cop = - zn:—gﬂurl/z {wi+1/2 (Yir1 =) — vir1y2 (% 1—2/')] (A.388)
TP %pvozs Pt 9 1+ 7 i+ 7

To minimize any modeling and numerical errors incurred in the wake contraction model and
the point-vortex summations, the final induced drag value is scaled by the square of the
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surface-integral and Trefftz-Plane drag values.

2
Cp, = Cpyy <i> (A.389)

This is equivalent to using the Trefftz Plane analysis to calculate the span efficiency rather
than the actual induced drag coefficient.

Total Drag

The total effective aircraft dissipation coefficient is obtained by summing all the contribu-
tions.

Cb = CD’L _'_ beuse + waing + C'Dhtail + CD + CDstrut + CDnacc (A390>

vtail

A.2.14 Engine Performance Model and Sizing
Engine model summary

The extensive details of the engine calculations are given in the separate documents “Tur-
bofan Sizing and Analysis with Variable ¢,(1)” and “Film Cooling Flow Loss Model”. The
treatment of the inlet kinetic energy defect K, is described in the document “Power Ac-
counting with Boundary Layer Ingestion”. In brief, K, reduces the fan inlet total pressure,
and also adds to the net effective thrust by the amount Kj,/V.., which in engine parlance
can be interpreted as a reduction in inlet “ram drag”.

The engine model can be run in one of three modes:

1) Design sizing mode. The net thrust I and combustor exit temperature T;4 are specified
along with a number of other component and operating parameters, and the engine flow
areas A,, As ... are computed.

2) Off-design analysis mode. The areas and T} 4 are prescribed, and thrust F! is computed.
3) Off-design analysis mode. The areas and F are prescribed, and T4 is computed.

For all three modes, the specific fuel consumption TSFC’ and all other engine operating
parameters which are not specified are also computed.

{Ay, As..; TSFC'..} = Fung, (F., Ty, OPRy, BPRyy...; My, Py, T, Kinr.) (A.391)

(F/; TSFC'.OPR, BPR..} = Fungy(Tir, Ag, A5 s M, p T Kiny.) (A.392)
{E4 ) TSFC/aOPR> BPR} - Fengg(Fe,)AQaASM; Moo7poo>Too>Kinlm) (A393)
ol
where TSFC! = —< (A.394)
Miuel 9
K = (boager), = 0 (3p007) (A.395)

Neng
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In these calculations, the fan inlet total pressure p;o is reduced as a result of the BLI. A
reasonable estimate is

Kinl
- vinl
Vi = // VA (A.397)

P2 = Pt — (A.396)

where Vy is the fan face volume flow.

Engine Sizing

In the design mode 1), the specified thrust is obtained is determined from the start-of-cruise
weight W, lift /drag ratio, and the slight cruise-climb angle 7.

/
Fr,> = Ts W, <% + '70R> (A.398)
L C
F
Fe/D D (A.399)
Neng

The engine calculations determine the specific thrust

F/
F = D
PP Qoo mcore(]- +BPRD)

(A.400)

which then determines the core mass flow ... and the associated fan flow area A, and fan
diameter d;.

y+1
A . mcor0(1+BPRD) _ 1 Fe/D 1 <1 + VT_1M22D )2(’Y1) (A 401)
? P2aus Fopp VDo Moy \ 1+ PYT_IMEO .
4A,
df = {|—————~ A.402
‘ 7(1— HTR?) ( )

Similar calculations are used for the other component and nozzle areas.

A.2.15 Mission Performance and Fuel Burn Analysis
Mission profiles

The altitude, weight, and thrust profiles versus range are schematically shown in Figure
A.19.

At any profile point these are related via the following normal force and axial force relations.

W dV
i == F/ - .D/ - - A_-4
W sin vy g di (A.403)

W cosy = L (A.404)
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\Zu W = Wyro = Whumn

Weserve —r Wiry = Wiro = Wael

hc cruise—climb ‘/ hd
h 3/? 3 descent
| CR |
: : VDE
takeoff
° ‘/fhe
Rb =0 Rc Rd Re = F\)total

Figure A.19: Design-mission profiles of altitude, weight, thrust, versus range.

Equation (A.403) is merely a recast form of the power-balance equation (A.307), with the
added last acceleration term. The subscript has also been dropped from V_, for convenience.
The flight speed at any profile point is obtained from a specified C;, and ambient density
using equation (A.404).
2W cosy
V = —_— A.405
5G ( )

Some iteration is required with the thrust/drag relations below to determine the climb angle
v needed in (A.405).

Dividing (A.403) by (A.404), and using the kinematic ground-speed relation

% = Vcosy (A.406)
together with the fuel-burn to thrust relation
aw
W = —mfuolg = —F/ TSFC/ (A407)

gives an expression for the climb angle v or the equivalent climb gradient dh/dR, and also
the weight-loss gradient dW/dR.
dh 1D id(Vz)

tany = dR WCOS’}/ L 2g dR

(A.408)
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aw , TSFC'
dR - V cosy (4.409)

These will be suitably integrated over the mission segments to obtain the altitude and weight
profiles h(r) and W (r).

The instantaneous climb or descent angle v in the above expressions can be computed by
combining (A.403) and (A.404), and solving for the resulting quadratic equation for sin-~y.

F' v
_ BV A4l
Ch
- 2 A411
- (A1)
_ A2 2
Giny = Soevlzeite (A.412)
1+¢€

The V acceleration term in the excess thrust-to-weight ratio ¢ can be neglected for most
transport aircraft. The corresponding integrated d(V?) differential in (A.408) is also typically
small, but there’s little reason to exclude it in calculations.

Mission profile integration

The fuel weight required for a given mission range is determined by integration of the trajec-
tory equations (A.408) and (A.409), which are first put in the following equivalent differential

forms.
AV (F 1 ap )\
dR = |dh — - = A 41
" ( Ty )(WCOSW Cr (A-413)
F' TSFC'

The various terms are then approximated with 2-point finite differences or averages, and
marched forward using a predictor/corrector scheme, over the climb, cruise, and descent
segments of the mission. The details will be given in the Calculation Procedures section.

The following segment endpoint values are inputs to the integration, and are either specified
externally, or obtained from the weight-sizing calculations:

W,  takeoff weight

Cr lift coefficient for all points
Mg cruise Mach number

hy, takeoff altitude

he start-of-cruise altitude

he landing altitude

Climb distance
The climb-segment range R, is computed by integrating equations (A.413) and (A.414) from

the takeoff range R, = 0, over the prescribed climb altitude change hy, ... h.. The start-of-
climb weight W, is also computed in the process.
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Cruise and descent angles, distances

Before the cruise and descent segments are integrated, it is first necessary to determine the
end-of-cruise range Ry and altitude hy.

The first step is to calculate the slight cruise-climb angle v.g, so as to preserve a constant
flight Mach number M and flight C, as the aircraft loses weight from fuel burn. These are
related to the current weight W at any point in the cruise by the lift equation.

Y 2 w

—pV? = ZpM® = —— A 415
p p SC (A.415)

This assumes that cos v~ 1 which is appropriate for the extremely small climb angles ocurring

during a typical cruise-climb segment. With M and C, held at their prescribed cruise values,

this then gives the atmospheric pressure as a function of weight.
B 2
b= Swrsc
dp p
— = = A.417
dw %4 ( )

The very small change in Wy,,o, over the cruise-climb is neglected here. Using the atmospheric
hydrostatic pressure gradient dp/dh = —pg, and the fuel-burn weight gradient (A.409),
equation (A.417) is used to explicitly obtain the small climb angle during the cruise.

dh dh dp dw
~ _ dh _ dh dp dW A4l
v o= tany = op dp dW dR (A.418)

LR (g)] o

¢, pTSEC
Cr pgV —pTSFC' ),

W (A.416)

Yer = (A.420)

With the calculated cruise-climb angle 7.g, the prescribed descent angle v,5, and the to-
tal cruise+descent remaining range Ry — R., the end-of-cruise range and altitude is the
intersection of the straight cruise-climb and descent paths, calculated as follows.

he — hc — fVDE(Rtotal — Rc)

Yor — YpE
hd = hc + 'YCR(Rd — Rc) (A.422)

R, = R. + (A.421)

Cruise-Climb

Because the cruise-climb segment proceeds at a fixed Mach number, the integrand in equation
(A.414) can be assumed to be constant and equal to its value at start of cruise, so that an
analytic integration is possible. The result is of course a form of the Breguet equation.

%% F' TSFC'
Wi = exp [— <W T>c (Rq — Rc)] (A.423)
tg = t.+ # (A.424)
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Descent

The descent integration proceeds in much the same way as the climb, except that the descent
angle is now prescribed, and the necessary thrust at each integration point ¢ is computed
from equation (A.413). The corresponding T}, and all the other engine operating variables
are the calculated via the engine model run in prescribed-thrust off-design mode 3.

/

F! = w <sin7DE + @(:OS%E> (A.425)

Neng C'L

(T, ; TSFC',OPR, BPR..} = Fungy(Fl, A9, As.; Mo, poo, Ty Kit)  (A.426)

The end result of the integration is the final weight W, and flight time t..

A.2.16 Mission fuel

From the final landing weight W,, the fuel burn and takeoff fuel weight can then be obtained.

Wburn = Wb - We (A42 7)
quel = Wburn (]- + freserve) (A428)
quel
uel — A.429
o = (A.429)
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Appendix B

Turbofan Sizing and Analysis with
Variable ¢, (T

B.1 Summary

The turbofan model described here is used for two purposes:

1) Sizing of a turbofan engine to obtain a specified thrust at design conditions, and

2) Calculations for a given engine at off-design conditions, with a specified thrust or burner
outlet temperature.

It is largely based on the formulation of Kerrebrock [11], with a number of modifications.
Turbine cooling flow which bypasses the combustor is introduced, and a multi-constituent
gas model with variable ¢, (1) is used for all the flowpath calculations.
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B.2 Nomenclature

A flowpath area

a speed of sound ( = \/Tch/(cp—R) )

F thrust force

f fuel mass flow fraction ( = Mgyel/Mcore )

M Mach number ( =u/a)

m component corrected mass flow (= 1 \/Ty/Tret/(Pt/Pret) )
N component corrected rotation speed (= N/\/T;/Tret )

h, hy static and total complete enthalpy

D, P static and total pressure

T, T, static and total temperature

U velocity

o bypass ratio ( = mMgan/Meore )

Q. turbine-cooling bypass ratio ( = Mcool /Mcore )

Ah, total enthalpy jump across component ()

T total pressure ratio across component ()

Tpol, polytropic efficiency of component ()

Mo overall total-to-total efficiency of component ()

Cp, (T) specific heat of gas constituent ¢

h;(T) complete enthalpy of gas constituent ¢

oi(T) entropy-complement function of gas constituent ¢ ( = [(c,,/T)dT")
R; ideal-gas constant of constituent ¢

«;, B;, A; constituent ¢ mass fractions for air, fuel vapor, combustion product
()¢ fan quantity

( e low pressure compressor (LPC) quantity

( ne high pressure compressor (HPC) quantity

( e high pressure turbine (HPT) quantity

(e low pressure turbine (LPT) quantity

( )fn fan nozzle quantity

( tn turbine nozzle quantity

().p design-case quantity

The constituent property values and the mass fractions will also be denoted as a vector, e.g.

hi

o; =

=t

QL

B.2.1 Gas mixture properties

Overall gas-mixture functions c,(r), h(), o), R are computed using the individual ¢,, (1),
h;(T), o;(1), R; constituent functions and the mass fractions «;, 3;, A;. For air we have the
following.

I = D QiCp (1) = a-Cy) (B.1)
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Figure B.1: Engine station numbers, total-pressure ratios, mass flows, and spool speeds.

hr = Zo‘i hy(r) = o?-fL(T) (B.2)
or = > aoyr) = a-G(r) (B.3)
R = YR =aR (B.4)

For fuel vapor 3; is used instead of oy, and for the combustion products J; is used instead of
«;. The combustion relations and the calculation of \; are described in detail in the related
document “Thermally-Perfect Gas Calculations”.

B.3 Pressure, Temperature, Enthalpy Calculations

B.3.1 Relations to be replaced

The standard constant—c, equations connecting a baseline state T,,h,,p, to some other
state T', h, p are the familiar caloric and isentropic relations, with the latter possibly having
a polytropic efficiency 7,0 included to account for a non-isentropic process.

Ah = h—h, = ¢, (T -1, (B.5)
:l:lc R
_ P 2)“‘”‘ !

n= Lo (TO (B.6)

The +1/—1 exponent on 7, indicates a compression/expansion process, respectively. For a
gas or gas mixture with a temperature-dependent c,(7), these relations are no longer valid,
and will not be used here. The replacement relations described in the subsequent sections
will be used instead.

The function Jacobian derivatives d(output)/d(input) will also be derived for each case.
These are required for off-design performance calculations via the Newton method.
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B.3.2 Enthalpy prescribed

Occasionally it is necessary to obtain the temperature from a specified enthalpy. This is
performed by simply inverting the h(r) function via the Newton method.

initial guess: T = Tyuess (€.g. standard temperature) (B.7)

solve: hT) — hspee = 0 — T (B.8)
The overall calculation will be denoted by
T = Fr(d hspec; Tguess) (B.9)
where the @ argument is required to evaluate the h(r) function in (B.8), via (B.2).

The derivative of the calculated temperature is simply the inverse of the specific heat.

dT 1
- = B.1
dh cp(T) (B.10)

B.3.3 Pressure ratio prescribed

For prescribed p,, T, 7, npo1, the new state p, T, h after a compression/expansion process is
computed as follows.

T = 0(Tv) (B.11)
Cpy = CplT) (B.12)
initial guess: T = T, xhe/(oma™!) (B.13)
o) — o, In7
solve: I i =0 — T (B.14)
P = Do (B.15)
h = h (B.16)

The solution for T"is via Newton iteration. The overall calculation will be denoted by
{p,T,h} = F, (c?, Do, Ty, T, npolil) (B.17)

The function Jacobian derivatives 0 {p,T,h} /0{p,, T,, 7} are obtained by first implicitly
differentiating (B.14) with respect to the specified p,, Ty, 7.

1 do OT
1 (do 0T do,\
R <ﬁ8TO a dTO> =0 (B.19)
1 T 1 1
_d_a@_ —— =0 (B.20)

RdT o npolilg
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Using do/dT = c,(1)/T these then give 0T'/0( ), and also the remaining p and h derivatives
via the chain rule.
oT

. - 0 (B.21)
SJT; _ CTL% (B.22)
g_z _ #% (B.23)
gzi _ (B.24)
5’%’0 - (B.25)
g_i — (B.26)
g}i _ %g}i _ 0 (B.27)
% - ;z;gig N CP(T)§ Cf) B ﬂniﬂT (29

B.3.4 Pure loss prescribed

A pure loss with no work or heat addition is the limiting case of a prescribed pressure ratio
m < 1, with 7,00 = 0. The relations above then greatly simplify to the following.

P = PoT (B.30)
T = T, (B.31)
h = h, (B.32)

B.3.5 Enthalpy difference prescribed

For prescribed p,, Tp,, Ah, 1y, the new state p, T', h after a compression/expansion process is
computed as follows.

he = h(t) (B.33)

o, = O(T,) (B.34)

Cpy = Cp(Ty) (B.35)

initial guess: T = T, + Ah/c,, (B.36)

solve: hry — h, — Ah = 0 — T (B.37)
o(T) — 0,

P = P exp(npolil T) (B.38)

h = hm (B.39)



The solution for T' is via Newton iteration. The overall calculation will be denoted by

{p.T.h} = Fi (@ po, To, Ab, ™) (B.40)

The function Jacobian derivatives 9 {p, T, h} /O {p,, T,, Ah} are obtained by first implicitly
differentiating (B.37) with respect to the specified p,, T,, Ah.

dh T

Ton = O (B.41)
dh OT  dh,
aror, ~ar, " (B.42)
dh 0T
aroan 7Y (B43)

Using dh/dT" = c,(1) these then give 0T/0( ), and also the remaining p and h derivatives via
the chain rule.

gi =0 (B.44)
g;; - % (B.45)
% B C;T) (B.46)
o Lt () - L (B.7)
Do ) ()
R e m.19)
gzi N %SZ =0 (B.50)
aﬁi};o - %gg - CP(T’% = Cpo (B.51)
oNE = s = e =) B.52)

B.3.6 Composition change prescribed

A composition change, such as due to combustion, is specified by the following mass fractions
and input properties:

«; constituent ¢ mass fraction for air

B;  constituent ¢ mass fraction for fuel vapor (assumed all burned)

v;  constituent ¢« mass fraction change in air due to combustion

T, air temperature before combustion

Tt fuel vapor temperature before combustion

T  temperature after combustion
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The following quantities are computed:

f fuel/air mass ratio
A; constituent ¢ mass fraction for combustion products

ho = hyt) (B.53)
h = hyn) (B.54)
he = hi (B.55)
The enthalpy balance across the combustor is
ma-hy + mgaB-he = ma-h + rga?y-h (B.56)
which can be solved for the fuel/air mass ratio.
] ue Y- }_i —a- _)o
Mecore ﬁhf—’?h

The mass fraction vector X of the combustion products is obtained from the mass balance
across the combustor.

[mcore + mfuel } X = mcoro a + mfuol 5; (B58)
> a+ fy
\ = B.59
1+f ( )
The overall combustion-change calculation will be denoted by
{tX} = A(d@5.9.T.1,7) (B.60)

The Jacobian derivatives of f and X are obtained by direct differentiation of their definitions
(B.57) and (B.59).

of a-é,

— —ﬁ B6]_
aT, B-h —7-h ( )
af E 5pf
Ty I B-ht —7-h (02
orT B-hy —7-h
OX 7—X
— = — B.64
of 1+ f ( )
ox  OXx of
T, — Of 9T, (B.65)
N N Of
X  OXOf
aT ~ af oT (B.67)



B.3.7 Mixing

Mixing between two streams is a simplified version of the combustion case above. No chem-
ical reaction is assumed, so that 7 = 0. However, in general the two streams will have two
different chemical compositions specified by their mass fraction vectors X and Ay, two dif-
ferent temperatures 1, and 7}, and two different enthalpies i;a = h;(1.) and hy = h;T,). The
species mass flow balance gives the composition mass fraction vector X of the mixed gas, in
terms of the convenient relative mass fractions f,, f of the two streams.

Mg

Ja My + 1y (B.68)
Ty,

Jo g + 1 (B.69)

X = faxa + fbxb (B7O)

Without any chemical reaction change term, the mixed enthalpy is
X . E(T) = hpix = fa Xa . }_ia + fb Xb . Eb (B?l)

which can be numerically inverted for the mixed temperature 7', using the previously-defined
Fr function.

Tguoss = faTa + beb (B72)
T = fT (X, hmix; Tguess) (B73)

B.3.8 Mach number prescribed

For prescribed p,, T}, M,, M, 1501, the new adiabatic-change state p, T, h corresponding to M
is computed as follows.

o, = O(T,) (B.74)
Cp, = Cp(To) (B.75)
h, h(t) (B.76)
R,
Wl o= M2 Ccpo_ =T, (B.77)
Po o
L+ 2(c RZR )Mg
initial guess: T = T, e (B.78)
L+ 5@, 2 M
1 (T R 1
Ive: h M T — hy — —u? =0 T B.79
solve (T) + 5 o= i 2u0 — ( )
P = Do eXp<77poli1 U(T)R_—UO) (B80)
h = hm (B.81)

The solution for T"is via Newton iteration. The overall calculation will be denoted by

{p7 T7 h’} = fM (O_Zu pm T07 M07 M7 npOlil) (B82)
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venient u u derivatives ar xt.
The convenient u? and u? derivatives are defined next

2 M2 cp(1) R

v cp(M—R
g—zj = M cil():(F:)F)—RR T
ou? R R
8LT = M cp(M—R < (1)~ cp(T)—RC;’(T) T)
88]750 = 2M c:o—%o To
2
?}Z = M cpioRo (Cp“ - cpioRo 2 T")

(B.83)
(B.84)
(B.85)
(B.86)

(B.87)

The function Jacobian derivatives 0 {p, T, h} /0 {p,, To, Mo, M} are then obtained by first
implicitly differentiating (B.79) with respect to the specified p,, T,, M,, M.

dh oT 1 ou? oT

dT Op, 2 0T Op,

dh 8T  10u2 0T  Oh,  Oul
aror, T 2orer,  aT,  oT,
dh 0T 10u® oT ou?

o

ATOM, T 29T oM, oM,
dh T 19u® 9T

arToM T 2ar an

0

0

(B.88)
(B.89)
(B.90)

(B.91)

Using dh/dT = c,(1) these then give 0T/0( ), and also the remaining p and h derivatives via

the chain rule.

oT

o !

or ¢,

T, ¢y

or 1

OAL ey

b (a0
opo  po 'R \dTop.) 1o

op o' (do 9T do,\  Npa
or, ~ ' R (ﬁaTo_dT()) - P R
o mpattdo T gt
oAnn — PR arean ~ P TR T

Oh _ dnor _

Ipo dT 9p,

oh dh 9T Cp,

o1, ~ aror, Y@ T @

oh dh OT 1

oAh — dronan ~ T Cp(T) =1

(

ST S

T

T,

)

(B.92)
(B.93)

(B.94)

(B.95)
(B.96)
(B.97)
(B.93)
(B.99)

(B.100)



B.3.9 Mass flux prescribed

It is occasionally useful to calculate the static quantities p, T, h corresponding to a specified
stagnation state p,, Ty, ho, and a specified mass flux pu = m/A = m/. This is computed as
follows, starting from some given initial guess specified by the Mach number Mgyyess, Which
also selects the subsonic or supersonic branch.

o, = O(T,) (B.101)
he = h(t) (B.102)
initial guess: 1T = T,/ 1+LJ\42 (B.103)
g . - o 2 (Cpo . Ro) guess :
2
solve: (@) Y(hg—hm) — (M) =0 — T (B.104)
RT
= Do exp(%) (B.105)
h = h (B.106)

The solution for T"is via Newton iteration. The overall calculation will be denoted by

{p,T,n} = Fpn (o?,po,To,m'; Mguess) (B.107)

This function’s Jacobian derivatives can be calculated by the same procedures used for the
other functions.

B.4 Turbofan Component Calculations

Most of the calculations described in this section are common to both the design and the off-
design cases. The design case requires only a single calculation pass, with the mass flow and
component dimensions determined only at the end. In contrast, the off-design case requires
multiple Newton-iteration passes to converge the component pressure ratios and mass flows.

B.4.1 Design case inputs

The following quantities are assumed to be known for the design-case calculation.
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To,po atmospheric properties
M, flight Mach number

Tiy burner exit total temperature
r: fan pressure ratio

e LPC pressure ratio

The HPC pressure ratio

Q@ fan bypass ratio

T4 diffuser pressure ratio

7 burner pressure ratio

T fan duct loss pressure ratio

My,  representative Mach number at start of HPT cooling-flow mixing zone
T HPT design metal temperature (if «. is to be sized)
Q. cooling-flow bypass ratio (if previously sized)

B.4.2 Freestream properties

From the specified freestream static temperature, pressure, and Mach number, Ty, po, Mo,
we can obtain the freesteam speed of sound and velocity.

Cpy = Cp(To) (B.108)
po
= Ti B.1
Qo Cpo —RO Ro 0 ( 09)
Ug = MO Qo (BllO)

B.4.3 Freestream-stagnation properties
The freestream stagnation quantities are computed using the specified enthalpy change pro-
cedure, with 7,5 =1.
Ah = Lug (B.111)
{pt()aj—‘thh'tO} = fh (&ap0>T0>Aha1) (B112)

The standard fixed-c, relations could also be used here, since the stagnation-static temper-
ature difference is sufficiently small for any non-hypersonic flight Mach number.

B.4.4 Fan and compressor quantities

Inlet conditions

The stagnation conditions ();1.s in the inlet inviscid flow (excluding the inlet BLs) are com-
puted as the pure-loss case with a diffuser total/total pressure ratio mq.

Pt18 = DProTd (B.113)
Tiis = Tio (B.114)
hiis = Tuo (B.115)

Normally m4 =~ 1, unless an inlet screen or other losses are present upstream.
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Fan and LPC inlet conditions

The inlet BL is characterized by a kinetic energy defect Kjy.

_ Lo o
Kin = //2(u6 u”) pu dA (B.116)

A low-speed approximation for the equivalent reduced total pressure p;o is obtained by a
simple volume-flow average of p;.

inl
(Pra — Dr1s) Vinl = // I(Pt —pr1g) udA

// l(p+ lou® — pe+ %peug) udA

12

= (0T Ay~ —hpadOly = K (B1IY
Kin

Pi2 = Pt18 — 7 1 (B-119)
Vinl

his = hiis (B.121)

A similar calculation is carried out for the LPC inlet state ();1.9. Possible limiting cases are:

()¢1s »  (no significant BL ingestion)

_ B.122
(ero { ()i2 , (nacelle BL fills inlet flow) ( )

Fan exit conditions

The fan exit stagnation conditions are computed from the fan pressure ratio m¢. The poly-
tropic efficiency is computed first using the appropriate assumed fan efficiency map.

B Fo(me, m, 1, 1) , (design case)
ool = { Fo(me , mep , Mg, mep) ,  (off-design case) (B.123)
{peo1, Tio1, hion} = Fp (07, Pi2, Ly2, 7, Upolf) (B.124)

Fan nozzle exit conditions

Fan duct and fan nozzle losses are represented by the total pressure-drop ratio 7, with no
total enthalpy change.

Pt = Pt2.1 T (B.125)
Tir = Ti2a (B.126)
hiz = hiaa (B.127)
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LPC exit conditions

The LPC calculation is the same as for the fan. But the inlet state can be either 2 or 1.8,
depending on whether the LPC does or does not ingest the inlet BL fluid.

) Fylme, me, 1, 1), (design case)
oolie { Fo(Te, Mep , e, Muen) ,  (off-design case) (B.128)
{pt25,Tio5, 25} = Fp (ﬂ, Pe1.9, Ti1.95 Tie, 77P011c) (B.129)

HPC exit conditions

The HPC calculation procedure is the same as for the LPC and fan, except that the 2.5
station quantities from the LPC calculation above are used for the HPC inlet.

_ Fo(The s The , 1, 1) , (design case)
Moolpe = { Fo(The, TheD » Mhe, Miuep) ,  (off-design case) (B-130)
{pes, Tis, izt = Fp (CY, Pr2.5, Ti2.5, Mhe, Upolhc) (B.131)

Fan and compressor efficiencies

The equivalent isentropic states and overall efficiencies can be computed for the fan and
compressors out of interest, although these are not required for any subsequent calculations.

{pt2.17(th.l)isa(htz.l)is} = ]:p (527]915277}277&71) (B-132>
{]%2.5, (Tt2.5)is, (ht2.5>is} = fp (527 Di1.9, L11.9, e, 1) (B-133>
{pt?n (ﬂ?))isa (ht?))is} = Fp (62’ DPt2.5, 7}2'5, The, 1) (B134)
(ht2.1)i8 — o
= X2/ te B.135
" hias — he (B.135)
(ht2.5)i8 — hi1o
. = B.136
g hias — hiro (B.136)
(ht3)is — hyas
e = ————= B.137
G Ts — s (B.137)

B.4.5 Cooling Mass Flow or Metal Temperature Calculations

Cooling-flow calculations consist of either

1) Determination of cooling mass flow ratio (cooling sizing), or
2) Determination of metal temperature (cooling analysis).

It should be noted that the cooling sizing case 1) may be performed for any operating point,
and not necessarily the engine-sizing design point. For example, an engine whose design
sizing case is the cruise condition will typically have its cooling flow ratio sized at the off-
design takeoff condition.
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Cooling Mass Flow Ratio Sizing

For the cooling-sizing case, the cooling mass flow ratios 1, €5 ... for the hot-section blade
rows are determined to obtain required blade-row metal temperatures Ty,,, T, ... as de-
scribed in the document “Film Cooling Flow Loss Model”. The function has the form

{517 €, .. } = fe (E37ﬂ47Tm17Tm2 ceey Mexit7 A,—rstreaku StAv Hfa 7)) (B138)

where My . . . are the various parameters in the cooling model. The overall cooling mass
flow is the sum of the individual blade-row cooling mass flows.

Qe = €1 + &+ ... (B139)

Metal Temperature Calculation

In this case the individual blade-row cooling mass flow ratios €1,e5 ... and and the overall
cooling mass flow ratio a, are assumed to be known. The blade-row metal temperatures can
then be determined from the cooling model relations, which are now recast into the following
form.

{Tml, TmQ, .. } = me (T;gg, ,1_;54,81, 2. Mexit; ATstroaka StA, Hf,n) (B140)

These metal temperatures are not required for any subsequent calculations.

B.4.6 Combustor quantities

The combustor/IGV section possibly has cooling air flow which bypasses the combustor.
The mass flows and control volumes are detailed in Figure B.2.

fffffffffff 8
| P. I P
- A da C 4.1
Tt fro 1\****7 s, w}
| u \
\ | Tia | “4a | Tran
_ | combustor —_— u,. ' Tis
Tt 3 m (1 GC) m i>}\ ; Pt 4 | mixing 4b| turbines
I B S IS - \ ts
i QM # Ty "7==-- =l ) Pras i
— |
| \ - T = :?:‘j 77777 ‘;
‘ < -~ "oV ‘
L ~ 747/ 777777777777777777 g
6.5in1.5in

Figure B.2: Combustor and film-cooling flows, with mixing over and downstream of IGV.
Dashed rectangles are control volumes.

Using control volume A in Figure B.2, the fuel /combustor-air mass flow fraction f, and the
combustion-product constituent mass fraction vector X are obtained by using the compressor
exit condition ()3, together with the specified combustor exit total temperature T;4. The
fuel /core-air fraction f then follows.

{#X} = (5,9, Tis, Ty, Tia) (B.141)
f=fHl-a) (B.142)
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The combustor exit conditions are then obtained using this X, together with the specified
T;4 and the assumed combustor pressure ratio .

his = X-hn) (B.143)
o4 = A-Gma (B.144)
Pta = D3 T (B.145)

B.4.7 Station 4.1 without IGV Cooling Flow

Without cooling flow (a. = 0), the 4.1 station quantities and constituent mass fraction at
the first turbine rotor inlet are the same as the 4 station quantities at the combustor exit.

Tisx = Tia (B.146)
Pta1 = Pia (B.147)
N o= X (B.148)

The analysis can then skip the cooling flow mixing calculations below, and proceed directly
to the Turbine Quantities section.

B.4.8 Station 4.1 with IGV Cooling Flow

The IGV pressure at the cooling flow exit is specified indirectly via the cooling-exit Mach
My, at the combustor-exit stagnation conditions. The corresponding static conditions and
velocity are calculated using the Fj; function.

{p4a, Thq, h4a} = Fu (X, Peas 1ia, 0, My, 1) (B-149)
Uyq — Q(ht4 — h4a) (B150)

The cooling flow is assumed to exit the IGV at some fraction r,_ of this uy,.

Ue = Ty, Ugq (B151)

The combustor and cooling flows are assumed to be fully mixed at station 4.1. The mixed-out
mass fraction vector X\ is calculated by the mass flow balance,
voo loaetfy e o

by
1+f T I1rsC

(B.152)

and is used for the downstream turbine and core exhaust calculations. Assuming a constant
static pressure over the mixing region, a simple momentum balance gives the mixed-out
velocity ..

P41 = DPia (B.153)

11— c c
Ug1 = ai_‘_fuém -+ a Ue (B154)

1+ f 1+ f
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The enthalpy balance across control volume B in Figure B.2 gives the mixed-out total tem-
perature T}, via the F;, function.

1—oa.+ Q.

h(Tian) = hianr = Tff hiq + Tt/ hus (B.155)
1— Q¢ + f %

Tuess = ——Ty + —— 1 B.156

’ L+f Tt (B.156)

Tisa = Fr ()‘/7 hiaa ) Tgucss) (B157)

The total pressure is then obtained using the mixed-out velocity w41, together with the Fj,
function.

1
hanw = hgaq — 5%21_1 (B.158)
1
Ah = Zui, (B.159)
{ptar, Tran, hear} = Fa (X/,p4.1, Ty1, Ah, 1) (B.160)

B.4.9 Turbine quantities
High Pressure Turbine

The HPT enthalpy drop is obtained by equating the turbine work with the HPC work.

tne(1+ f) (hiar — hias) = 1ine (s — hios) (B.161)
-1
hiss —hisr = Ahy = ﬁ {ht?, - ht2.5} (B.162)

This enthalpy drop, together with an assumed polytropic efficiency, is then used to determine
the HPT exit stagnation conditions.

{pras, Tias, heast = Fi (Xlapm.hTt4.1,Ahhm77polt_l) (B.163)

Low Pressure Turbine (Design case)

The LPT enthalpy drop for the design case is obtained by equating the turbine work with
the LPC plus fan work.

Mne(1+ f) (htas — heao) = 1uc (heos — hi1o) + Mgan (hea1 — he2) (B.164)
-1 my

hiso —h = Ah —
t4.9 — Ni4s 1t 14 7.

(Rios — hiro) + a (hiaq — hio)| (B.165)

The 1. /1hye mass flow ratio is known, and is unity if there’s no bleed at the 2.5 station.
The enthalpy drop calculated above, together with an assumed turbine polytropic efficiency,
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is then used to determine all the station 4.9 LPT exit conditions. The turbine nozzle total
pressure ratio 7, then give the station 5 nozzle conditions.

{prag, Tia9, hiao} = Fi (X/,pt4.5, Tia5, Ahyg, ﬁpolt_l) (B.166)
Pts = P49 Tn (B.167)
Tis = Tiao (B.168)
his = hiag (B.169)

Low Pressure Turbine (Off-Design case)

The relations above could be used to determine the ();5 core exit quantities for the off-design
case. However, this opens the possibility of p;5 falling below the nozzle static pressure
ps = po during one Newton iteration. A common cause is the fan’s enthalpy extraction
term «a(hyo1 — hyo) in (B.165) being too large because of a momentarily excessive 7y and/or
my values, so that Ahy is too negative which gives a small p;5 in calculations (B.166) and
(B.167).

Regardless of the cause, if p;5 < ps is a result then the nozzle velocity us cannot be computed,
and the subsequent nozzle mass flow and thrust relations cannot be imposed. This causes
failure of the overall Newton iteration process. One solution is to underrelax an “excessive”
Newton update so that p;5 never falls below ps;. However, this is rather impractical since
a very long calculation chain is required to reach the p;5 evaluation operations (B.166) and
(B.167), so the necessary underrelaxation factor cannot be determined without in effect
performing and possibly discarding the calculations for one whole Newton iteration.

The solution taken here is to introduce p;5 as a Newton variable, so that during the Newton
update it can be easily monitored to ensure that it never falls below ps. It also means that
so that the ();5 quantities are now computed by the alternative procedure of a specified
pressure ratio as used for the compressors.

S Ptao _ 1 s (B.170)
Dtas Tn Ptas
{Pra9, Tiag, hiao} = Fp (X,>pt4.5> Tia5, T, npo]t_l) (B.171)
Dt5 = DPt4.9Tn (B.172)
Tis = Tiao (B.173)
his = hiag (B.174)

The LPT work relation (B.165) will now play the role as a Newton equation which constrains
pes. This overall procedure will of course produce the same final result as if p; 5 was calculated
from (B.165), but its Newton iteration behavior is far more stable and reliable.

Turbine efficiencies
The turbine efficiencies (including cooling-air losses) can also be computed out of interest.
{pt4.57 (Tt4.5)z‘s7 (h't4.5)is} = fp (Xlapm, Tt4apt4.5/pt4u 1) (B-175)
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{Peag, (Tia9)is, (hrag)is} = Fp (Xlapm.s’ Tia5,Dt5/Deas, 1)
hias — hia
(htas)is — hia

ht 4.9 — ht4.5
(ht4.9)is - ht4.5

Tht

Tt

B.4.10 Fan exhaust quantities

(B.176)

(B.177)

(B.178)

The fan exhaust velocity is computed from the known ();s fan plume stagnation conditions,

and the requirement of ambient exhaust pressure, ps = pg.

Pts = D7
Tis = Ti7

{ps; Ts, hs} = Fp (A, prs, Tis, po/Pis; 1)
ug = 2(ht8 - hs)

B.4.11 Core exhaust quantities

The core exhaust velocity is computed from the known ()¢ core plume conditions and the

requirement, of ambient exhaust pressure, pg = po.

Pi6 = DPis
Tie = T1is

{p67T67h6} = fp (X,PtﬁaTt&Po/ptﬁa 1)
Ug = 2(ht6 - hﬁ)

B.4.12 Overall engine quantities

The overall specific thrust is obtained from the total fan and core thrust forces.

. _ Dt Z/pref
Meore = Mic —Ff——7—=
\ ﬂ2/Trof
Fs = amcore [US - UO}
F6 - mcore {(1+f)u6 - UO}
F = Fy+ Iy
F _ F . (1+f)u6 — Up + Oé(Ug — UO)
T (1—|—Oé) Meore A0 B (1‘|‘Oé) ap
The overall specific impulse and thrust specific fuel consumption then follow.
F Fy
I, = - = 220004 q)
Mtuel 9 f g
1
TSFC = —
Iy,
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B.5 Design Sizing Calculation

For the design case, the following quantities are specified.

Fp design thrust
M, fan-face, LPC-face axial Mach number
My s HPC-face axial Mach number

B.5.1 Mass Flow Sizing

This consists of finding the core mass flow to achieve the required thrust at at the design
operating conditions pg, ag, My. This design core mass flow 1o is obtained directly from
relation (B.191), using the specified design thrust Fp.

Fp

2 B.194
Fypap (1+a) ( )

mCOI‘O

B.5.2 Component Area Sizing
Fan area

The fan-face static py and as are obtained from the specified-Mach procedure, with some
specified fan-face Mach number My, and some 7,01 =170l -

P2, To, ha} = Fu (O_f, Ppo, To, Mo, M2>77p01d) (B.195)
The fan area As can then be computed from the design mass flow.

D2

= B.196

P2 Ro Ty ( )
C R2

= My —2B—T. B.197

U2 2 C:nz_R2 2 ( )
1 i core

A, = U)o (B.198)

P2uUsz

A specified hub/tip ratio HI'R; then also gives the fan diameter,

1 A,
= o2 B.1
d 71— HIR? (B.199)

although this is not required for any subsequent off-design analysis.

The HP compressor fan area A, 5 is obtained in this same manner from a specified compressor-
face Mach number M, 5.

{p25,Tos5, hos} = Fu (&, P25, 1125,0, My s, npold) (B.200)
P25
— B.201
P25 Ry 5155 ( )
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s R
Ugs = ]\42.5\/%2'“’72'5 Ts5 (B.202)

Cpos— R2-5
1 7 core
gy = L) Teone (B.203)
P2.5U2.5
A specified hub/tip ratio HT'R; then also gives the HPC face diameter.
4 Ays
dpe = (|————— B.204
N 71— HITR2, ( )

Fan nozzle area

The fan nozzle flow type can be determined from the fan-plume Mach number.

Cps Rg

M. =
8 Us/ Cpg_R8

Ty (B.205)

If Mg < 1 then the fan nozzle is assumed to be unchoked, and the nozzle conditions are
obtained by using the specified pressure ratio function. The nozzle is assumed here to be at
ambient static pressure, although any other pressure can be specified instead.

P = Do (B.206)
{p7, 7, he}y = Fo (A, per, Tyz,p7/pe7, 1) (B.207)

If Mg > 1 the the fan nozzle is choked, and the nozzle conditions are obtained using the
specified Mach function.

My = 1 (B.208)
{pr, o, hey = Far (& per, Ty, 0, M7, 1) (B.209)

In either case, the fan area follows directly.

Uy = 2(ht7—h7> (B210>
b7

= B.211

P R T: ( )

A, = HMeore (B.212)
pru7

Core nozzle area

The core nozzle flow type is determined from the core-plume Mach number.

Cpe R
Me = ug/ ﬁ% (B.213)
P6

If Mg <1 then the core nozzle is unchoked, and the nozzle conditions are obtained by using
the specified pressure ratio function.

Ps = Po (B.214)
{ps, T5,hs} = F, (A, pes, Ty5,05/pes, 1) (B.215)
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If Mg > 1 the the fan nozzle is choked, and the nozzle conditions are obtained using the
specified Mach function.

M; = 1 (B.216)
{ps, T5,hs} = Fu(a,pes,Ty5,0, Ms, 1) (B.217)
The core nozzle area follows.
us = /2(hys — hs) (B.218)
ps = R}: 5T5 (B.219)
g = Moo (B.220)
PsUs

B.5.3 Design corrected speeds and mass flows

Since only speed ratios will be considered in the off-design calculation, the LPC and HPC
design spool speeds can be arbitrarily set to unity.
Nep = 1 (B.221)
Nyep = 1 (B.222)

The design corrected spool speeds and high-pressure and low-pressure turbine corrected mass
flows are defined in the usual manner.

- 1

Np = Nip——— (B.223)
\/,—Ttl.Q/Tref

_ 1

Nup = Np (B.224)

\/ ﬂ2.5/Tref
\/ ,—Tt4.1/Tref (B 225)

ygs 4.1/pref

\/E4.5/Trof (B 226)

ygs 4.5/pref

MpD = (1+f)mcore

myp = (1+f> mcoro

B.6 Off-Design Operation Calculation

For an off-design case, the following eight quantities which were assumed known at the start
of the calculation pass are really unknowns, and must be updated.

s fan pressure ratio

me  LPC pressure ratio

mhe HPC pressure ratio

m¢  fan corrected mass flow

mi. LPC corrected mass flow

mn. HPC corrected mass flow

T;4 burner exit total temperature
prs  core nozzle total pressure
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The necessary eight constraining equations involve the spool speeds, which are calculated
as described in the next section. The speed calculation is based on an assumed fan or
compressor map, and has the following functional form.

N = Fx(n,m) (B.227)

This is used to compute the fan, LPC, and HPC speed from each component’s current
pressure ratio and corrected mass flows. The current station 1.9, 2, 2.5 stagnation conditions
are also used, to compute the necessary m arguments for the Fy functions.

Ny = \Tio/Tret Fa(me, ) (B.228)

Nl =\ EI.Q/Trof fN(ﬂ-lc 5 mlc) (B229>
Nh =\ ,—Tt2.5/Tref fN(ﬂ-hC 5 mhc) (B230>

Each of these three functions uses the appropriate map constants for that component, given
in the component-map section.

The off-design fan face Mach number M, can be calculated from the fan-face mass flow

relation.
TI‘C — TI‘C .
pousAy = T [Lref Pt2 . | Lref Pt19
ﬂ2 Dref EI.Q Dref
This is solved for the implied M, (subsonic branch) using the F,, specified-mass function.
The design M, value is a suitable initial guess.

= (14 0)Meore (B.231)

Mgucss = (M2)D (B232)
m' = (1+a) heore/As (B.233)
{p2>T27h'2} = Fm (O_Zapt277—‘t27h't27m,; Mguess) (B234)
Uy = Q(htg — hg) (B235)

C R2
M, = 2= T B.236
2 U2/ Coo "R, 2 ( )

B.6.1 Constraint residuals

The eight residuals for constraining the eight operating unknowns are listed below.

Fan/LPC speed constraint

Equating the fan and LPC speeds, with some specified gear ratio Gy, defines the constraining
equation residual.

Rl = Nfo — N] =0 (B237>
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HPT mass flow

In lieu of a full turbine map, it is reasonable to assume that the high-pressure turbine IGV
is always choked. The appropriate constraining residual is therefore a fixed corrected mass
flow at station 4.1, equal to the design value.

T,
Ry = (L4 f)ine | 72222 iy = 0 (B.238)
Tio5praa

Note that this approximation means that the high spool speed Ny, is not required in any of
the calculations.

LPT mass flow

The low-pressure turbine IGV is also assumed to be choked. Again, the appropriate con-
straining residual is therefore a fixed corrected mass flow at station 4.5, equal to the design

value.
_ _ Tia5Di2s _ -
Rz = (1+f)mne —myp = 0 (B.239)

Tio5Dias

Fan nozzle mass flow

The type of constraint imposed at the fan nozzle depends on whether or not the nozzle is
choked. The fan nozzle trial static conditions and trial Mach number M; are first computed
assuming a specified nozzle static pressure, equal to the freestream pressure.

Pr = Do (B.240)
{p.Tr.he} = Fp(@pur. Toropr/pin 1) (B.241)
i; = \/2(her — hy) (B.242)

- B ¢ Re -
M; = Ll B.243
7 7/ ¢ — Ry 7 ( )

If M7§ 1, then the trial state is the actual state.

pr = Dr (B.244)
T, = Ty (B.245)
h: = hy (B.246)

If M, >1, then the trial state is incorrect, and a unity Mach number is imposed instead.

Me = 1 (B.247)
{pr., Tr,hr} = Fu (&, pe7,Ti7,0, M7, 1) (B.248)
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For either case, the velocity, density, and mass flow constraint residual is formulated the
same way.

uy = 2(ht7 - h7) (B249>
D7

_ B.250

pr R:T% ( )

R4E

_ Trof Di2
me 4/ — prurAr = 0 B.251
£ Tyy Dot prur Az ( )

The type of constraint imposed at the core nozzle depends on whether or not the nozzle is
choked. The core nozzle trial static conditions and trial Mach number M; are first computed
assuming a specified nozzle static pressure, equal to the freestream pressure.

Core nozzle mass flow

D5 = Do (B.252)
{ﬁs;fs; %5} = Fp(d,ps, Ty, ps/pis, 1) (B.253)
is = \/2(hys — hs) (B.254)
My = i) 52’5_ R]; T (B.255)
If M5 <1, then the trial state is the actual state.

ps = Ps (B.256)
s = Ts (B.257)
hs = hs (B.258)

If M;>1, then the trial state is incorrect, and a unity Mach number is imposed instead.
M; = 1 (B.259)
{ps, 15, hs} = Fu (@, pis,Ti5,0, M5, 1) (B.260)

For either case, the velocity, density, and mass flow constraint residual is formulated the
same way.

us = \/2(hes — hs) (B.261)
DPs
= B.262
P = R (B.262)
Tre .
Rs = (L+f)mmey| s P22 pousds = 0 (B.263)
irt2.5 Dref

LPC/HPC mass flow constraint

Equating the LPC and HPC mass flows defines the sixth constraining equation residual.

| Tret Dr19 _ [Tt Dr2s
Re = mie — Mhe =0 B.264
0 : EI.Q Dref b ,—Tt2.5 Dref ( )

An offset term could be included here to model any bleed upstream of the 2.5 station.
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Burner exit temperature constraint

One of two possible constraints on T;4 can be used.

Ry = Ty — (Ta) = 0 (T}, specified) (B.265)

spec

Ry = F — Fypee = 0 (thrust specified) (B.266)
The thrust F' is defined by relation (B.190), and is ultimately a function of the eight Newton

variables.

Core exit total pressure constraint

The constraint on p;5 is obtained from the LPT work relations (B.165) and (B.166), which
have not been used yet for the off-design case.

-1 my
Ahy = —— [ hyss — h hyst — h B.267
1t 14 7. (hi2s t19) + a (hya1 t2) ( )
prays = Fa ()\/,pt4.5, Tias5, A, npolt_l) (B.268)
Rs = pts — PragTm = 0 (B.269)

The enthalpy drop Ahy is computed using (B.165).

B.6.2 Newton update

The eight residuals depend explicitly or implicitly on the eight unknowns. Newton changes
are computed by forming and solving the 8 x 8 linear Newton system.

I | Oy Rq
0Te R
0The R3

0(R1,R2,R3, Ra, Rs, Re, Rz, Rs) Omg _ R4 (B.270)
(T, Mic, Thes Mgy Micy Mes L4, Dis) Oy Rs
OMhe R
0T34 R+
- - Opes Rs

The Newton changes are then used to update the variables,

T — T + wom (B.271)

Te < Te + w0, (B.272)

The < The T W O0TMhe (B.273)

me — mp + womg (B274)

Mie < Mie + WOy, (B.275)

Mhe  Mpe + W OMhe (B.276)

Tiy «— Tiy + wilyy (B.277)

Pis — Dis + wOps (B.278)
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where w < 1 is possible underrelaxation factor set so that the resulting new variables stay
within physically-dictated limits, e.g. ©> 1, p;5 > po, etc. This is usually required only for
the first few iterations where the Newton changes are large. Once the solution is approached
and the changes become small, w = 1 is used.

After the update, all calculations are repeated for the next Newton iteration. Typically, 4-10
iterations are required for convergence to machine zero.

B.7 Fan and Compressor Maps

To enforce the fan/compressor speed matching requirement, the fan and compressor speeds
are determined from their pressure ratios and mass flows. Also, it is desirable to obtain
realistic degraded efficiencies away from the design point. These are implemented here using
approximate canonincal compressor pressure-ratio maps and efficiency maps.

B.7.1 Pressure ratio map

The corrected speed and mass flow is defined in the usual way,

_ 1
N = N—— (B.279)

\/ ﬂi/ﬂef
7 o VT Tt (B.280)

m = m
pti/pref

where T};, p;; are the face quantities, either T}, p;o for the fan and the LPC, or T;s5, pias
for the HPC.

The fan and compressor maps are in turn defined in terms of these corrected values normal-
ized by their design values.

T—1

p = B.281

jz p— ( )

o= L (B.282)
mp

- N

N = — B.2
N (B.283)

The “spine” ps(1m,) on which the speed lines are threaded is parameterized by the corrected
speed in the form

my(N) = N° (B.284)
Ps(¥) = ml = N (B.285)

where a controls the shape of the spine, and b controls the positioning of the speed lines
along the spine.
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The “knee” shape of each speed line is assumed to be a simple logarithmic function, translated
to the mg, ps position along the spine.

p—ps = 2]\7k1n<1—m_km5> (B.286)

The constant k controls the sharpness of the logarithmic knee. Function (B.286) can be
recast into an explicit form of a usual compressor map.

d) e[ a2 e

Equation (B.287) is actually used here in inverse form, giving the fan or compressor corrected
speed as a function of the pressure ratio and corrected mass flow.

N = fN(ﬂ',T[’D,m,mD) (B288)

This is implemented by inverting the map (B.286) using the Newton method. To avoid prob-
lems with the extremely nonlinear logarithmic shape of each speed line curve, the Newton
residual of (B.287) is formulated in one of two equivalent ways, depending on whether the
specified m, p point is above or below the spine curve (see Figure B.3).

R = po) + 2Nk 1n<1 - m_Tm(N)) — 5 Gf p>me)  (B.289)
RNy = meN) + k [1 — exp (%)] - m (if p<m®)  (B.290)

Residual (B.289), used above the spine curve, drives to the intersection of a speed line curve
with a vertical constant-m line. Residual (B.290), used below the spine curve, drives to
the intersection of a speed line curve with a horizontal constant-p line. In each case the
intersection is nearly orthogonal, giving an extremely stable Newton iteration with rapid
convergence in all cases.

B.7.2 Polytropic efficiency

The polytropic efficiency function is assumed to have the following form.

P
ma—l—Aa—l

o

o

C

- D

@291)

The maximum efficiency is 7,41,, located at m,, p, = m{2+A9) along the spine of the efficiency
map. The exponent of the spine is a+aa, which differs from the exponent of the pressure-map
spine by the small amount aa. Typically, aa is slightly negative for single-stage fans, and
slightly positive for multi-stage compressors. The ¢, d, C, D constants control the decrease
of 7p01 @s m, p move away from the m,, p, point.

npol = fn(ﬂ',ﬂ'D,m,’ﬁ’LD) = ’/]p010<1 — C
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Table B.1: Pressure-ratio-map and efficiency-map constants for the E? fan.

™ a b k ‘npolo m, aa c¢ d C D
1.7 3.0 0.85 0.03 ‘ 0.90 0.75 —0.5 3 6 2.5 15.0

B.7.3 Map calibration

The constants in Table B.1 give a realistic fan map, which is compared to the E3 fan data.
The resulting pressure-ratio contours are shown in Figure B.3, along with experimental data.
The efficiency contours are shown in Figure B.4.

The constants in Table B.2 give a realistic high-pressure compressor map, which is compared
to the E? compressor data. The resulting pressure-ratio contours are shown in Figure B.5,

Table B.2: Pressure-ratio-map and efficiency-map constants for the E® compressor.

WDabkf‘npolomoAaCdCD
26.0 1.5 5 0.03 ‘ 0.887 0.80 0.5 3 4 150 1.0

along with experimental data. The efficiency contours are shown in Figure B.6.
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Figure B.3: Pressure ratio versus normalized corrected mass flow and corrected speed, for
E3 fan. Each red line is equation (B.287) with E? fan-model constants in Table B.1, and a
specified experimental N value. Blue lines with symbols are measured data. Single black
line is the “spine” curve p = m°.
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Figure B.4: Polytropic efficiency contours versus corrected mass flow and pressure ratio for
E3 fan. Red lines are isocontours of equation (B.291) with E? fan-model constants in Table

B.1. Cyan lines with symbols are measured data. Single black line is the “spine” curve
~ __ ~a+Aa
p=m .
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Figure B.5: Pressure ratio versus normalized corrected mass flow and corrected speed for E3
compressor. Blue lines with symbols are measured data.
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Figure B.6: Polytropic efficiency contours versus corrected mass flow and pressure ratio for
E? compressor, for compressor-model constants in Table B.2. Cyan lines with symbols are
measured data.
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Appendix C

Film Cooling Flow Loss Model

C.1 Cooling mass flow calculation for one blade row

Figure C.1 shows the film-cooling model at the blade surface. The cooling gas flows into
the blade at T,;, and gets heated internally before issuing from the blade holes at T.,. The
incoming hot gas at total temperature 7} is entrained into the film, and loses heat into the
blade.

Ty film edge Y

hypothetical adiabatic
7/

LA
actual”’ L adiabatic
! ‘

% Tm f'/ * Tm Tei Teo  Tm Traw Tg

TCi A 7\/\ A~ Q S j_< é b

-
- o
>
i
-

- T

Figure C.1: Stream mixing, heat flow, and temperature profiles in film-cooling flow.

As analyzed by Horlock et al [19], the metal temperature Ty, is characterized by the cooling
effectiveness ratio 6,
T, — Ty Ty — T

6 = ~ C.1
T, — Ty T, — T ( )

where T, is the hot gas recovery temperature, 7T}, is the metal temperature, Tj is the hot
gas inflow total temperature, and T,; is the cooling-air inflow total temperature. The second
approximate form in (C.1) makes the conservative assumption of full temperature recovery.

Since the cooling outlet holes cover only a fraction of the blade surface, the film fluid is
a mixture of the cooling-fluid jets issuing at 7, and the entrained hot gas at 7. In the
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adiabatic (insulated wall) case, this temperature would be some T%,,, which is defined in
terms of a film-effectiveness factor.
Ty — Traw

9, —
! T, — T,

~ 0.4 (C.2)
The limiting cases would be

i) 6;=0 or Tyu=1T, if the cooling-fluid holes are absent, and

i) 6p=1 or Tyu=1,, if the cooling-fluid holes completely cover the blade.

The experiments of Sargison et al [20] show that the §; >~ 0.4 value is a reasonable surface
average for a typical blade.

The cooling efficiency

Tco - Tcz'

Rl e S

ACS

o Stc> ~ 0.7 (C.3)
indicates how much heat the cooling air has absorbed relative to the maximum possible
amount before exiting the blade at temperature T,,. Horlock et al [19] indicate that for
common internal heat transfer/flow area ratios A.s/A. and Stanton numbers St., the n ~ 0.7
value is typical. This can be increased somewhat to reflect better cooling flowpath technology
(e.g. improved pins, impingement, etc). However, increasing 7 closer to unity will also incur
more total-pressure losses in the cooling flow, so n < 1 is clearly optimum from overall engine
performance.

As indicated by Figure C.1, the outer-surface heat inflow from the film must be balanced by
the internal heat outflow into the cooling flow. Equating these gives

Q = Asg Stg ngg Cpg (Tfaw - Tm) = Mg, Cpe (Tco - Tci) (C-4)
m .
Asg Sty A_g Cpy (Traw — T) = 10, Cp, (Teo — Tei) (C.5)
g

where Ag, is the heat-transfer area of the hot gas, A, is the flow area of the hot gas, and
St, is the external Stanton number. We now define the cooling/total mass flow ratio for one
blade row,

£ —_= Tnicl = N mCI' (06)
m My + My,
so that equation (C.4) becomes
Mg, € Ttow — Tm
= = Sty 77— C.7
M, 1—¢ Y T — T (G.7)
_ %py AS!]
where St, = ——25t, ~ 0.035 (C.8)
Cpc Ag

Horlock et al [19] argue that for typical blade solidities and aspect ratios, the assumed value
for the weighted Stanton number St, ~ 0.035 is reasonable. This will typically need to be
increased by a substantial safety factor of 2 or more to allow for parameter uncertainties,
hotspots, etc. Improved cooling design would be represented by a decreased safety factor.
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Using 6, 6;, and 7 to eliminate T1,, Tfqy, and T, from (C.7) gives the following relation
between all the dimensionless parameters.
e, 2 0(1 —nb)—6;(1—n)

m, l—e Sta n(l—0)

(C.9)

Design case

The design problem is to determine the cooling flow required to achieve a specified T}, at

the maximum design 7, (e.g. T, =T}, at the takeoff case). Since T,; is also known for any

operating point (e.g. T.;=1T;3), then 6 is fully determined from its definition (C.1). Equation

(C.9) can then be solved for the required design cooling flow ratio for the engine.
-1

e = |1+ L n{l=9) ]

Sta 0(1 —nby) —6;(1—n)

Figure C.2 shows ¢ versus 6 for three scaled Stanton numbers.

0.1
C=0.05 —
C=0.04

0.06 /

(C.10)

0.04
0.02
0 /
0 0.2 0.4 0.6 0.8 1

0

Figure C.2: Cooling mass flow ratio € for one blade row, versus cooling effectiveness 6 and
Stanton number parameter C'. Fixed parameters: n=0.7, 0;=0.4 .

Off-design case

If the cooling mass flow is unregulated, it’s reasonable to assume that £ will not change at
off-design operation if the pressure ratios in the engine do not change appreciably. In that
case, § will not change either, and 7, can then be obtained from (C.1) for any specified T},
and T,;. If the cooling flow ratio € does change for whatever reason, it’s then of interest to
determine the resulting metal temperature. Hence, we now solve equation (C.9) for the new
resulting 6 in terms of a specified new «¢.

en + Sty (1 —n)(1—¢)

en+ Sty (1—n6)(1—¢) (C11)
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C.2 Total Cooling Flow Calculation

The turbine cooling-flow bypass ratio is defined as follows.

Meool (C.12)

a. =
m

This represents the total cooling mass flow of all the blade rows which receive cooling flow.
The calculations will assume the following quantities are specified, or known from other (e.g.
compressor, combustor) calculations:

htwet  fuel heating value

Ti¢ fuel total temperature

Tis compressor exit total temperature

Dt3 compressor exit total pressure

Tiy turbine inlet total temperature

D4 turbine inlet total pressure (= p;3m,)

T metal temperature (for design case)

Q. total cooling-flow bypass ratio (for off-design case)

St area-weighted external Stanton number

M. turbine blade-row exit Mach number

M,, representative Mach number at start of mixing zone
cooling-flow velocity ratio (= u./u4,)

To estimate the blade-relative hot-gas total temperature 7Tj incoming into each blade row,
it is assumed that the inlet Mach number for that blade row is neglible. Hence, the inlet
total temperature for a blade row is the same as the static exit temperature of the upstream
blade row.

Tg = (Texit)upstream (013)

Specifying the burner exit temperature T;4 and a typical blade-relative exit Mach number
My is then sufficient to determine the blade-relative hot-gas temperatures Ty, T2, Tys . . .
for all downstream blade rows.

Tgl = T;f4 + ACrstroak (C14>
Ye—1 -t

Ty = Ty <1+ . foit) (C.15)
Ye—1 —2

Ty = T <1+ . foit) (C.16)

The added ATyeax for T, is a hot-streak temperature allowance for the first IGV row.
According to Koff [21], assuming AT tear =~ 200°K is realistic.

With the row T,’s defined, relation (C.1) gives the required cooling effectiveness ratio for
each blade row,
Tgl - Tm

0, — r (C.17)
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T, 2 = Tm
O = L2 C.18
? Tg2 - Tci ( )

and relation (C.11) gives the corresponding cooling mass flow 1, &9, €3 ... for each blade row.
These are computed until €., <0 is reached, indicating that cooling is no longer required.
The total cooling mass flow ratio is then the sum of the individual blade-row mass flow
ratios.

., = €1+ €2 +¢€3... (Clg)

C.3 Mixed-out Flow and Loss Calculation

C.3.1 Loss Model Assumptions

The introduction of cooling air into the flowpath reduces the total pressure seen by the
turbine. Strictly speaking, it is necessary to perform separate cooling-flow, mixing-loss, and
rotor-work calculations separately for each cooled stator and rotor blade row.

To avoid this complication, a much simpler model will be used: The cooling air for all blade
rows is assumed to be discharged entirely over the first IGV, and to fully mix out before
flow enters the first turbine rotor. This seems to be a reasonable simplification given that
the first IGV blade row typically requires the bulk of the cooling flow. The main motivation
is that this model does not require work calculations to be performed for individual turbine
stages, greatly simplifying the matching of overall compressor+fan and turbine work.

C.3.2 Loss Calculation

Figure C.3 shows the core and cooling mass flow paths assumed for the mixed-out state
calculation. The cooling air is assumed to be bled off at the compressor exit, which defines
the cooling-flow total temperature.

The cooling air is assumed to re-enter the flowpath over the first IGV.

The heat flow @ from the core flow to the metal and then to the cooling flow does not need
to be considered here, since this heat flow is purely internal to the control volume spanning
stations 4 and 4.1, for example.

The cooling flow is assumed to remain unmixed until some representative station 4a (e.g.
somewhere between stagnation and IGV exit Mach), where it has velocity u. = 7, 44, and
the local static pressure py,. The mixing then occurs between 4a and 4.1, producing a total-
pressure drop and ultimately resulting in a reduced core-flow exhaust velocity at station 6.

For clarity and convenience, the equations shown assume a constant c,. In practice, the
calculations would be performed using their equivalent variable-c, forms.
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Figure C.3: Combustor and film-cooling flows, with mixing over and downstream of IGV.
Dashed rectangles are control volumes.

Using control volume A, the heat-balance equation for the fuel/core mass flow ratio f =
Mipgel /1 s as follows.

hfuolfm = Ep(ﬂ4_ﬂ3) (1_ac)m + Ep(ﬂ4_ﬂf)fm (C21>
¥ & (Tha —Tis) (1 — )

C.22
h'fuel — Ep(T;f4_T;€f) ( )

Using control volume B, the heat-balance equation for the mixed-out total temperature T} 41
is as follows.

hiwet friv: = €y (Tya1 — Tis3)m + € (Tyan — Tie) frin (C.23)
hfuel f/ép + T‘t3 + T‘tff
s e (24

The core and cooling flow velocities uy,,u. are obtained from the specified My, and the

velocity ratio 7, .
Ugq = M VY RT; (C.25)
4a  — t4 .
1+ 232 Mz,

Ue = Ty liq (C.26)

Neglecting the mixing pressure rise over control volume C, a momentum balance gives the
mixed-out velocity wuy 1.

y—1_ —v/(v=1)

P41 =~ Paa = Dta (1 + TM4“> (C.27)
14+ fimug, = (1 —aec+ f)mus, + aermmu, (C.28)
(1_a0+f)u4a + QU

= Uy, C.29
Ugq.1 Uy, 1+ f ( )
The mixed-out static temperature and total pressure then follow.
1u?
Ton = Tiaq — ——2 C.30
4.1 t4.1 27, ( )
T v/(v=1)
Pta1 = P4 (%4'1) (C.31)
4.1



These can now be used as effective turbine inlet conditions for turbine-work and pressure-
drop calculations.
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Appendix D

Thermally-Perfect Gas Calculations

D.1 Governing equations

Starting equations, with some assumed known c,(7):

dh — vdp = Tds (D.1)
pv = RT (D.2)
dh = cym)dT (D.3

D.2 Complete enthalpy calculation
The complete enthalpy function is obtained by integration of the known c,(7) function,
T
hwy = Ay + [ emdr (D.4)
Ts

where Ahy is the heat of formation, and 7} is the standard condition at which Ah; is defined,
typically Ty = 298 K.

D.3 Pressure calculation

For an adiabatic compressor or turbine, the entropy change is specified via a polytropic
efficiency

Tds = (1—npa™')c,dT (D.5)

with 7,07 used when d7'>0 as in a compressor, and 7,4 ! used when d7 <0 as in a turbine,
so that ds is always positive. All the above relations above are combined into the definition
of an entropy-complement variable o(r), which then defines p().

4 Cp dT 4, do

dp
- o = Mool ! — D.
P Mool R 7 ool R (D-6)
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T dT InT
or = / Cp(T) — = / cpnT) d(InT) (D.7)
Ts T InTs

L O(1) — o(n))

= (D.8)

= Do eXP(Upoli

=
-
|

The compression or expansion process is assumed to occur over pg...p and Ty ... T.

D.4 Properties of a gas mixture

A gas mixture is specified with the mass fraction vector &, whose components are the mass
fractions of the mixture constituents. Similarly, the components of R Cps h 0 are gas
properties of the constituents. The overall properties are then

R a-R (D.9)
Cp(T) = A Cy(D) (D.10)
hary = a E(T) (D.11)
o) = da- o) (D.12)

D.5 Calculations for turbomachine components

The (); total-quantity subscript will be omitted here for convenience.

D.5.1 Compressor

In a compressor, the total-pressure ratio

D3
D2

Te —

is typically specified. The inlet conditions p, and 75 are also assumed known. The objective
here is to determine the corresponding exit total temperature T5.

We first recast the specified pressure ratio definition in residual form.

ps3 Tlpol
Inmt, = In— = — D.13
nT, n ’, R (03 — 03) ( )
O (Ts) 09 In 7.
Ris) = - = — =0 D.14
WTR TR (D4
dR Cp(Ts)
/ E B — - = —p D.l
R (13) ™ = B (D.15)

This is then solved for the unknown 73 by the standard Newton method, with the sequence
of progressively better iterates Ty, Ty ... T3. A good initial guess T¥ is obtained by assuming
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a fixed isentropic exponent (y—1)/v = R/c, taken from the known ()2 condition.

Cpy, = Cp(T2) (D.16)
) = T, W?/(CPanol) (D.17)
Rty
Tt = 3 D.18
3 3 R/(Tgn) ( )
After convergence, the exit hg is evaluated directly.
hs = h(1s) (D.19)

D.5.2 Combustor

In a combustor, both the inlet and outlet temperatures 75,7, are typically specified. The
objective is to determine the fuel mass fraction.

It will be assumed that the fuel has the chemical form
Coo Hypy Oz Ny,

and the combustion reaction is limited to the fuel and atmospheric oxygen, and is complete
(i.e. nitrogen oxide and carbon monoxide production is neglected).

Cxc chH Oxo Nch + no, 02 —  NCO, COQ + NH0 HQO + N, N (D20)

Equating the atom numbers gives the reaction mole numbers.

no, = Xc¢ + ZL’H/4 — l’o/Q (D21)
nco, = Ic (D.22)
nmo = Tu/2 (D.23)
ny, = Tn/2 (D.24)
Using mole numbers together with the atomic masses
me = 12.01
myg = 1.01
mo = 16.00
my = 14.01
gives the reactant masses.
M02 = N, (sz) (D25)
Meco, = nco, (mc—l-Qmo) (D26)
MHQO = MNH,0 (2mH—|—mo) (D27)
MN2 = NN, (sz) (D28>
Muye = xome + xgmyg + Tomo + Ty my (D.29)
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The following mass fraction vector components are then calculated.

‘ ‘ 1 ‘ o ‘ Bi ‘ Vi ‘
Ny [1] 0781 | 0| My,/ My
Oz |21 0.209 | 0 | —Mo,/Mpyel
COy [310.0004 | 0 | Mco,/Miue
HQO 4 0 0 MHQO/Mfuel
Ar |5]0.0096 | 0 0
fuel |6 0 1 0

Here, 3; gives the composition of the fuel, while ~; gives the air constituent fractional changes
over the reaction. The fraction vector component sums are all exactly > a; =1, > 06, = 1,

>Xvi=1

The total enthalpies of all the constituents are known from the specified T5 and T}, and also
at the known fuel temperature T5.

hy = hy1) (D.31)
fo = hi(Ty) (D.32)

The enthalpy balance across the combustor is

—

Maie @ - By + e 0+ B = e @ - By + T 7+ ha (D.33)
so that the fuel mass fraction is obtained directly.
- hs
- hy

Pt

7/h'fuel

=i o

Majr

4 —

(D.34)

@y 21
>
=1 |9y

f —

The mass fraction vector X of the combustion products is obtained from the mass balance
across the combustor,

(Mair + Mfyel) X = Mair @ + Migger Y (D.35)
- a—+ fy

N = D.36

1+ f ( )

which can then be used to obtain the net properties of the combustion products.

R, = A (D.37)

> >l
ST

Cpy 4

D.5.3 Mixer

Mixing will typically occur between the combustor discharge flow and the turbine cooling
flow. In general, the two streams will have two different chemical compositions specified by
their mass fraction vectors A\, and )\, two different temperatures T, and Ty, and two different
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enthalpies fza = h;(1,) and ﬁb = h;(1,). The species mass flow balance gives the composition
mass fraction vector \ of the mixed gas.

(Mg + 1) X = 11 Aa + T N (D.39)
5 o= Mada (D.40)
Mg + My,

Assuming no chemical reaction takes place, the enthalpy balance equation is
(rig + 1) X - (1) = 1itg Ag - Ba + 1itp Ny - P (D.41)

which can be numerically inverted for the mixed temperature 7'

D.5.4 Turbine

In a turbine, the total-enthalpy difference is typically known from the compressor—turbine
work balance.

(mair + mfuol)(h5 - h4) = mair<h2 - h3> (D42>
hy — hs

Ah = hs—hy = D.43

. (D.13)

The objective here is to determine the corresponding total-pressure ratio.

o= 2 (D.44)
yz!

The procedure is similar to that for the compressor, except that h(r) is used in the Newton
residual.

Ras) = h@s) — ha — Ah =0 (D.45)
dR
R'1) = 715 = () (D.46)

The Newton method is started by assuming a fixed ¢, taken from the known (), condition.

Cpy = Cp(Tu) (D.47)
Ty = Ty + Ah/c, (D.48)
n n R
e R (D.49)

After convergence, the total-pressure ratio and ps; are evaluated directly.

1 o) — 0(T4>>
T, = ex D.50
D= e (n - (D.50)

D5 = PaTy (D.51)
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D.5.5 Inlet or Nozzle

An inlet or nozzle with losses can be considered as a turbine with zero efficiency, and is
typically specified via a total-pressure drop ratio.

D2
o= — D.52
” (D.52)

In the limit 7,6 — 0, the turbine case above then reduces to the trivial relations

P2 = PoTi (D.53)
hg = h(Tg) = ho (D55)

with no need for Newton iteration.
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Appendix: Spline representations

General

A cubic spline representation of a function y(z) requires the following discrete values at
1 =1,2...N nodes:

x; spline parameter values
Yi function values
Y. function derivative values, (dy/dx);

On each interval i —1...4, the four end values y;_1,v;,y ,y; uniquely define a cubic-
polynomial y(z) over that interval. The union of all intervals then defines the overall y(x)
function.

The derivative values y; are obtained from z;,y; by solving a linear system of equations
expressing 2nd-derivative continuity across all the interior nodes @ = 2,3... N —1, together
with two zero 3rd-derivative end conditions at ¢ = 1, N. This system of equations produces
a tridiagonal matrix which is very rapidly solved in O(N) arithmetic operations.

Current application

Two splines are first generated using the tabulated values T;, ¢,

1) ¢y(7) spline:

x, = T, (table values)
Yi = Cp (table values)
Yy, = (dcp/dT);  (via spline system solution)
2) ¢,(nT) spline:
r; = In(T) (table values)
Yi = Cp (table values)
yi = (dc,/dInT);  (via spline system solution)

Then two related splines h(r), o(nT) are constructed as follows, with Ah; being the heat of
formation.

3) h(r) spline:
r, = T
Yy = Cp;
T;
yi = Ahy + / cp(1) dT'
Ts
4) o(nT) spline:
r; = In(Ty)
Yi = Cp;
lnTi
i n7)d(InT
Y ~/1nTS Cp( D (n )

Since the splined c,(1) and ¢, (nT) are piecewise-cubic, exact integrations can be used here to
give perfect consistency between the related splines.
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Appendix E

Simplified Viscous/Inviscid Analysis
for Nearly-Axisymmetric Bodies

E.1 Summary

The method described here uses a compressible extension of the old Von Karman airship
method [22] to describe the potential flow, and an axisymmetric version of the integral
boundary layer formulation of XFOIL [23] to describe the surface boundary layer and trailing
wake. The two formulations are strongly coupled and solved simultaneously using the XFOIL
methodology. Effects such as flow separation can thus be captured. The intent of this
strongly-coupled viscous/inviscid method is to obtain reasonable drag prediction accuracy
together with extreme computational speed.

E.2 Geometry
The body geometry is described by the area A(z) and perimeter by(z) distributions, as shown

in Figure E.1, with x being the axial coordinate. For a body of circular cross-section these
are related by

4rA = b (round body) (E.1)

but considering them to be independent allows reasonably accurate drag calculation of bodies
which are slender but not axisymmetric.

E.3 Potential Flow Calculation

To compute the potential flow, an equivalent axisymmetric body of radius R(x) is first defined.

A
Rw = /2% (E.2)
T
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Figure E.2: Fuselage potential flow model using compressible source line on axis.

The compressible potential flow about this body is represented with piecewise-constant line
sources placed on the axis, as sketched in Figure E.2.

The cartesian perturbation velocities of ¢ = 1,2...n such segments located between points
T1,T2,...Tpy1 ale

L 11

u(x,y,z) = ;47rﬁ2 <7’i+1 — 7’7) (E.3)

. A Tiv1 =T  Ti—Z By
ens) = Y (M) G e

. " Az Tiy1—X r;,—x 62
v = Yo (M) s ®
where = 1-M (E.6)
ri(w,y,2) = \(@—z)? + (By)? + (82)? (E.7)
rini(z,y,2) = \/(@—xi01)? + (By)? + (B2)? (E-8)

Setting flow tangency at each of the n control points on the actual body surface with normal
vectors n;

{(Vm+u)i+vj+w/%} -n; = 0

%

(E.9)

gives a n xn linear system for the source strengths A;. Because the control points are not
immediately adjacent to the source elements, this system becomes increasingly ill-conditioned
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as n is increased, especially with non-slender bodies. However, with the cosine spacing
sketched in Figure E.2, essentially converged results are obtained for n = 25 or less, with
very great computational economy.

A proper axisymmetric panel method is of course an alternative to the present approach,
but would greatly increase the code complexity, and also the system setup time which would
dominate the system solution time for these small number of unknowns. These additional
drawbacks favor the simple present approach.

E.4 Viscous Flow Calculation

E.4.1 Axisymmetric boundary layer and wake equations

All viscous calculations are performed in the meridional arc length coordinate s, defined
from the equivalent R(z) distribution.

S@) = /x 1+ (dR/dx)? dx (E.10)

This is continued into the wake where R=0 is specified.

The axisymmetric momentum and kinetic energy boundary layer equations governing the
viscous boundary layers and wake are as follows.

d (pcu’®) _ 3 Tw o due
N (B
d (%peug@*) 2 due
T = (bD) — peueA E (E12)

Here, b is an effective perimeter shown in Figure E.3 which arises when the various areas
A*, O etc. in the equations above are approximated with their 2D equivalents.

Figure E.3: Body perimeter by, displacement area A*, and effective perimeter b.

For example, the definition of the displacement area is

A = /n <1— e )27rrdn (E.13)
0

Pelle
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which has the somewhat awkward radius r inside the integral. This is suitably approximated
by its average value over the layer thickness, by using the 2D displacement thickness itself,

2mr =~ by 4+ 2m6" = b (E.14)

so that the modified perimeter b is taken as a suitable approximate value for the local
perimeter 27mr(n) over the integral. This allows all the viscous areas to be expressed in terms
of the more familar 2D integral thicknesses as follows.

. e pu
5 _/ <1 peue>dn (E.15)

1 ﬁ) PY in (E.16)
Pelle

u?\ pu
- —2> dn (E.17)

Pele

I
o= "

(

(

o /“(

A = /0" <1 pu >2m~ dn =~ bo* (E.19)
(
(
(

u?\ pu
1 —2> dn (E.18)

Pele

[e=]

o= ["
o = [
A /0"

The dissipation integral is also defined in terms of its 2D form.

- ﬁ) PU o dn ~ bo (E.20)

[e=]

1 “—) PE onrdn ~ bo* (E.21)

1 —) L onrdn ~ bo* (E.22)

D = /One T % dn (E.23)
(D) = /0 "%g—Z%r dn ~ bD (E.24)

Using the approximate area definitions above, equations (E.11) and (E.12) are put in their
equivalent logarithmic differential forms.

dInf + dlnb = g%dlns — (H+2-M?) dInu, (E.25)
. _ (s20p  sC; 2H™
i = (352 - 2 ) dns - (S 41 H)dlnu, (B26)

Equation (E.26) is actually the difference between the logarithmic forms of equations (E.12)
and (E.11). The usual 2D shape parameter is defined as

H = % (E.27)
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and the 2D integral relations

Tw

Lo = Cy(H, Rey, M2) (E.28)
D

i Cp(H, Reg, M?) (E.29)
9*
i H*(H, Reg, M?) (E.30)
5**
7 = H**(H, Reg, M?) (E.31)

are used to close the equations. Except for the trivial additional term dlnb in (E.25), all
these relations are identical to their 2D forms, so that an existing 2D implementation can
be used with only minimal modification.

E.4.2 Direct BL solution

In the classical BL formulation, u.(s) is prescribed to be the inviscid velocity, e.g.
Ue = Uy (E.32)

This can be obtained from the A; strengths computed above, by using them in the u, v, w
summations (E.3,E.4,E.5) to compute the inviscid surface tangential velocities u,y(s) along
the surface and also into the wake.

Uiny(s) = VuZ+ 02 + w? (E.33)

Once ue(s) is specified, then equations (E.25) and (E.26) can in principle be solved for the
boundary layer variables (s), 6*(s) by usual downstream ODE integration. However, if sepa-
ration is encountered this integration will fail, since dH* /dH ~ 0 at separation, and equation
(E.26) cannot then be used to obtain the necessary do*/ds form for integration.

E.4.3 Viscous/Inviscid interacted solution

The present method eliminates the separation problem by the usual viscous/inviscid inter-
action formulation. Using the wall-blowing concept, the actual viscous edge velocities uq(s)
seen by the boundary layer and wake are modified by adding contributions from the appar-
ent wall-blowing sources, assumed to be axisymmetric point sources at the j...j41 interval
midpoints.

1 1 1 — M
Ue;, = Uinv, + — e 1 m]—l—l mjl (E34)
Pe; i 4T S; — 5(8j+1+8j)‘ (Si — 5(8j+1—|—8j))
Here, m is the axisymmetric mass defect, defined by
m = puA = / ’ (pette — pu) 27r dn =~ peucd*(by + 2mH*) (E.35)
0
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which is a quadratic equation giving 6* in terms of m and ..

. 1 ,  8mm
0 = 47T< bo + b°+peue> (E.36)

The summation (E.34) can be put into a more concise form by precomputation of the mass-
influence matrix d;; which depends only on the geometry.

1
Ue; = Uinv, + —Zd” mj (E37)

€; ,7

£

<.
I
|

1 1

A { Si — %(Sﬁsj—l)‘ (si = 3(si+s,-1))
1

Si — %($j+1+$j)’ (Si - %(3j+1+5j))

(E.38)

In the viscous/inviscid solution scheme, the boundary layer equations (E.25) and (E.26)
are solved together with the u. definition equation (E.37), to obtain the overall solution 6(s),
0%(s), Ue(s). Only the inviscid velocity iy (s) is prescribed. Because equation (E.37) has global
influence, the equations are not solved by marching, but instead are solved “everywhere” at
once by a global Newton iteration. An initial maching calculation with u, = wu;,, prescribed
(and necessarily modified at separation) is still used to obtain a good initial guess to start
the Newton cycle.

E.4.4 Drag and dissipation calculation

In the absence of any boundary layer ingestion, the body profile drag is simply the momentum
defect at the end of the wake.

D = (peug@)wake (E39)
CD _ 2®vvake (E40)
Sref

The overall surface 4+ wake viscous dissipation is the kinetic energy defect at the end of the
wake, with a density-flux thickness correction.

du.

(I)surf + q)wake = /oo bD ds = (peug@*)wake + /oo prUgA** d
0 0
DV.

ds (E.41)
(E.42)

S

The overall calculation gives reliable fuselage drag and dissipation predictions for any reason-
able fuselage shape, without the need to rely on effective wetted area correlations, closure-
angle correlations, or effective fineness-ratio correlations. For example, if the rear closure of
the body is too rapid, the present method will simply predict separation off the back and into
the wake, together with the increased dissipation leading to an increase in the downstream
wake defect which reflects the larger drag.
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It’s useful to note that the individual 2D thicknesses 6, §* significantly depend on exactly how
the effective perimeter b is defined. For example, in the wake where by =0, the momentum
and kinetic energy area breakdowns become

O = bO = 2150 (E.43)
O = bo* = 2157 0" (E.44)

So for example if the factor of 27 in the b definition (E.14) is modified somewhat because
of a non-circular body cross section, then the 6, §* and ¢* values will change somewhat.
However, because equations (E.11) and (E.12) evolve the full momentum and K.E. defects,
these defects are extremely insensitive to how they are broken down into the 6, 8*, and ¢*
components in (E.43) and (E.44). So the computed drag and dissipation are also insensitive
to such modeling ambiguities, since they depends only on the overall © and ©*. This justifies
the somewhat ad-hoc definitions of b in the various integral area approximations.

For related reasons, the present drag and dissipation calculation method is surprisingly
accurate for bodies which are not quite axisymmetric. If the flow is slender but not quite
axisymmetric, the local 2D momentum defect p,u? § might vary considerably at any given x
location. In Figure E.3, for example, the corresponding 6* might be very nonuniform around
the perimeter. A typical cause is redistribution of the viscous fluid via crossflow, from a small
angle of attack, for instance. However, the circumferential integral of p.u?f will average out
this redistribution, and since this integral is simply the total momentum defect,

/peugé’ db = pu’® (E.45)
the overall drag will also be very insensitive to such redistribution. The same argument

follows for the kinetic energy thicknesses. Hence, accurate drag and dissipation predictions
are still expected for weakly non-axisymmetric flows.
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Appendix F

Power Accounting with Boundary
Layer Ingestion

F.1 General Power Balance

The general power balance relation for an aircraft is written as follows.

(PKinl _'_PV) + (PKout - (I)jot) = (I)surf + (I)wako + Ev + Wh (Fl)

F.2 Isolated—Propulsor Case

For an isolated-propulsion case without Boundary Layer Ingestion (BLI) all the terms above
reduce as follows.

PKinl +P, =0 (F2)

Proe — gt = / pVou (Vio+u)dA = // V.udm = FV_ (F.3)
out out

(I)surf + q)wake = DpVoo (F4)

E, = DV. (F.5)

Figure F.1: Power terms in non-ingesting airframe and propulsion system.
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As expected for this case, the above can then be combined into the usual force-balance
relation.

FV. = D,V + D,V + Wh (F.6)

which is compared term-by-term with (F.1) in the top half of Figure F.2. Equation (F.6)
can be considered as a formula for the thrust F' necessary to achieve a required climb rate
h, or as a formula for the climb rate i which results from a given thrust and total drag, at a
given flight speed. Corresponding interpretations will be made for the equivalent equation
in the BL-ingesting case, considered next.

Axial Force E V
a) Balance en
(noBLl) |~ WAL siny +—— D;\, | D, V.

Power
b) Balance

(nO BLI) — Wh I E.V I churf I cbwake

\@\rf ﬂ\' fa Puwake

pKout_qjjet i I P;<in| + P(/ ]
E.v I cDsurf i q)’wake—

Power
C)  Balance ,
withBLI) | wh

Axial Force e \
Balance , end ,
(with BLI) |~ W\, siny +—— D\, | Do\,

Figure F.2: Force balance compared to power balance (top half of figure). Power balance
readily addresses the BLI case, and can be interpreted as equivalent forces (bottom half of
figure). Primes ()" denote quantities which are significantly modified by the BLI.

It’s useful to first define the viscous kinetic energy defect K, and the density-flux defect @,
K@ = // L(V2— V) pVdA = LpVier (F.7)

Qw = / pe—p)VdA = p VA" (F.8)
where ©* is the kinetic energy area and A™ is the density-flux area. The integrals are over
a plane in the viscous layer, normal to the flow at some x location, shown in Figure F.1.

For the incompressible case, where () = A™ = 0, K is simply related to the various terms in
(F.1) as follows.

Qg = Kop (Fg)
Ppae = Ko — Kipp (F.10)
DV. - K. (F.11)

If density variations and hence () are significant, then surface integrals of () must be included:
8V
(I)surf = KTE + QV o

surf

(F.12)

113



Do = K. — Ky +/ QVG% dz (F.13)

wake

The @ contributions scale as the local M2, and for typical high subsonic flows contribute
perhaps ~ 5% to the total @y, and Pyare. They will be omitted here for physical clarity.

F.3 Ingesting—Propulsor Case

Primes ()" will now be used to denote ingestion-case quantities, which will be expressed in
terms of the non-ingestion-case quantities above.

I:)'éinl-'-P\;
L A Plsure PK’ out fat .
5 > 71 o E/

—- - - - - - - - __ - -- Bttt i"’/ 777777777777777777
K‘l/'E Dlvake }Ii/

Figure F.3: Power terms in ingesting airframe and propulsion system.

The propulsor is assumed to ingest a fraction fg;; of the body’s kinetic energy defect at the
trailing edge, so that the inlet Py term is now no longer zero.

(PKinl + PV), = feuKm = fou Psurt (F.14)

Furthermore, the defect flowing into the wake is reduced by the same amount, so that the
amount of rotational fluid flowing into the wake, and the associated wake dissipation are
reduced correspondingly.

K;E = (l_fBLI)KTE (F.15)
(I)izvako = (1_fBLI>(I)wako (F16)

In contrast, the surface dissipation occurs upstream of the propulsor and hence is largely
unaffected. The trailing vortex system and hence the induced power are also unaffected.

;urf = (I)surf (Fl?)
E = E, (F.18)

Inserting all these primed quantities into the general power balance relation (F.1) gives

(P + Po) 4 (P = Piet) = Pl + s + By + WH (F.19)

wake

or  (Pe +P) 4 (Peos — Piet) = Pourr + (1= for))Puare + Ey + W (F.20)

Replacing these ® and F, in terms of the more familiar drag quantities (all defined for the
non-ingesting case), we have the following force-balance equation.

F'V., = D,V — fou®Pyake + DiVio + W (F.21)
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Although the equivalent-force relation (F.21) is usable, it has a potential problem in that
D,, and @y, are both hypothetical for the BLI case, in that they correspond to the non-
BLI case which really does not exist. Hence, it would be difficult to apply to high-fidelity
calculations since both the BLI and non-BLI cases would then need to be computed, even
though the non-BLI case is geometrically different and may be unrealizable. In contrast, the
power-balance relation (F.19) is given only in term of the BLI-case quantities which really
exist.

Setting aside such interpretation or computability issues, equation (F.21) can be treated as a
formula for either F” or A’. However, the modified thrust /" needs more careful consideration.
By definition, it is credited with the normally positive inlet defect fg1 K.

F,Voo = (PKinl _I_ PV), _I_ (PKout - ¢jet)/
>~ feulm + // pru' (Vw+u,) dA
out

= K + // Vo dii (F.22)
out

This is consistent with a basic momentum argument, that as the velocity into a propulsor
is reduced with the power input fixed, the “ram drag” is reduced and the net thrust will
naturally increase.

However, when ' and 7/ in (F.22) are computed with an engine-cycle calculation, it is
necessary to account for the ingested defect f5;K.x, via a reduced inlet total pressure for
example. The resulting engine parameters will then be different from the non-ingesting case,
hence the primes on v’ and i/ above. Additional distortion-related component losses may
also be included if deemed appropriate. In any case, this inlet defect will definitely have a
fuel-burn penalty which can more than offset the otherwise large gain of the fg K5 credit
term in the final thrust power F'V_ in (F.22). If this cancellation is perfect, then the only
gain of ingestion is the — f51;Pyake term in the overall power-balance equation (F.21).

F.4 Incorporation into Range Equation

Starting from the general power balance equation (F.1), with h = 0, the corresponding
Breguet-type equation is obtained as follows. First we define the total dissipation and vortex
energy-rate coefficients Cg, Cg,, the usual lift coefficient C'7, and the net effective propulsive
power P and associated power-specific fuel consumption PSFC'.

(bsurf + q>wake

Cy = F.23
TT LS (F.23)
E
Cp, = —2 F.24
T evEs (F.-24)
L
C, = ——0 F.25
b VRS (£-25)
P = (Peu+Po) + (P — Piet) = Dot + Puare + Ei (F.26)
P = 1pV3S(Co+ Cp,) (F.27)
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PSFC = mf}f J (F.28)

The weight rate of change can be related to the fuel flow rate and hence the power, and also
to the weight /range gradient via the velocity for nearly-level flight.

dw

W = _mfuelg = —P PSFC (F29)
dwW dW dR dwW
W dR A~ ar - (F.30)

Equating these two weight rate relations, inserting W/L = 1 for level flight, and invoking
the coefficient definitions above gives

AW P P
AW Cy + Cg

_ _wtetteop F.32
e W=t o PSFC (F.32)

This is then integrated over the mission to give the mission range in terms of the fuel-burned
weight We, and the final aircraft weight W..

Cr 1 We + Ws
= 1 F.
k= & +an o “( W, ) (F.33)
F.4.1 Non-ingesting case
For the non-BLI isolated propulsion case, the following relations hold.
P = FV_ (F.34)
PSFC = TSFC/V,, (F.35)
Cs = Cp, (F.36)
Cg, = Ch, (F.37)
Co + Crp, = Chp (F.38)

The power-based Breguet equation (F.33) is then exactly equivalent to its usual thrust-based
form as expected:

C, V. We + We
— In| —— "= F.
& Cp, TSFC n( W, > (F.39)

F.4.2 Ingesting case

For the ingesting case, the corresponding derivations above give

P/ = (PKinl + PV) + (PKout - (I)jot)/ = (I)éurf + (I);vakc + EV (F40)
Cr 1 W + Wf)

= 1 F.41

Cr 1 Cp, PSEC n( W, (F.41)
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where the BLI-case dissipation coefficient is defined as before in (F.23),

oL A+ D!

C/ = surf wake F.42
! IpV3S (F42)

fBLI(I)wako

~ O, — P_veke

3P V2S

Koo - KTE

= CDp - fBLIW (F43)

with the second approximate form using values from the non-ingesting case and may be
useful in some applications. Similarly, PSFC" is defined as

mguel g
where it’s essential to remember that P’ and corresponding g, must be computed in the
presence of the implied inlet kinetic energy defect fgz ;K and equivalent inlet total pressure
loss. The range for the BLI case is then given simply by the power-based Breguet equation
using the primed parameters.

R =

CL 1 <WO -+ Wf)
In

F.4
Cp + C, PSFC’ WL (F.45)

F.5 Thrust and Drag Accounting

The presence of boundary layer ingestion makes the definition of “thrust” and “drag” some-
what ambiguous. However, the above definitions of F’ and Cj are reasonable choices for
comparing against non-ingesting alternatives, since they reduce to the usual I’ and Cp,
definitions in the non-ingesting case. Furthermore, these choices closely reflect what really
happens to the flowfield when boundary layer ingestion is introduced, and can be explained
using common engine terminology.

e The dissipation of the removed wake is excluded from C}

e The reduced velocities into the engine inlet are both beneficial (from a “ram drag”
argument), and detrimental (from a cycle efficiency argument). The net benefit can
be either positive or negative, depending on a number of secondary factors.

F.6 Inlet Total Pressure Calculation

For engine-cycle calculations, it is necessary to define a suitably-averaged inlet total pressure
p¢o from the inlet boundary layer properties.
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F.6.1 Low speed flow case

For low speed flow, a suitable method is to perform a volume-flow weighted average of the
total pressure.

Vit = // VA (F.46)
(Pr2a — Dioo) vinl = //inl(Pt — Pioo) V dA
~ //inl(p+%pv2 - pe+%per) V dA

— _%pe‘/f (@* + A**)

inl

= —fsu (KTE_I_%‘/;EQTE) ~ — fauKop (F47)
K

P2 = Pt — fBL-I & (F.48)
Vinl

F.6.2 High speed flow case

An alternative approach, more justifiable for the high speed case, is to employ a mass
weighted average of the entropy. The adiabatic boundary layer is assumed to have some
known velocity profile a constant total temperature 7; = T;, = T;__, and the usual assumption
of a constant profile static pressure p = p, is also made. This gives the following temperature
and entropy profiles in terms of the velocity profile V().

V)
Twy = T, — F.49
) b 2c, (F.49)
Tw/T, )71 Tw)/T.,)7T T
S(y) = ln—( w/T.) = ln( w/Te) N In W) (F.50)
PW)/ P P©)/De v—1 T,

For modest heat transfer and near-unity Prandtl numbers, the Stewartson temperature pro-
file is quite accurate.

Vi
= U F.51
V. () ( )
T(y) o Tw_Taw 7_1 2 2
T - 1+T(1—U)+TTME (1-v7) (F.52)
—1
= 1+r 72 M? (1 — U2) (for adiabatic flow) (F.53)
ro~ PY? ~ 009 (for air) (F.54)

For a typical fan, M, ~ 0.6, so that the compressibility factor is quite small compared to
unity.

y—1

M? ~ 0065 < 1  (for M, = 0.6) (F.55)

r
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The entropy profile can then be simplified using the logarithm’s Taylor series,

1 1
In(l+¢) = 6—562 + 563 — ... (F.56)

sy 7 =1, Nl o ) a2 2

e R LR (1—U)} ~ el (1-1?) (F.57)

which is accurate to roughly 3% for the M, = 0.6 case.

The mass-weighted entropy flux and the associated average entropy s are then computed as
follows.

T = // PV dA (F.58)

S = //sdm - //sdeA — pe\/;r%Mf//(l—U2) RUdA  (F.59)
- pe‘/e@fnl l 2

5 = Er— T‘QME (F.60)

Substituting yM?2 = p.V.2/p. and for ©%, in terms of Kj, gives

inl

Kinl Pe
— =
Min] De

s =

(F.61)

Finally, the equivalent average total pressure is computed from this s via the entropy defi-
nition (F.50).

Dt2 = Dioo €Xp(—3) (F.62)
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