
Is DNA a Good Model Polymer?
Douglas R. Tree,† Abhiram Muralidhar,† Patrick S. Doyle,‡ and Kevin D. Dorfman*,†

†Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
‡Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States

*S Supporting Information

ABSTRACT: The details surrounding the crossover from
wormlike-specific to universal polymeric behavior has been
the subject of debate and confusion even for the simple case of a
dilute, unconfined wormlike chain. We have directly computed
the polymer size, form factor, free energy, and Kirkwood
diffusivity for unconfined wormlike chains as a function of
molecular weight, focusing on persistence lengths and effective
widths that represent single-stranded and double-stranded DNA
in a high ionic strength buffer. To do so, we use a chain-growth
Monte Carlo algorithm, the pruned-enriched Rosenbluth
method (PERM), which allows us to estimate equilibrium and near-equilibrium dynamic properties of wormlike chains over
an extremely large range of contour lengths. From our calculations, we find that very large DNA chains (≈1 000 000, base pairs
depending on the choice of size metric) are required to reach flexible, swollen nondraining coils. Furthermore, our results
indicate that the commonly used model polymer λ-DNA (48 500, base pairs) does not exhibit “ideal” scaling but exists in the
middle of the transition to long-chain behavior. We subsequently conclude that typical DNA used in experiments are too short to
serve as an accurate model of long-chain, universal polymer behavior.

1. INTRODUCTION

Double-stranded DNA (dsDNA) has long stood as a unique
polymer due to its role in biology and biochemistry. In
addition, thanks to modern techniques in molecular biology
and soft-matter physics, monodisperse samples of dsDNA can
be prepared with an extraordinarily large range of molecular
weights, which can in turn be visualized and controlled at the
single-molecule level. Accordingly, dsDNA has assumed the
role of a “model polymer” and has been extensively studied.
Despite its widespread use, accumulating evidence suggests that
dsDNA is not a good model polymer for investigating universal
polymer properties, and a version of the more flexible single-
stranded DNA (ssDNA) with limited base pair interactions has
been proposed as an alternative.1,2 In this paper, we examine
the length-dependent properties of both single-stranded and
double-stranded DNA in order to further evaluate their fitness
as model polymers.
In order to do so, we first ask why any specific polymer

would be an appropriate general model in the first place? The
answer is given by the aptly named concept of universality,
which was well explained by de Gennes.3 Universality implies
that at sufficiently large length (and time) scales all dilute
solutions of self-avoiding polymers in a good solvent exhibit
equivalent behavior, regardless of disparate underlying chemical
structures.3−5 Therefore, at large enough contour lengths all
polymers are “model” polymers because all polymers behave
similarly (entropic elasticity and self-avoidance). This is
certainly the sense in which dsDNA, ssDNA, or any other
polymer is meant as a model polymer.

Because of the specific chemical structure of dsDNA, its
behavior is well described by the wormlike chain model,6 and at
short enough length scales (near the persistence length)
dsDNA is often described as semiflexible. Accordingly, it is
sometimes repeated that “dsDNA is not a good model of
flexible molecules, because it is semiflexible”. However, this
statement can lead to confusion due to an unfortunate
ambiguity surrounding the word “semiflexible” that often arises
in the literature. Per our definition of universality, this
statement is correct if the term semiflexible is meant to denote
a polymer with a contour length near its persistence length.
Indeed, universality provides no basis for comparing any short-
chain polymer to either another short-chain polymer of
different chemistry or the general behavior of all polymers.
Using this terminology, a flexible chain is thus any chain that
shows universal behavior. However, if the term semiflexible is
used as a synonym for the class of polymers that are well
described by the Kratky−Porod model (wormlike chains), then
this statement is incorrect since very long wormlike polymers
indeed show universal behavior. The statement is all the more
misleading because it implies that dsDNA is always semiflexible,
which is true if semiflexible is synonymous with wormlike but
false if semiflexible means short. In this paper, we shall use the
term “semiflexible chain” to denote a member of the class of
wormlike chains.
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Regardless of notational convention, the principle of
universality immediately suggests a way to assess the theoretical
appropriateness of a proposed model polymer. Namely, is the
polymer long enough such that chemically specific behavior
disappears? This of course completely neglects the bedrock
question that made DNA the model polymer of choice: Is the
model polymer experimentally convenient to use? For a
polymer to serve as both a correct and practically useful
model polymer, these two questions must be answered
affirmatively. In this work, we purposefully omit any normative
statements about experimental convenience and instead
compute the contour length where the chemically specific
behavior of dsDNA disappears. In this way, we seek to quantify
how both static (radius of gyration) and dynamic (diffusion
coefficient) properties of dsDNA approach universal behavior.
Along the way, we find it instructive to compare to the
properties of a model of ssDNA as well.
There is a lack of consensus in the literature regarding the

appropriate length at which one can consider dsDNA to be a
flexible chain. For instance, some authors have claimed that
even a very long molecule like λ-DNA is “ideal”, being too short
and stiff to experience excluded volume interactions.2,7

However, other studies suggest that excluded volume
interactions indeed have an impact at similar contour
lengths.8−10 Further confounding the issue, the oft-cited
measurements of the diffusion coefficient of concatamers of
λ-DNA by Smith et al.11 suggested that dsDNA had already
reached a universal limit. However, the work by Smith et al. is
at odds with recent theoretical work on the draining behavior of
wormlike polymer coils12 and work on DNA in confinement13

which suggests that the molecular weight required to reach the
universal limit for dynamic properties is even larger than the
weight required for static properties.
Adding to the confusion, intercalating dyes, which make

dsDNA so convenient to use in fluorescence microscopy
experiments, have an undeniable impact on the chain chemistry
of dsDNAextending the molecular contour length by 20−
30%.14 Even so, the most basic molecular properties of dyed
dsDNA (the persistence length) remain difficult to accurately
measure and are therefore controversial.15,16 And while we
previously stated that universality implies that chain chemistry
has no qualitative impact on the regime of universal behavior, a
change in the persistence length or effective width can alter
both the molecular weight of the transition as well as the
limiting value of a specific molecular property (radius of
gyration).
In order to assess the transition of dsDNA from short-chain

to universal behavior, we adopt a numerical approach and
compute static and near-equilibrium dynamic properties of
both ssDNA and dsDNA as a function of molecular weight
using a Monte Carlo algorithm. Specifically, we employ the
powerful pruned-enriched Rosenbluth method (PERM) which
allows us to capture an enormous range of molecular weights of
dsDNAfrom short oligonucleotides to near chromosomal
lengths. While the application to DNA is unique, the numerical
techniques we employ are not, and several excellent resources
exist for the interested reader.17−19 With the range and
precision afforded by PERM, we are able to make specific
quantitative predictions of measurable properties of very long
dsDNA molecules and subsequently provide insight into the
transition to long-chain, flexible behavior.

2. MODEL AND METHODS
2.1. DWLC Model. The discrete wormlike chain model

(DWLC)20−23 is a coarse-grained polymer model, which in
contrast to bead−spring models24 is capable of capturing
subpersistence length behavior. As a key feature, the DWLC
model is able to reproduce properties of both the freely jointed
chain (FJC) and the continuous wormlike chain (CWLC),
which makes the DWLC versatile enough to model both single-
and double-stranded DNA. Double-stranded DNA has been
modeled analytically as a CWLC,25 but since a numerical model
is necessarily discrete, the DWLC model is appropriate when
using small discretization lengths. By contrast, models with
both discreteness and bending stiffness have been used for
ssDNA, making the DWLC model an ideal choice.20,26−28 We
note however that to use such a simple model for ssDNA, we
must neglect specific base-pair or base-stacking interactions.
Neglecting such interactions also means dismissing many
important properties of ssDNA, but we hypothesize that this
model will describe some important noninteracting sequences
of ssDNA1,28,29 or ssDNA in denaturing conditions. In order to
proceed with a description of the DWLC model, we defer a
more rigorous justification to section 3.2, where we present our
parametrization of the model to experimental measurements.
The model is defined as a series of N inextensible bonds of

length a with a bending potential20−23

∑β κ θ= −
=

−

U (1 cos )
j

N

jbend
1

1

(1)

between each pair of bonds. Here κ is the bending constant, β is
the inverse temperature (kBT)

−1, and θj is the angle formed
between adjacent bonds j and j + 1. With this definition, the
contour length of the chain is given by L = aN. Note that our
implementation does not incorporate bond extensibility, which
can be important for modeling DNA under large tensile
forces.20,26,30 In practice, this is done by replacing the
inextensible rods with a finitely extensible bond potential.
Because of the simplicity of eq 1, the equilibrium probability

density function for a bond angle can be written in closed form,
which is useful for chain-growth simulations (see Supporting
Information). From this, one can obtain a relationship between
the bending constant, κ, and the Kuhn length, b23,31,32
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When κ ≫ 1, this reduces to the familiar expression for a
CWLC, b/a = 2κ − 1. When κ→ 0, eq 2 reduces to b = a, since
the DWLC becomes an FJC in the limit of no bending
potential. In referring to the chain flexibility, we often find it
convenient to describe polymer flexibility by the persistence
length, lp, which is related to the Kuhn length, lp ≡ b/2.
In addition to incorporating flexibility, space-filling chains

require an excluded volume potential. To add excluded volume,
N + 1 spherical beads are introduced at the bond joints, and a
hard bead repulsion is defined at the diameter w by the
potential
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,

0,ij
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where |rij| is the positive distance between bead centers at i and
j. The choice of hard beads over a finite potential increases
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program efficiency and simplicity and gives an athermal
excluded volume model.
Equation 3 suggests that the excluded volume potential UEV

is independent of the bond length, a. However, the choice of
bond length does indeed affect the excluded volume behavior of
the chain. When the bead radius is small compared to the bond
length, w < a, unphysical chain crossing can occur, and if w > a,
adjacent excluded volume beads may “overlap”. In practice, w is
set to be greater than or equal to a, since bead overlap is simple
to overcome, but chain crossing is not. To prevent bead overlap
in a model with a substantial bending penalty at the bead length
scale, one can simply redefine eq 3 to apply when j > i + k
where k is an arbitrary positive integer. (In our case we set k =
2.) The constant k defines a minimum length scale of self-
interaction, a concept which is a commonly used in polymer
field theories.4

2.2. Numerical Method. To calculate equilibrium polymer
properties with the DWLC model, we employ the pruned-
enriched Rosenbluth method (PERM). PERM is a chain
growth Monte Carlo algorithm that employs a dynamic bias to
obtain importance sampling33 and is distinct from Markov-
chain (i.e., Metropolis) algorithms. PERM is an advanced
method for long polymer chains and overcomes the well-known
attrition problem that limited chain length in the Rosenbluth−
Rosenbluth (RR) algorithm.34 To do so, a tree of chains (called
a tour) is grown according to a bias that is implemented by
controlling the rates of pruning or enriching35 of the branches
of the tour.
In our off-lattice version of the algorithm, this is done as

follows.23 We initiate a chain at the origin, and for the nth chain
growth step, we make K trial steps according to the probability
distribution of the polymer bending potential (see Supporting
Information). Each trial step is assigned a Rosenbluth weight

β= −a Uexp( )n
k

n
k( ) ( )

(4)

where Un
(k) is the potential energy due to intrachain

interactions. (In this case it is UEV.) The weight of the growth
step n is defined as

∑=
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and to make the step, one of the trial steps is randomly chosen
according to the probability

=p
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The cumulative weight of the chain at step n is defined as

∏=
=

W wn
i

n

i
0 (7)

which is an approximate count of the number of configurations
using K trials. As the chain grows, Wn fluctuates and can
become zero if a suitable self-avoiding chain cannot be found.
To circumvent this, pruning and enrichment are used to bias
the chain growth toward successful states. When Wn rises
relative to its ensemble average ⟨Wn⟩, chain growth is deemed
successful and the tour spawns branches (enrichment).
Conversely, when Wn/⟨Wn⟩ falls, chain growth is struggling,
and the tour is pruned. This perpetual cutting and growing of
the chain leads to a depth-first search type of diffusion along the

chain contour length,33 and the method subsequently yields
statistics as a function of molecular weight.
Our strategy for pruning and enriching follows a stochastic,

parameterless version by Prellberg and Krawczyk,36 which we
found to be simple and efficient. Unfortunately, the addition of
Markovian anticipation37 to our pruning and enriching scheme
did not result in a significant speed-up, likely due to the large
persistence length of the simulated chains.
Nevertheless, a significant reduction in the computational

cost was achieved by a more mindful calculation of ⟨Wn⟩. Since
Wn is generated during execution, ⟨Wn⟩ can be determined at
run-time. However, the initial estimate is poor, which leads to
slow execution (especially for large chains). We found, as
expected,38 that log ⟨Wn⟩ becomes linear in n for large n. This
allowed us to run short chain “blind”39 estimates of ⟨Wn⟩ and
linearly extrapolate to large n, obviating the need to bootstrap
our way to an estimate of ⟨Wn⟩ for large n. Importantly, this
extrapolation does not bias the ensemble averages in any way
but simply increases the efficiency of the algorithm.
In addition, a careful enactment of O(n2) procedures proved

key for an efficient implementation of PERM. Since the chain
growth requires O(n) operations, a naive implementation of an
O(n2) procedure at each step, n, yields calculations that scale
like n3. Efficient implementation is further hampered by the fact
that recording each tour’s configuration is prohibitively
expensive (in both time and memory), and data analysis
must be done on the fly. To circumvent the problem, properties
such as the radius of gyration and diffusion coefficient were
coded to iteratively update with each growth step, which kept
the algorithm O(n2) as desired. With additional scrutiny and a
neighbor list, many property evaluations could be reduced to
O(n) time (such as the radius of gyration and the form factor;18

see Supporting Information), which subsequently allowed for
greater reductions in the required computational time.
In our implementation, we employed a master/slave parallel

algorithm without Markovian anticipation on a DELL Linux
cluster. We reach self-avoiding chains of up to 1 × 105 beads
(for dsDNA), which is close to 2 orders of magnitude longer
than our efforts with a conventional Metropolis algorithm22 but
still falls short of the exceptionally long chains in the newest
implementations of the pivot algorithm.40,41 Recent work by
others using PERM for semiflexible chains on a lattice have
reached similar chain lengths.17 Static properties were
calculated with as many as 4 × 105 (dsDNA) and 5.3 × 105

(ssDNA) tours, and dynamic properties were calculated with
105 (dsDNA) and 1.3 × 105 (ssDNA) tours. The batches of
tours were divided into subsets in order to estimate the error
(standard error), which is sufficiently small that the error in the
data shown in all figures is smaller than the given symbol size,
unless otherwise depicted.

2.3. Properties. To assess the approach of dsDNA to
universal values, we evaluate several static and dynamic
properties. We are particularly interested in measures of the
size of the chain that can be obtained experimentally. These
include the radius of gyration

∑=
+

−
=

+

S
N

r r
1

1
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i
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i
1

1
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2

1/2

(8)

which can be measured by various scattering techniques as well
as the mean span22

= ⟨ − ⟩X x xmax( ) min( ) (9)
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and the root-mean-square end-to-end distance

= ⟨ − ⟩+R r r( )N 1 1
2 1/2

(10)

both of which can be measured by fluorescence microscopy. In
these expressions ri represents the (3 × 1) vector position of
the ith bead of the chain and x represents the (N + 1 × 1)
vector of all of the x positions in the chain. Note that, unless
the polymer is confined, one typically obtains the diffusion
coefficient in fluorescence microscopy, from which the end-to-
end distance or radius of gyration is inferred.
The polymer form factor, commonly obtained by light

scattering measurements, can also be obtained from simulation
data using the relation18
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where rij is the distance between beads i and j and q denotes the
magnitude of the scattering wave vector q.
In addition to structural properties (radius of gyration)

commonly obtained in all Monte Carlo methods, PERM can
calculate thermal properties (entropy) as well. Observe that if
the sum in eq 5 is replaced with an integral, the ensemble
average of Wn (eq 7) corresponds to the definition of the
configurational partition function.33,36 By performing repeated,
stochastic chain-growth steps we are simultaneously sampling
this integral (relative to an ideal chain standard state) similar to
the Widom particle insertion method.42 Accordingly, the excess
free energy of a chain of length L due to interchain interactions
is

β = −F
W
K

ln N
N (12)

It is also worth mentioning that when hard potentials are
employed ⟨WN⟩ is simply a count of the configurations, and the
excess free energy reduces to the excess entropy.
In addition to the measures of static properties, it is possible

to use PERM to estimate the near-equilibrium chain diffusivity
by the so-called rigid-body approximation of the Kirkwood
diffusivity.43−45 We do so by giving the N + 1 beads a
hydrodynamic diameter d in an implicit continuum fluid,
whichdue to the small length scaleexhibits very small
Reynolds number flows. Since the most important intrachain
interactions come from beads that are far apart along the
contour of the chain, we make the reasonable assumption that
we can use a far-field approximation for the hydrodynamic
interactions. The low Reynolds number and far-field approx-
imations yield an Oseen−Burgers tensor for the Green’s
function of the bead velocity. When this is combined with a
first-order correction for the finite bead size, the chain mobility
tensor becomes45−49
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The Kirkwood diffusivity50,51 is given by the equilibrium
ensemble average of the trace of the chain mobility tensor

Ω= ⟨ ⟩D
k T

3
Tr( )B

(14)

Equation 14 neglects the effects of dynamic fluctuations in the
chain conformation and is thus an approximation (to within a

few percent error51,52) of the “true” near-equilibrium diffusion
coefficient (which is given by the mean-square displacement or
Green−Kubo relations).44,53 Since eq 14 employs an ensemble
average of a conformational property, it can be calculated from
PERM or any other Monte Carlo algorithm.43 This enables us
to calculate the diffusivity of a very long, semiflexible chain with
excluded volume and hydrodynamic interactions, a feat that has
proved extraordinarily difficult by analytical theories.

3. RESULTS AND DISCUSSION
3.1. Review of Dilute Solution WLCs. To facilitate the

discussion of the long-chain behavior of DNA, we briefly review
some aspects of dilute solutions of wormlike chains. We focus
on the case of a WLC in three dimensions which is unperturbed
by external forces and refer the otherwise interested reader to
recent references on WLCs perturbed by forces54,55 and
confined to planar surfaces.56 As stated in section 2.1, a
continuous wormlike chain is characterized by a contour length
L, a Kuhn length b, an effective chain width w, and a
hydrodynamic diameter d. By dimensional analysis, only three
combinations of these parameters can be unique, giving us a
three-dimensional phase space.
Neglecting chain dynamics for the moment, consider the

equilibrium phase plane depicted in Figure 1. The phase

diagram divides the equilibrium behavior of WLCs into three
universal regimes: rod, Gaussian coil, and swollen coil,17,57

which are conveniently explained by scaling arguments. Note
that while the scaling theory outlined here provides a physical
basis for the existence of the universal regimes, it is unable to
address details regarding either transition regions or prefactors
of a given property.4 Indeed, after reviewing the scaling theory,
the object of much of the remaining discussion will be to
compute and analyze the practical consequences of the
prefactors and transition regions that scaling theory is unable
to address. Since we have limited our scope to single- and
double-stranded DNA, we direct the generally interested reader
to recent work by Hsu et al.17,18 where a simpler lattice model
is used to compute the prefactors and transition regions of a
dilute WLC over a broad range of the parameter space.

Figure 1. Summary of the classical scaling arguments for a real
semiflexible chain in dilute suspension. Three regimes are predicted
based on the interplay between the contour length (L), the chain
stiffness (lp), and the chain width (w). Very short chains (L ≪ lp) are
rodlike, and long “thin” chains are nearly Gaussian (lp ≪ L ≪ lT).
Long chains (L ≫ lT) are swollen coils.
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Consider the case of a chain with a constant b/w, which
would be a vertical trajectory in Figure 1. When L ≪ lp, the
chain is short and rigid like a rod, and the size of the polymer
which we represent with the end-to-end distance R without a
loss of generalityscales linearly with the contour length

∼R L (15)

When the chain is much longer than the persistence length L
≫ lp, the thermal fluctuations of the chain overwhelm the
bending energy and the shape becomes a flexible coil. However,
if the polymer is short enough, there are few intrachain
interactions, and the molecule experiences negligible excluded
volume interactions giving

∼R bL( )1/2 (16)

which is the familiar random walk scaling.
For any real (self-avoiding) chain, the magnitude of the total

excluded volume interactions increases as the contour length
increases. When the excluded volume energy is on the order of
kBT, a second transition occurs from a Gaussian to a swollen
coil. The size of a swollen coil is given by the radius5

∼
ν ν−

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠R b

w
b

L
b

2 1F F

(17)

where νF = 0.587597(7)41 is the modern value of the Flory
exponent.
Just as the rod-to-coil transition is characterized by the

persistence length, the Gaussian-to-swollen coil transition is
given by the contour length contained in a thermal blob

≡l c
b
wT

3

2 (18)

with c given as a scaling constant. Normalizing eq 18 by the
Kuhn length b reveals the dependence of lT on the monomer
anisotropy b/w, which is the ratio of the “stiffness” to the
“thickness” of the chain.2,22,58 Thus, when L ≪ lT, the chain is
too stiff and thin to swell and the chain scales like eq 16,
whereas when L ≫ lT, the chain experiences sufficient excluded
volume interactions to scale like eq 17.
An equivalent picture to the thermal blob (to within a

constant factor) that often appears in the theoretical polymer
physics literature59,60 is the excluded volume parameter5,58

π
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⎠z

w
b

L
b

3
2

3/2 1/2

(19)

with the conventional prefactor. Here z ≈ 1 signifies the
transition point between Gaussian and swollen behavior.
3.2. Model Parametrization. Since we are interested in

moving beyond scaling theory and making quantitative
predictions of the properties of single-stranded and double-
stranded DNA, we need to parametrize the DWLC model to
experimental data. In particular, we need values of the
persistence length, lp (or equivalently the Kuhn length), the
effective width, w, and the bond length, a, in order to specify
equilibrium properties. To specify dynamic properties, we also
need the hydrodynamic diameter, d, but we defer this
discussion until section 3.4.
As polyelectrolytes, the magnitude of the persistence length

and the effective width of single- and double-stranded DNA
depend on the ionic strength.61 The effect of ionic strength, I,
on the persistence length of double-stranded DNA has been
examined by both experiments6,26,62−66 and theory.67−69 While

some disagreements remain regarding the effects of electro-
statics on lp at very low values of the ionic strength, empirical
results and theories generally agree for large values of I.61

Perhaps due to lesser prominence or greater measurement
difficulty, there seems to be little controversy surrounding the
magnitude and ionic strength dependence of the effective width
of dsDNA. More than three decades ago, Stigter used the
calculation of the second virial coefficient of a stiff, charged rod
to predict the width,61,70 and it has been subsequently
corroborated by DNA knotting experiments.71

Figure 2 summarizes the ionic strength dependence of
dsDNA of both the Kuhn length (using an empirical relation

from Dobrynin61,69) and the effective width (using Stigter’s
theory70). As has been pointed out before,61 both b and w rise
as the ionic strength decreases, making the chain stiffer.
However, above 10 mM the Kuhn length changes much less
quickly than the effective width, meaning that the monomer
anisotropy ratio drops rapidly as the ionic strength decreases.
Therefore, as b/w falls with decreasing ionic strength, the Kuhn
monomers of dsDNA become less anisotropic and the chain
becomes more flexible in the long-chain limit. The effect on the
scaling behavior of finite length chains is nontrivial, however,
since there is a competition between decreasing the anisotropy
of the Kuhn monomers and decreasing their number. For
instance, near 10 mM the monomer anisotropy ratio for
dsDNA falls below 10, but the number of Kuhn monomers in
T4-DNA remains high (≈400). However, by 0.1 mM the
anisotropy ratio drops below 3, but the number of Kuhn
lengths is reduced to approximately 100.
To simplify the model, we limit our scope to high ionic

strengths where strong electrostatic screening marginalizes the
effect of the electrostatics.61 This assumption allows us to
neglect electrostatic potentials in our model and use constant
values of b and w. When necessary, we assume an ionic strength
of 165 mM, which corresponds to 5× TBE61 and is marked
with a gray vertical line in Figure 2. Assuming these buffer
conditions gives b = 106 nm, which has become the consensus
Kuhn length of dsDNA,6 and w = 4.6 nm, the value obtained
from Stigter’s theory.22,61,70

Figure 2. Ionic strength dependence of the Kuhn length (dashed blue
line) and the effective width (dot-dashed green line) and the monomer
anisotropy (solid red line) for dsDNA. The vertical gray dotted line
indicates an ionic strength of 165 mM (≈5× TBE).61 The schematic
illustrates two chains with similar b but different w, demonstrating the
decrease in monomer anisotropy as the effective width increases more
rapidly than the Kuhn length.
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Unlike dsDNA, even a simple measure of the persistence
length of ssDNA in a high ionic strength buffer remains
controversial. A survey of the recent literature reveals studies
done by mechanical stretching,26,72 fluorescence recovery after
photobleaching,73 fluorescence resonance energy transfer,29,30

and small-angle X-ray scattering28,29 that yield values of the
bare persistence length (at infinite ionic strength) between 0.6
and 1.3 nm. It seems likely that base−base interactions are
responsible for the disagreement, and recent work on
noninteracting ssDNA sequences28,29 gives a consistent value
of 1.5 nm at the aforementioned ionic strength of 165 mM.
Assuming rodlike interactions for the effective width, which

forms the foundation of Stigter’s theory, appears to be
inappropriate for ssDNA. Some experimental work suggests
that for ssDNA w is nearly independent of ionic strength72 and
that its value is approximately equal to the bare persistence
length of the chain.28 Accordingly, we adopt a value of 0.65
nm,28 which conveniently also appears to be the approximate
rise of a single base of ssDNA.74

Finally, because we have a discrete model, we must specify a
bond length a. Since dsDNA is well-described by a continuous
model, the choice of a is somewhat arbitrary so long as a ≪ b,
much like a time step in numerical integration schemes. In this
case we choose a = d, which is the smallest length scale in the
model. This is commonly called the touching-bead model48,75

and is also advantageous for the calculation of the diffusivity. In
addition to the far-field approximation mentioned in section
2.3, the DWLC estimation of the Kirkwood diffusivity also
introduces discretization errors into the diffusivity; accurate
hydrodynamic interactions require the collective action of many
Stokeslets, which in turn requires a large number of beads. The
touching-bead model provides adequate resolution of the chain
to satisfy this condition and has the additional benefit of
circumventing any artifacts in the hydrodynamics due to a
variable bond length.
The choice of a for ssDNA is less clear than for dsDNA,

since both continuous and discrete models have been used with
some success for ssDNA.20,26−28 The Kuhn length (≈3 nm)
provides the upper bound for a, and it is sufficiently small that
the lower bound is given is given by the chemical monomer size
(≈0.6 nm). As discussed in section 2.1, a choice of a > w is
problematic, so for convenience we set a = w. For the reader’s
convenience, the model parameters are summarized in Table 1.

PERM calculations were performed with the parameters in
Table 1 to verify the model. Results for the radius of gyration
are shown in Figure 3 where they are compared to experimental
values of the radius of gyration of undyed dsDNA obtained by
light or neutron scattering.9,76−86 There is excellent agreement
between the experimental data and the PERM results.

However, given that there are two degrees of freedom (lp and
w) to fit the experimental data, the good agreement between
theory and experiment is expected.
Even with the excellent agreement, the effective width w

remains a somewhat uncertain parameter. Equation 17 predicts
that S ∼ w0.175, demonstrating that the radius of gyration is not
very sensitive to the effective width. This means that S is not
particularly useful at evaluating the ability of the model to
capture the correct strength of the excluded volume.
Compounding this fact, it appears to be difficult to collect
accurate data for the radius of gyration at large L.
Thus, despite our best efforts to pick accurate model

parameters, our choice is certainly a possible point of
contention. Indeed, our parameters give a monomer anisotropy
b/w ≈ 23 for dsDNA, whereas others have estimated an
anisotropy as high as 66.2 Implicit in this disagreement, and
further muddying the waters, is the role of intercalating dyes
mentioned in the introduction. Both the persistence length and
effective width are clearly affected by the presence of dyes,14 but
consistent measurements of their effects have not been possible
to date.15,16 Consequently, we have omitted data for dyed
dsDNA from Figure 3, since reported radius of gyration
measurements are inferred from dif fusivity measurements,
which are not static measures. In fact, in section 3.4, our
results suggest that this introduces a source of systematic error
since the chain has not yet reached the long-chain limit.
Therefore, until more data regarding the effective width and a
resolution of the dye dependence of both lp and w become
available, the parameters for dyed dsDNA will remain
somewhat uncertain.
Finally, in addition to the PERM calculations, we also found

it useful to employ renormalization group theory (RG) results
by Chen and Noolandi60 for the end-to-end distance and radius
of gyration. In contrast to the Monte Carlo results, the RG
theory gives R and S only, but the metrics are available as a
function of molecular weight to practically unlimited contour
lengths. Note that since the RG calculations employ a
continuous model, the excluded volume strength in the RG

Table 1. Parameters of the Discrete Wormlike Chain for
Double- and Single-Stranded DNA in a High Ionic Strength
Buffer (e.g., ≈5× TBE)a

parameter symbol ssDNA dsDNA

Kuhn length b 3.0 106
effective width w 0.65 4.6
hydrodynamic diameter, bond length d, a 0.65 2.9

aAll of the parameters are lengths expressed in nanometers. Note that
while our model parameters are defined in some cases to sub-angstrom
precision, this does not reflect the true experimental accuracy of these
parameters.

Figure 3. PERM data for the radius of gyration of ssDNA (open red
triangles) and dsDNA (open blue circles) compared to experimental
data for dsDNA from light and neutron scattering (filled green
squares).9,76−86 The experimental data were obtained from many
different references, at varying ionic strength (all ≥100 mM), with
varying information about the molecular weight. To obtain a
consistent value, the molecular weight of dsDNA was assumed to
obey the relation 660 Da = 0.34 nm = 1 bp. Single-stranded DNA was
assumed to follow 1 base = 0.65 nm.
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theory must be reparameterized to agree with the experimental
and PERM data (see Supporting Information).
3.3. Equilibrium Properties of DNA. Given that we have

a parametrized model for single-stranded and double-stranded
DNA, we are prepared to move beyond the insights of scaling
theory and examine detailed quantitative calculations of dilute
solution equilibrium properties. To begin, we examine the value
of the apparent power-law exponent of the end-to-end distance

ν ≡ R
L

d ln
d ln (20)

as a function of molecular weight. While this can be done with
PERM, the end-to-end distance is also available from the RG
theory of Chen and Noolandi,60 which we parametrize to
match the PERM data (see Supporting Information). The RG
theory is available for only a few equilibrium properties, but it
provides results over a much larger range of contour lengths
than one can obtain with PERM. In addition, the RG theory
has no sampling error and gives a much smoother value of ν.
Figure 4 shows the RG theory results for the power-law

exponent, ν, as a function of L/b. As a reference, results are

shown for several different values of the monomer anisotropy,
w/b, not just ssDNA and dsDNA. At first glance, nothing
appears spectacular about the plot; it agrees very well with
scaling theory. For instance, consider the curve corresponding
to w/b = 3.16 × 10−3. When L/b small, the chain is rodlike, and
around L/b = 1, the exponent falls rapidly, approaching ν = 0.5.
As L/b increases, excluded volume gradually dominates and the
exponent approaches 0.588. Furthermore, the dependence on
w/b of the transition from Gaussian to swollen coils also agrees
with scaling theory. For w/b near 1 (ssDNA), the chain shows
effectively no Gaussian regime, and the chain transitions from
rodlike to swollen coil very quickly. Whereas, when w/b is near
0 (w/b = 3.16 × 10−4), a large Gaussian regime appears and the
transition to a swollen coil is delayed.
In addition, Figure 4 supports the contemporary interpreta-

tion of ssDNA as a flexible chain. The scaling exponent

transitions practically immediately to an excluded volume chain,
and by about 500 bases the exponent is 0.58within 1% of
Flory scaling. (It should be noted that the RG calculations limit
to a value of ν = 0.5886,60 slightly larger than the value of νF
reported by Clisby.41)
However, the asymptotic and continuous transitions between

regimes in Figure 4 are unknown from scaling theory, and these
transitions have a major consequence on the implications of
scaling theory for dsDNA. As the RG calculations show,
double-stranded DNA is an intermediate case, with a monomer
anisotropy w/b ≈ 0.04 and is therefore neither thin nor stiff
enough to exhibit a true Gaussian coil regime. In fact, the
minimum exponent shown in Figure 4 is ν = 0.535 at 8.3
kilobase pairs (kbp), which is about halfway between 0.5 and
νF. Additionally, the transition of dsDNA to a completely
flexible coil is exceptionally broad.17 At 48.5 kbp (λ-DNA), the
exponent (ν = 0.546) is only slightly higher than the minimum;
by the time the chain reaches 1 megabase pair (Mbp), the
exponent has reached 0.572, which is within 3% of νF.
Thus, the continuous and asymptotic nature of the

transitions obfuscates the scaling theory picture of dsDNA.
Accordingly, Figure 4 provides an excellent explanation for the
confusion surrounding the scaling of dsDNA. That is, for most
practical purposes, kbp-length dsDNA is neither “ideal” nor
“real”, but an intermediate case.
Given that the transitions are smooth, one would expect

excluded volume effects to play a non-negligible role for
dsDNA at intermediate contour lengths, well before the flexible
chain limit is reached. This is indeed the case. One informative
way to see this is through the excess free energy per Kuhn
monomer due to excluded volume interactions shown in the
inset of Figure 4 as a function of contour length. Observe that
the excluded volume interactions begin to “turn on” very early,
near L/b ≈ 1, which explains why dsDNA never truly
approaches Gaussian scaling. The free energy curve then
consumes another 3 decades in L/b before it nears the
asymptotic limit, which further accounts for the broad
transition to Flory scaling.
Another consequence of the gradual ramp-up of excluded

volume interactions manifests itself through the form factor,
which is particularly useful for studying the scaling behavior.
The form factor is not only directly available from light
scattering experiments,5 but as the Fourier transform of the
pair-correlation function, it provides information about a variety
of length scales of a given polymer as a function of the wave
vector. In particular, we are interested in the so-called fractal
regime qS≫ 1 where q is the magnitude of the wave vector and
S is the radius of gyration. This regime provides information
related to the chain statistics inside the coil, which can reveal
details about stiffness and self-avoiding behavior.
The expression for the form factor of a Gaussian chain is the

well-known Debye equation

= − − +P q
qS

q S q S( )
2

( )
[exp( ) 1 ]4

2 2 2 2

(21)

Since a wormlike chain includes small length scale effects that
are unaccounted for by the Gaussian chain model, the Debye
expression is not always valid in the fractal regime. There is a
(somewhat complicated) analytical expression for the form
factor of an ideal wormlike chain (see Supporting Information
as well as Spakowitz and Wang87). The basic result mirrors
scaling theory; length scales where qlp ≪ 1 behave like coils and

Figure 4. Power-law exponent of the end-to-end distance of a
semiflexible chain with excluded volume as calculated by results from
renormalization group theory.60 As outlined in section 3.1, ν = 1
corresponds to rodlike behavior, ν = 0.5 to a Gaussian chain, and ν =
0.588 to a swollen chain. Results are shown for five different values of
w/b (from top to bottom): 1.0, 0.217 (ssDNA), 0.043 (dsDNA), 3.16
× 10−3, 3.16 × 10−4, and 0 (no excluded volume). Inset: PERM results
for the excess free energy per Kuhn length due to excluded volume
interactions in a dilute solution of dsDNA.
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agree with eq 21, whereas length scales where qlp ≫ 1 behave
rodlike and disagree with eq 21.
The problem becomes more complicated when we include

the effect of excluded volume. Although a closed-form
expression for the form factor of a wormlike chain with
excluded volume is not available, it can be computed
numerically.17,18,88 Additionally, Sharp and Bloomfield89 have
provided a semiempirical relation (for additional details see
Supporting Information). However, scaling again helps us
interpret the anticipated results. When z ≪ 1, coils should scale
like P(q) ∼ q−2, which agrees with the Debye equation, and
when z ≫ 1, the form factor should scale like q−1/νF.
Figure 5 shows the form factor of several different lengths of

dsDNA in the fractal regime using PERM. In this region in

particular, long chains such as λ-DNA show a deviation from eq
21 due to excluded volume effects. This can be seen by the
gradual transition from a slope of −2 for short chains (which
agrees well with the Debye expression) to a slope of −1/νF for
long chains.
The excluded volume dependence of the form factor is of

particular importance when extracting the radius of gyration or
persistence length from light scattering measurements.8,9,62,89,90

This is supported by Figure 5, which shows that a systematic
bias in the fitting parameters (i.e., the radius of gyration) is
present if eq 21 is used to fit the PERM data for long chains.
We speculate this principle provides an explanation for the
contradiction between the radius of gyration extracted from
classic light scattering studies on T7 DNA (40 kbp),8 which
showed excluded volume effects, and recent fluorescent
correlation spectroscopy measurements of chains up to 97
kbp,7 which did not. Accordingly, we conclude that one must
resort to either simulations or the semiempirical relation of
Sharp and Bloomfield to accurately estimate the size of long
dsDNA.
Thus far we have discussed two principles that emerge from a

quantitative evaluation of the equilibrium properties of DNA
(and semiflexible chains in general). Namely, transitions are
smooth, and asymptotic and excluded volume effects are
important at length scales well below the flexible limit.
Additionally, simulation results show that different size metrics

have quantitatively different transitions. Since scaling theory is
unable to predict such transitions, this has been under-
appreciated in the literature. In fact, when combined with
smooth and broad transitions, metric-dependent transitions
make it very difficult (if not impossible) to define an objective
measure of when a wormlike chain like DNA is “in a regime”.
To see this, consider Figure 6 which depicts the scaling

exponent ν for the size metrics S and R from both PERM and

RG calculations as well as X, which is available from PERM
alone. Because of high-frequency fluctuations in the PERM
data, the derivative ν was determined by a Savitsky−Golay filter
with second-order polynomials. Even with the filter, some low-
frequency noise still exists in the data, causing fluctuations at
large molecular weights. Nevertheless, the PERM results for the
radius of gyration and end-to-end distance agree very well with
the RG theory calculations until very small L, which is caused
by the discretization of the DWLC model.
Figure 6 clearly shows that each metric has a different

minimum and a different approach to the long-chain limit. For
instance, it appears that the end-to-end distance has the deepest
minimum and the longest climb to the asymptotic limit whereas
the mean span has a very shallow minimum. Consequently,
with finite contour lengths, any computation or measurement is
going to exhibit metric dependent behavior. In other words,
measurements with the same molecular weight of dsDNA with
different metrics will result in different scaling exponents.
Furthermore, it appears for some molecular weights, that the
measured scaling exponent ν may be more sensitive to the size
metric than to the contour length.
The dependence of the scaling exponent on the size metric

also illuminates the concept of the thermal blob. Briefly
introduced in section 3.1, the thermal blob can be understood
as a renormalized monomer in a flexible, self-avoiding chain. In
other words, a very long, flexible chain can be viewed as a self-
avoiding walk of thermal blobs5

ξ
Ξ ∼

ν⎛
⎝⎜

⎞
⎠⎟

L
lT T

F

(22)

where Ξ is some size metric (e.g., radius of gyration), L is the
total contour length, and ξT is the size of a blob composed of a

Figure 5. Form factor of dsDNA for qlp < 1 for various contour
lengths (from left to right): 865, 218, 48.5 (λ), 13.8, 3.45, and 865 bp.
Symbols correspond to PERM calculations (with excluded volume),
dashed lines to eq 21, and dotted lines to a semiempirical expression
by Sharp and Bloomfield.89 Solid lines correspond to the form factor
of an ideal wormlike chain with the same stiffness87 (see Supporting
Information).

Figure 6. PERM calculations of dsDNA for the value of the exponent
ν in R ∼ Lv (blue circles), S ∼ Lv (red triangles), and X ∼ Lv (green
diamonds) for dsDNA (w/b = 0.0434) and RG calculations for ν for R
(blue dashed line) and for S (red solid line). The dashed gray lines
correspond to the values of ν = 0.5 (Gaussian) and ν = 0.5876
(swollen).
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subsection, lT, of the contour length of the original chain.
Therefore, to be truly flexible and self-avoiding, the contour
length of a chain must be much greater than the blob length
and its size must be much greater than the blob size.
Since the thermal blob length is a scaling parameter, it is

useful as a qualitative measure only, and consequently, one
should not expect a single value of lT to provide a precise value
of the minimum length-scale for excluded volume interactions.
This enters explicitly in the definition of the thermal blob
length lT in eq 18 where the constant c was left undefined.
Nevertheless, there are several definitions of c which are
commonly encountered in the literature, and we find it useful in
Table 2 to make a comparison of the contour length and size of
the resulting thermal blob obtained using these definitions.

As a first estimate, one may simply set c = 1, which gives lT =
64 bases for ssDNA and lT = 166 kbp for dsDNA. One may also
set the excluded volume parameter z equal to one, which leads
to c = (2π/3)3 and consequently lT = 587 bases for ssDNA and
lT = 1.52 Mbp for dsDNA. A more rigorous definition sets the
thermal blob length to be the contour length of a chain where
the excess free energy from excluded volume is equal to kBT.

5,91

Since PERM directly computes the excess free energy, this
length is immediately available and yields c = 0.102 for dsDNA
(16.8 kbp) and c = 0.458 for ssDNA (45 bases).
Even for a fixed value of c, the thermal blob size, ξT, also

depends on the size metric. Table 2 shows one such example
using F = kBT to pick c. Here, with a fixed contour length of lT
= 16.8 kbp, the radius of gyration of a thermal blob of dsDNA
is 332 nm, but the end-to-end distance is 825 nm. Similarly, for
lT = 45 bases, the radius of gyration of a thermal blob of ssDNA
is 3.9 nm, but the end-to-end distance is 10.2 nm.
While it is not surprising that lT and ξT vary with the choice

of c and size metric, the magnitude of the variation that is
represented in Table 2 is somewhat startling. Given reasonable
but different choices of the constant c in eq 18, we find that the
thermal blob length can vary by nearly 2 orders of magnitude
and encompasses much of the range of molecular weights
available for experiments. The large variation in the thermal
blob lengths in Table 2 further emphasizes their qualitative
nature and cautions that these values should only be considered
rough order of magnitude estimates of the length-scale where
excluded volume and bending effects are approximately equal.
Finally, this variation suggests that a direct computation of

“how many thermal blobs are in a chain” is not meaningful
without a specific definition of c. For instance, using the various
definitions of c found in Table 2, λ-DNA can be reported to
have 2.9 (F = kBT), 0.29 (c = 1), or 0.032 (z = 1) thermal blobs.
In contrast to these estimates, when prefactors and transitions
are fully resolved, we unambiguously show in Figures 4 and 6
that λ-DNA is in the middle of a transition from ideal to Flory
scaling.

3.4. Dynamic Properties of DNA. To this point, the
discussion has focused on the equilibrium properties of DNA
and the role of excluded volume as a wormlike chain
approaches the flexible chain limit. However, the near-
equilibrium diffusion coefficient and other dynamic properties
also play a prominent role in the use of dsDNA as a model
polymer. The effects of solvent mediated interactions between
distal chain segments, called hydrodynamic interactions (HI),
are central to dilute solution DNA dynamics. Hydrodynamic
interactions are in many ways the dynamic counterpart to
excluded volume interactions, and their inclusion introduces a
degree of freedom through the hydrodynamic diameter d.
Despite some similarities, the hydrodynamic diameter is not

in general equal to the effective width w, since chain friction
and excluded volume arise from distinct physical phenomena.
In principle, the hydrodynamic diameter corresponds to the
surface of shear of the molecule and is an intrinsic property of a
polymer chain. However, in our case we have employed a far-
field approximation (eq 13) that neglects near-field lubrication
forces, rendering the hydrodynamic diameter a phenomeno-
logical parameter.
With the addition of a degree of freedom for the

hydrodynamic interactions, the landscape of possible types of
diffusive behavior for a wormlike chain becomes complicated.92

The diffusion coefficient depends not only on configurational
properties (including excluded volume) but also on the
strength of the HI. In other words, there is not a simple one-
to-one correspondence between configuration and diffusive
behavior (even for very flexible chains). The literature identifies
at least three classes of behavior that a wormlike chain can
exhibit, which are shown in Figure 7.
For very short and stiff conformations with HI, the chain

exhibits rodlike diffusion47,51,93

πη
γ= +D

k T
L

L d
3

[ln( / ) ]rod
B

(23)

where η is the solvent viscosity and γ is in general a function of
L/d and equals 2 ln 2 − 1 in the slender-body limit. For more
flexible chains, one can distinguish between the case where HI
is weak (free-draining) and the case where HI is strong
(nondraining).94 As indicated in Figure 7, a free-draining coil
experiences no hydrodynamic screening and interacts fully with
the solvent giving the Rouse diffusion coefficient51

πη
=D

k T
L6Rouse

B

(24)

The nondraining coil has significant HI and is impermeable to
solvent flow. For a flexible chain with no excluded volume
interactions, the diffusion coefficient was derived by Zimm51,94

π η
=D

k T
Lb

8

3 6
Zimm 3

B

(25)

and gives a diffusion coefficient that is inversely proportional to
the coil size.

Table 2. Thermal Blob Length lT and Size ξT of ssDNA and
dsDNA Determined Using Different Choices of Scaling
Constant c and Different Size Metricsa

lT

ssDNA dsDNA

c = 1 64 bases 166 kbp
z = 1 587 bases 1520 kbp
F = kBT 45 bases 16.8 kbp

ξT (F = kBT)

ssDNA dsDNA

end-to-end distance 10.2 nm 825 nm
radius of gyration 3.9 nm 332 nm
mean span 7.3 nm 678 nm

aThe thermal blob length and size for the F = kBT case were computed
using PERM calculations for the excess free energy and the various size
metrics, respectively.
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While it is clear that a wormlike polymer may exhibit any one
of these classes of behavior, a comprehensive qualitative
description of the problem for wormlike chains remains elusive.
Indeed, the inclusion of the effects of flexibility, excluded
volume, and hydrodynamic interactions has proven to be an
exceedingly difficult task,12,47,92,95,96 and accordingly, no
complete analytical theory exists to date. However, several
important pieces have been developed since the work on
flexible polymers by Zimm,94 some of which are noteworthy.
First, Oono and Kohmoto51,95 used a dynamic renormaliza-

tion group theory to find the diffusivity of a flexible polymer
chain with both EV and HI. In agreement with the result by
Zimm, the diffusivity

η
=D

k T
S

1
12.067Oono

B

(26)

suggests that the long-chain limit is characterized by non-
draining coils where the dynamics are governed by conforma-
tional effects only (the hydrodynamic diameter is conspicuously
absent).
However, further work by Douglas and Freed92 displays a

complicated picture for finite-length chains where excluded
volume effects (which swell the coil) act in competition with
hydrodynamic interactions which decay with decreasing chain
density. This competition can lead to partial-draining, an
intermediate state between the free-draining and nondraining
limits pictured in Figure 7, where the configurational properties
of the chain are insufficient to completely describe the
diffusivity. Thus, even very long (but finite) chains may not
obey eq 26 but will include a dependence on the hydrodynamic
diameter.
In an orthogonal attempt, Yamakawa and Fujii47 computed

the diffusivity of an ideal wormlike chain, which accounts for
chain stiffness and HI but neglected the effects of excluded
volume (see Supporting Information). The wormlike chain
diffusivity shows a gradual crossover from rodlike behavior (eq
23) to Zimm diffusion (eq 25) as the contour length increases,
which in turn means a gradual decrease in the effect of the

hydrodynamic diameter. Given that our DWLC model
incorporates all of the effects listed above, we anticipate that
the diffusion of DNA will include effects from each of these
previous works.
To correctly capture the dynamics, we need an accurate

estimate for the hydrodynamic radius d of ssDNA and dsDNA.
Literature values for the hydrodynamic diameter of dsDNA
have been obtained by a variety of experimental methods and
typical values vary between 2 and 3 nm.11,47,76−80,82−85,97−107

Less is known about the hydrodynamic radius of ssDNA. The
diffusivity of short ssDNA chains can be sequence dependent
due to base-pair interactions, thus requiring thermal and
chemical denaturing agents,73 which makes generic diffusivity
studies difficult.1 Because of a lack of data, the hydrodynamic
radius is uncertain, and we simply assume that d = w.
To get a more precise value of d for dsDNA, Figure 8 shows

a meta-analysis of several measurements of the diffusivity of
dsDNA in the literature.11,76−80,82−85,97−104 Here, the Kirk-

Figure 7. Schematic of diffusive behaviors of wormlike chains. Rodlike
diffusion dominates for very short, stiff chains. Polymer coils can
exhibit either free-draining (weak HI) or nondraining (strong HI)
behavior. Partial draining behavior is also possible for chains with
relatively open structures. In this case, the polymer conformation is
not sufficient to describe the diffusive behavior of the chain since the
strength of the HI (i.e., the hydrodynamic radius) can vary
independently.

Figure 8. Parametrization of the hydrodynamic diameter for the
DWLC. (A) Curves (black, blue, red) show the relative diffusivity of a
CWLC without excluded volume47 at different values of b/d. The
touching bead DWLC model (symbols) shows excellent agreement
with the CWLC chain (curves). (B) Experimental data for the
diffusivity from dynamic light scattering (filled green trian-
gles),82−84,97−101 sedimentation (filled green circles),76−80,85,102,103

and single molecule methods (open green triangles).11,104 The dsDNA
data fits the DWLC simulation (now with excluded volume
interactions) for b/d = 36 or d = 2.9 nm. Notice that since the
diffusivity is scaled by the Zimm diffusion (ideal chain diffusion), the
asymptotic value does not approach 1. Additionally, it appears that the
single molecule data give poorer agreement with the simulation data,
presumably due to the impact of intercalating dyes.
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wood diffusivity for dsDNA is plotted alongside the
experimental data as a function of molecular weight, which is
rescaled by the Zimm diffusion given in eq 25. Note that eq 25
is not defined in terms of the radius of gyration, S, of the
polymer, but rather in terms of the contour length, L, and Kuhn
length, b. This allows an unambiguous comparison to a larger
experimental data set since there is only a small overlap
between the sources of experimental data for the diffusivity
(Figure 8) and the radius of gyration (Figure 3). The
hydrodynamic radius is extracted by comparing the exper-
imental data to the theory of Yamakawa and Fujii47 for the
diffusion of a wormlike chain without excluded volume. This is
justified since the diffusivity is most sensitive to the
hydrodynamic radius at low L where hydrodynamic screening
and excluded volume interactions are negligible. As seen in
Figure 8, the value of 2.9 nm (which agrees with an analysis by
Lu et al.106) fits the low molecular weight data exceptionally
well.
Figure 8B also shows that at large contour length the PERM

diffusivity calculations give excellent agreement with values of
the diffusion obtained from dynamic light scattering (DLS) and
sedimentation experiments. The agreement with the exper-
imental data at low molecular weight is expected, since it was
used to obtain the hydrodynamic radius. However, the
agreement with the DLS and sedimentation data persists for
large molecular weights, when excluded volume effects cause
the chain to swell. This suggests that the both the size and
degree of hydrodynamic screening of the dsDNA coil are well
described by the DWLC model.
In contrast, the DWLC model does not agree well with single

molecule diffusivity measurements from fluorescence micros-
copy,11,104 which we hypothesize is due to the presence of
intercalating dyes. It is unclear how the width, persistence
length, and hydrodynamic radius of DNA change with
intercalating dyes,15,16 making it difficult to computationally
replicate their effect on diffusivity. Since the contour length of
λ-DNA is observed to increase from 16.3 μm to about 21 μm, a
common supposition is that all properties increase by a
constant factor, leaving the ratios between properties constant.
This proposition is easily tested by our model, and assuming an
increase of 28%, we find that the change in diffusivity is
insufficient to explain the disagreement (see Supporting
Information). Instead, we conclude that in addition to changing
the contour length, fluorescent dyes are likely to alter the ratios
b/w and d/w. Indeed, this appears reasonable since the
positively charged dyes lead to a decrease in the effective charge
of the DNA,108 which may decrease the effective width.
Moving forward, we would like to examine the behavior of

ssDNA and dsDNA as the diffusivity approaches the long-chain
limit. Notice that if we introduce the definition of the chain
hydrodynamic radius

πη
≡R

k T
D6H

B

(27)

The ratio of the radius of gyration to the hydrodynamic radius
becomes95

=S
R

D
D

1.562
H Oono (28)

In the long-chain limit, D → DOono and the ratio is predicted to
converge to a universal value of 1.562.95

Figure 9A shows the ratio S/RH as a function of molecular
weight. As expected, both curves appear to approach a constant

value in the limit that L → ∞, but the value appears slightly
larger than predicted by the renormalization group theory. (A
least-squares fit to the ssDNA data for L > 2000 bases gives S/
RH = 1.58902(2).) For ssDNA, the story is much the same as it
was for static properties; within 100 bases, the diffusion appears
to have reached its long-chain limit. Also similar to the static
size measures, it takes an exceptionally long dsDNA chain to
reach the flexible coil limit. According to Figure 9A, dsDNA is
within about 1% of the value predicted by Oono and
Kohmoto95 by the terminal molecular weight of 865 kbp.
The claim that dsDNA converges very slowly to its long-

chain value is at odds with earlier experimental work which
asserted that λ-DNA is fully swollen and nondraining.11,104

However, the evidence for nondraining coils is based upon the
measured scaling exponent (ν = 0.61), which appears to be
relatively unresponsive to the draining behavior of dsDNA (see
Supporting Information). Experimental work by Schroeder et
al.10,109 made more sensitive measures of the hydrodynamic
behavior of dsDNA by studying the phenomena of con-

Figure 9. (A) PERM results for the ratio of the radius of gyration S to
the hydrodynamic radius RH as a function of the molecular weight for
both ssDNA (open red triangles) and dsDNA (open blue circles). λ-
DNA and T4-DNA are shown for reference (arrow, open orange
squares). The horizontal dashed line corresponds to S/RH = 1.562. (B)
The diffusion coefficient from PERM, rescaled by eq 25, as a function
of the number of base pairs of DNA. Double-stranded DNA is shown
to transition from rodlike behavior (green dashed line) to nondraining
behavior (purple dotted line) over several orders of magnitude in
molecular weight. The diffusion coefficient without excluded volume
(closed blue circles) is shown for reference.
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formation hysteresis. Schroeder et al. found that significant
hydrodynamic effects were observed for chains near 1.3 Mbp
and that it took a nearly 3 Mbp polymer to achieve the sought-
after hysteresis. While these experiments did not search for the
onset of HI interactions per se, the effects of HI are observed in
chains with molecular weights within an order of magnitude of
those predicted by our calculations. Subsequently, their
observations support our conclusion that extremely long chains
are needed to achieve nondraining behavior.
The slow convergence to nondraining behavior also has

practical implications for the measurement of the radius of
gyration in fluorescence microscopy experiments. It is common
practice to use fluorescence microscopy measurements of the
diffusivity to estimate the radius of gyration by assuming that
the D/DOono = 1 in eq 28.11,104 As shown by Figure 9A, there is
always some systematic bias made by this inference. However,
the bias decreases as molecular weight increases, making the
assumption justified at very large molecular weights. Assuming
that the constant 1.562 is exact (which is questionable), this
method underestimates the radius of gyration of λ-DNA by
about 9%.
The extremely large molecular weights required to reach the

nondraining limit also bring to mind the previous discussion
surrounding partial draining. To further understand the partial
draining of dsDNA, consider Figure 9B, which shows the
normalized Kirkwood diffusivity as a function of molecular
weight. Here the diffusivity is shown to cross over from rodlike
diffusion (eq 23) at low molecular weights to nondraining
diffusion (eq 26) at large molecular weights. According to
Figure 9B, dsDNA less than a few hundred base pairs is well
approximated by rodlike diffusion (to within a constant factor).
This seems reasonable, given that a chain of 156 bp is about
one persistence length. As the contour length increases, the
diffusivity is observed to asymptotically approach the non-
draining limit. Consistent with the previous analysis, this
asymptotic approach is slow, and λ and T4 DNA give
diffusivities that are respectively 9% and 4% greater than the
asymptotic limit. We conclude therefore, that kilobase pair
length dsDNA is partially draining.
While partial draining has been a subject of discussion since

at least 1979 (couched in terms of dynamic scaling3), it has
become a topic of recent interest in both free solution12,110 and
confinement.13,45,111 Interestingly, Mansfield and Douglas12

suggest that transport properties are especially slow to converge
to their long-chain values. Their work, which employs several
different polymer models, suggests that a slow transition to
nondraining behavior is not unique to DNA. This trend is also
seen in recent work by Dai et al.13 on the diffusion of DNA in
slits, which posits that the local pair correlation function of a
polymer has a long-ranged impact on coil dynamics.
Unfortunately, due to noise in the present data, it is difficult
to tell whether or not the diffusion coefficient converges more
slowly than the radius of gyration or other static measures.

4. CONCLUSION
Using a powerful Monte Carlo method, PERM, we have
elucidated the long-chain behavior of both single-stranded and
double-stranded DNA. Clearly, single-stranded DNA is much
more flexible, and several hundred bases are sufficient to
guarantee both complete swelling and nondraining behavior. By
contrast, double-stranded DNA is much slower to reach
flexible-chain behavior. It appears that dsDNA much less than
1 Mbp should not be considered either completely swollen or

fully nondraining. One immediate consequence of this result
concerns the practice of inferring the radius of gyration of
dsDNA from the diffusivity, which we find leads to a systematic
bias (underestimation) in the measurement of the radius of
gyration.
In addition, we find that shorter chains (e.g., λ-DNA), while

not completely swollen, are nevertheless influenced by excluded
volume and hydrodynamic interactions. This is complicated by
the fact that the transitions between universal regimes are
continuous and the approach is asymptotic and metric specific.
Combined together, these observations suggest that it is
inappropriate to consider λ-DNA as an “ideal” chain and
neglect EV and HI. In some sense, λ-DNA is possibly the worst
model polymer since it is clearly in a transition.
On the upside, even though the excluded volume and

hydrodynamic interactions are significant, the languid transition
toward universal behavior also indicates that the measured
properties of dsDNA do not change rapidly as a function of
contour length. In other words, practical estimates of the radius
of gyration and diffusion coefficient are relatively unaffected by
the change in scaling exponent as long as the change in
molecular weight is not too great over the range of the estimate.
Accordingly, Brownian dynamics studies that do not account
for HI or EV explicitly can in principle reproduce properties
quantitatively by careful parametrization. However, such a
parametrization will only be valid for a small range of contour
lengths, and the properties obtained from subsequent
simulations should be limited to this range. Nevertheless,
prudence is warranted in interpreting such simulations, since
the correct physics is not inherently incorporated.
Certainly, one troubling implication of our results concerns

the lack of agreement with data from fluorescence microscopy
experiments. We have attempted to justify this by the presence
of fluorescent dyes, which alter the backbone of dsDNA. We
believe that more work is needed to account for the
disagreement and propose that the effects of intercalating
dyes on dsDNA be studied in greater detail. In addition to this,
we have not considered here the effect of changing ionic
strength, which should be straightforward with minor
modifications to the DWLC model.
In conclusion, we find it difficult to give a straightforward

answer to the question: Is DNA a good model polymer? On the
one hand, dsDNA continues to be widely used due to its
extraordinarily useful experimental properties. Among others,
these include exquisite contour length selectivity, near
monodisperse solutions, direct visualization techniques, ideal
size relative to nanofabricated devices, and end-attachment
chemistry. On the other hand, if we narrow our scope to strictly
universal behavior, megabase length chains appear to be
necessary. Such long contour lengths give rise to experimental
difficulties including chain cleavage and knotting, and at the
present moment, it appears that such large chains are atypical in
polymer dynamics experiments. Given this, we recommend
caution in the interpretation of dynamic data obtained by
shorter dsDNA.
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