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ABSTRACT: Brownian dynamics simulations of bead—spring chains were used to study the relaxation of
an initially stretched DNA molecule in slitlike confinement. Taking into account excluded volume effects but
neglecting hydrodynamic interactions, the simulations are able to reproduce the two relaxation times in the
linear force regime that our group has experimentally studied and recently reported. The relaxation dynamics
of the transverse dimensions are extensively studied, and a theoretical model is developed to describe them.
The interplay between the longitudinal and the transverse dynamics is investigated and used to corroborate a
physical model previously proposed to describe polymer relaxation in a slit.

1. Introduction

1.1. Motivation. The emergence of micro- and nanofluidic
devices has led to many new and exciting developments in the
field of sin%le-molecule manipulations. For example, DNA
separations' and genomic mapping>* have benefited greatly
from the precise control offered by so-called “lab-on-a-chip”
devices. More generally, these microscopic systems have
provided an important new ?latform to study fundamental
problems in polymer physics.” '

One recent problem that has received a considerable amount
of attention is the relaxation dynamics of DNA in different
types of confined environments.*'*'>!3 This is particularly
important for many single-molecule mapping devices that rely
upon collisions'* and field gradients®'* to deform DNA
for subsequent analysis. This deformation process is highly
dependent upon the balance between the stretching rate of the
device and the relaxation of the polymer. Therefore, under-
standing how confinement affects the relaxation process of
confined polymers is critical both to optimizing current tech-
nologies and to developing novel device designs.

Additionally, many important biological molecules are
polymeric in nature (e.g., DNA, actin, and microtubules,
although only DNA is typically flexible enough and of suffi-
cient length to observe the sort of relaxation processes we
shall study), and most cellular environments are highly con-
fined. For example, 3 m of human DNA is packed into a
nucleus of around 5 um in diameter. Study of the dynamics of
confined DNA molecules is critical to understanding how the
cell stores, accesses, and replicates its genetic information. In
vivo relaxation of chromosomal DNA has even been used to
probe the intracellular environment.">

1.2. Past Work. Over the last two decades, the relaxation
of unconfined polymers has been studied comgrehensively
both experimentally® and via simulations.'®”'® They have
confirmed the theoretical prediction that unconfined single
molecule relaxation is well-described by a single longest
relaxation time 7 over all extensions within the chain’s linear
force regime'® (from equilibrium to ~30% fractional exten-
sionS). However, relaxation in slitlike confinement has been
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studied much less extensively, with several studies offering
contradictory findings.®!*2°72* It is only recently that these
results have begun to be reconciled by suggesting the
existence of two relaxation times in the linear force regime.

The dynamics of polymers in slitlike confinement were
first treated theoretically by Brochard®* using blob theory.
The first direct observation of such confined relaxation, by
Bakajin and co-workers,® was of molecules relaxing after
having been highly stretched by collisions with microfabricated
posts. The results produced scalings for the relaxation time that
were more in line with the unconfined case.'® Nearly a decade
later, new experiments from our group obtained the confined
relaxation time by measuring the rotational autocorrelation
function of chains at equilibrium."® This study found good
agreement with the blob theory predictions, contradicting the
previous work of Bakajin et al.® Interestingly, several simulation
studies found evidence to support the findings of both of the
aforementioned experimental works. Simulating the relaxation
of initially stretched chains®*?* reproduced the un-confined-like
results of Bakajin et al..® while Monte Carlo simulations of
chains at equilibrium®>*' corroborated the blob theory scalings
seen by our group.'

Although seemingly contradictory, taken together these
studies hint at the cause of the discrepancies. All the work
where chains were perturbed from equilibrium agree with
each other and demonstrate un-confined-like behavior. On
the other hand, agreement was also seen among the studies of
chains at equilibrium which exhibited blob scalings. To
explain this, our group suggested that two distinct relaxation
times existed in the linear force regime.'® When the molecule
is stretched, the width of the chain in the transverse dimen-
sion is smaller that the height of the channel, and the con-
fining walls do not significantly affect the conformation
of the molecule. Therefore, the chain is governed by an
un-confined-like relaxation time 7;. However, at or near equi-
librium, the polymer feels the full steric effects of the con-
fining walls, and its dynamics slow as a consequence. A
second relaxation time 7y; emerges which is longer than 7y and
which follows the predictions of blob theory.

Our group has shown that both of these relaxation times
can be seen and measured by observing the longitudinal
relaxation of initially stretched molecules over time scales
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long enough for the chain to reach equilibrium.'®? A physi-
cal model based upon blob theory has also been proposed
that assumes this extension-dependence of the relaxation
time is due entirely to excluded volume effects (EV) and not
hydrodynamic interactions (HI). Although there is some
experimental evidence that this model is correct, experiments
are greatly hampered by the fact that the dynamics cannot be
accurately measured on small time and length scales, espe-
cially in the dimension transverse to the plane of the channel.

1.3. Problem Statement. In this paper, we study the re-
laxation of a bead—spring chain in slitlike confinement from
a stretched configuration that is initially straight using a
combination of simulations and theory. Because simulations
allow us to set which physics will be included, we can con-
clusively determine if excluded volume effects are sufficient
to reproduce the qualitative features observed in experiments
(e.g., two relaxation times). In addition, simulations can
probe dynamics of the relaxation process on length and time
scales that are inaccessible to experiments, particularly in the
confined dimension. This allows us to consider the interplay
between the dynamics in the direction of initial stretch and
the confined dimension, enabling us to assess the validity of
the current physical model for confined relaxation and its
underlying assumptions.

2. Background

We now describe the theory of polymer relaxation both un-
confined and in slitlike confinement. We start by considering the
equilibrium size of a polymer chain and the basics of blob theory.
We then use these results to develop scalings for the relaxation
times of these chains. We also explain the current physical model
of relaxation in slitlike confinement and some of its consequences.

In particular, we concern ourselves with the expected theore-
tical scalings based upon the physics included in our simulations.
Therefore, we take EV into account, but we neglect the effects of
HI. The chains are assumed to be free-draining so that

£ = Nklk 1)

where ¢ and (i are the chain and Kuhn length drag coefficients,
respectively. Additionally, HI with the channel walls is neglected,
and changes in the chain diffusivity due to confinement are
ignored. Intramolecular HI decreases the relaxation time and
affects the scaling of the relaxation time with chain length for an
unconfined chain, while HI with channel walls increases the
relaxation time and affects its scaling with channel height. How-
ever, we are unconcerned with these physics in this work and wish
to isolate the effects of EV on the relaxation time in confinement.

2.1. Equilibrium Chain Size. The polymer is modeled as a
chain composed of Nx Kuhn steps each of length bx. When
unconfined, the equilibrium radius of gyration R, of the
chain can be determined from the statistics of random walks

R
20 N " (2)
bk

where v3p is the scaling exponent for the equilibrium chain
size in a 3D environment. If the chain is ideal and intramo-
lecular excluded volume effects are neglected, then v;p = 1/
2. The inclusion of EV causes the chain to swell and increases
the scaling exponent to vs3p ~ 3/5.

In slitlike confinement, the polymer is squashed like a
pancake, and due to EV, it swells in size even further. Blob
theory is often used to describe confined polymers.?® In this
framework, the polymer is represented by a string of N/g
blobs, where g is the number of Kuhn segments per blob
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Figure 1. A cartoon depicting the physical model of confined relaxa-
tion based upon tension-blobs and how it relates to the longitudinal
relaxation function G(¢) = (X(1)*) — (X, eqz), where X(7) is the fractional
extension in the longitudinal direction and X is its average equilibrium
value. Above a certain crossover extension X, the chain is not sterically
confined and relaxes as if it were unconfined. Below X, the confining
walls become important, and the chain relaxes by rearranging its self-
avoiding blobs.

(see Figure 1). The size of a blob is set by the height of the
channel, A.

On length scales smaller than / (i.e., within a blob), the
polymer retains its un-confined-like behavior. So using eq 2,
we can say that 1 ~ g"*?bk, and upon rearrangement, the
number of Kuhn segments g in a blob is given by

e~ (o) o 3)

On scales larger than 4, the blobs, which repel each other
due to EV, obey the scalings of a 2D self-avoiding walk
(2D-SAW). So in slitlike confinement, the size of the chain is
given by

R Ne\ "2 h 1—vop/v3p
Te0 L (ZK) T N [ (4)
bx g bx bx

where v,p = 3/4.

2.2. Relaxation Times. 2.2.]1. Unconfined. First, we con-
sider the relaxation of an unconfined linear polymer. Scal-
ings for the longest relaxation time of the chain can be
derived by considering a force balance between the elastic
spring force Fg of the chain and the drag force Fp that
opposes it. The force required to stretch a chain away from
its equilibrium size Ry by an amount OR is given by

Fg~ ——2__ R (5)

where kg is the Boltzmann constant and 7'is the temperature.
Note that, from a scaling perspective, Ry can be any measure
of the equilibrium size of the coil, including the radius of
gyration R, or the end-to-end distance R o. The drag force
felt by the chain is

Fp~ —ER (6)

where R is the rate of change of the size of the chain.
Balancing these forces gives the longest relaxation time 7y
for the chain

_OR _ &Ry’
R kgT

(7)
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Introducing the results from eqs 1 and 2 and noting that
Cx = kpT/Dg, we arrive at

11 N 1+2v3p
bK2 / DK NK (8)
where Dy is the diffusivity of a Kuhn segment.

2.2.2. Slitlike Confinement. When a molecule in a slit is
stretched strongly enough, it is not sterically confined by the
walls of the channel (see Figure 1). Therefore, the initial
relaxation process is unaffected by the presence of the confin-
ing walls, and the molecule relaxes with the un-confined-like
time constant 7 given by eq 8. However, as the molecule
relaxes, its lateral dimensions grow in size, and the confining
effects of the wall become significant. This slows down the
relaxation process, and a new, longer relaxation time 7y
emerges that governs the remaining relaxation to equilibrium.

A simple physical model based upon a quasi-steady tension-
blob framework was proposed by Balducci and co-workers'”
to describe the transition between these two relaxation times.
The stretched molecule can be represented by a string of Ny /g
tension-blobs?’ of size £, where g is again the number of Kuhn
segments per blob. Unconfined scalings hold within each blob
s0 g ~ (&/bk)""*P. The fractional extension of the chain X is
then given by X = &/gby ~ (&/bx)" ™"/, If the crossover from
71 to 711 occurs when the tension-blob size reaches the height of
the channel (i.e., & = h), then the critical fractional extension
X, at which this crossover occurs is given by

Xe~ (hfbi)' 1 (9)

Above X, the molecule relaxes by growing the size of the
tension blobs. But below X, tension-blob growth is restricted
by the confining walls, and the molecule relaxes by rearran-
ging the blobs. An interesting consequence of this model is
that X. is independent of chain length.

To determine 71, we employ eq 7 which is valid near
equilibrium. We simply use the blob scalings for R,  as given
in eq 4. At or near equilibrium, the relaxation time of a
confined molecule is given by

TH Nk 1+2v9p h A ) 1
bK /DK K

3. Simulation Method

We simulated the relaxation of DNA using a model developed
by Kim and Doyle.”® This method is based upon Brownian
dynamics and is well-suited for studying the dynamics of DNA
in microfludic devices. A brief description of the numerical model
is presented here.

3.1. Brownian Dynamics. DNA molecules are modeled as
chains of N, beads connected by Ny = (N, — 1) springs. The
equation of motion for the position r; of the ith bead is

R N LACRRHORS FORS FA0] BCEY

where &, is the bead drag coefficient, F? is the Brownian force,

F’ is the total spring force felt by the bead, F-" is the 1ntracham

excluded volume force due to nearby beads, and F£¥-**! repre-

sents the interaction of the bead with the wall of the device.
We nondimensionalize the variables as follows:

roo_ !
I L2/ Dy,

P

(12)

where r is position, / is the maximum extension of a single spring
(I;=L/N,), tistime, and Dy, = kgT/Cy is the diffusivity of a bead.
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We nondimensionalize the forces F as follows:

. F
F(¥) = 13
0= L (13)
This leads to the nondimensional form of eq 11:
dr; B S ~E ~EV, wall
— = F, +F, F +F, (14)
dt
The nondimensional Brownian force is given by:
B 24
F' = /= (ry); 15
P =5 ) (15)

where Af is the dimensionless time step and (ry); are uniform
random numbers such that each component (r,)} € [—1/2, 1/2],
where j denotes the coordinate x, y, or z. The net nondimen-
sional spring force on the ith bead is

AS

fion i=1

~S AS AS .

F, = fiivi T o 1<i<Np (16)
AS .
iy Ny =10 i =Ny

where the spring forcef,, is given by a spring law developed by
Underhill and Doyle® to correctly reproduce the Marko-Siggia
spring force law for a wormlike chain®® at varying degrees of
coarse-graining:*'

. 1 7 ‘
S o= - L C+BA—=F2 )\ kh—F (AT
L {(1;3? )P ou(1-7) ( ”’)] Y

where v is the number of persistence lengths represented by each
sprmg W =L/Ap), ¥ represents the distance between #; and 7 T

=3/32—-3/4v— 6/v and B = (13/32+0.8172/v — 14 79/v%)/
(1 — 4.225/v + 4.87/v°). The intrachain excluded volume force
FEY is modeled with the soft potential used by Jendrejack et al.>

Ny 9

~EV ~ev 3 ’ 9
e _i:%i:#f)gv ’p(m) UMQXP{ 4w2 }r/’ 18)

where 7P = y*VP/[3 is the dimensionless form of the excluded
volume parameter v"*P.

The interactions between a bead and the walls represented by
FEVYal are resolved using a modified Heyes—Melrose algo-
rithm.?®3 Whenever a bead moves outside the domain during a
time step, it is moved to the nearest point on the domain
boundary before commencing the next time step:

AR = ApH(Ap;) (19)
where AF™ is the displacement vector due to the Heyes—
Melrose algorithm, Ap; is the vector pointing from the bead
outside the domain to the nearest boundary point, and the
Heaviside step function H(Ap,) restricts the application of the
algorithm to only the beads that have penetrated the domain
boundaries.

3.2. Parameters. Many different lengths of DNA were simu-
lated in this study, ranging from Ny = 10 to Ny = 300. The chosen
discretization of DNA was v = 5.571, which, assuming a persis-
tence length of A4, = 53 nm, corresponds to DNA contour lengths
of L ~ 3-90 /an The excluded volume parameter was set to
P = 3.71 x 10~* um? to accurately reproduce the unconfined
radius of gyration of a T4-DNA molecule (Ny = 254 and L =
75 um).
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Figure 2. Plot of the 2D, in-plane radius of gyration R, > of chains at
equilibrium in a 300 nm channel vs the chain length N,. The predicted
blob theory scaling R, >p ~ N is also shown.

For the relaxation of initially extended molecules, the chains
were uniformly stretched to the desired fractional extension
(typically X = 75%) along the x-direction and placed in the cen-
ter of a 300 nm slit where the z-direction was transverse to the
plane of the channel. The chains were then allowed to relax, and
their configurations were saved for later analysis. Two different
time steps were used. To obtain the short time behavior, a time
step of A7 = 2 x 10> was employed, and the chains were observed
for a time of & 7y;. For the long time behavior, a time step of A7 =
5 x 10™*was used, and the chains run for ~107;. For all measure-
ments, at least 100 individual chains were simulated and averaged
together for each chain length.

The equilibrium properties were obtained by initially placing
the chains in the channel in a Gaussian manner and allowing
them to equilibrate for ~507;;. Configurations were then saved
at specified time intervals for subsequent analysis. At least ~3007y;
worth of data was obtained.

4. Results

Before we begin analyzing the relaxation dynamics of confined
chains, we would like to ascertain that we are using chains of
adequate length for blob theory scalings to be valid. To do this,
we look at the 2D, in-plane radius of gyration R, >y, of the chains
atequilibrium. These results are shown in Figure 2, along with the
predicted scaling of R,-p ~ N2 1t is clear that blob theory
scalings are valid for chains with Ny > 75, and in our future
analysis, we often only present results for these chain lengths.

In our study of the relaxation dynamics of confined chains, we
first consider experimentally accessible measurables such as the
relaxation of the longitudinal stretch at long times both at equi-
librium and when initially perturbed away from equilibrium. This
allows us to compare our findings to experimental results and
validate our simulation model. We then look at the relaxation
process in the transverse dimensions and attempt to build simple
models based on Rouse-like chains to describe the observed
dynamics. Finally, we consider how adding in additional physics,
like intramolecular excluded volume and nonlinear springs, affects
the relaxation dynamics.

4.1. Experimental Measurables. Typical measurables that
are experimentally accessible are usually restricted to those
involving the in-plane stretch of the molecule’s major axis.
We start by looking at the scaled longitudinal relaxation
function G (1) = (X(1)*) — (X, eqz), where X(¢) is the fractional
extension in the longitudinal direction and X is its average
equilibrium value. Figure 3A shows a characteristic curve for
G,(f) when the number of springs is Ny = 164. As seen in
experiments, there are two distinct regions that are well-
approximated by a single decaying exponential, each with a
different time constant. The first region, with time constant
71, occurs at fractional extensions near X' = 30% and repre-
sents the un-confined-like relaxation process where the chain
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Figure 3. (A) Characteristic plot of the scaled longitudinal relaxation
function G(1) = (X(¢)*) — (X, sqz) for chain length Ny = 164. The fittings
for the two linear regions are also shown along with their respective time
constants (7y and 7y;) and the predicted crossover extension Xc. (B) Plot
of the equilibrium conformational autocorrelation function Cy(d7)
vs the lag time O¢ (see eq 20) for several chain lengths (Ng =75, 164,
254, 300). The linear fittings for each curve are also shown. (C) Plot of
various measured relaxation times vs chain length N. Included are the
un-confined-like relaxation time 7j, the near-equilibrium relaxation
time 75, and the conformational relaxation time z.. Also shown are
the predicted scalings 7y ~ NZ%and 7y ~ 7. ~ N2,

is not sterically constrained. The second region occurs very
near the chain’s equilibrium size and, in agreement with
experiments, has a longer time constant 7y than the un-
confined-like relaxation time (z;; > 7). This second linear
relaxation process is governed by the rearrangement of the
blobs that compose the sterically confined chain. Finally,
these two linear relaxation periods are connected by a non-
linear transition region.

In Figure 3C, we have plotted both 7y and 777 as a function
of chain length along with their predicted blob theory scal-
ings. The simulation results for 7y clearly follow the pre-
dicted scaling of 711 ~ N2, while the results for 7; appear to
fall slightly below the theoretical scaling of 7; ~ N>2. The
apparent discrepancy between the simulations and theory for
71 is not unexpected and can be explained by noting that
when eq 18 is used to account for EV, moderately extended
chains are only mildly affected by the EV force. Because the
un-confined-like relaxation time 7y is seen near fractional
extensions of X ~ 30%, EV effects are not as significant as
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Figure 4. Plot of the computed crossover time ¢, Emgg vs chain length N,.
Also shown is the predicted scaling 705 ~ N3

they are near the equilibrium extension. Therefore, the ob-
served scaling for 77 falls somewhere between the ideal chain
scaling of ~N,> and the real chain scaling of ~N,*?

Experiments have shown that relaxation processes mea-
sured when a confined molecule is at equilibrium should cor-
respond to the second relaxation region where steric con-
finement is important. To confirm that our simulations can
reproduce this finding, we considered the conformational
relaxation time of a chain at equilibrium z.. The conforma-
tional autocorrelation function is defined as

Ce(01) = (Ree()* Ree(t + 01))/ Rec,0”

where R..(7) is the 2D, in-plane end-to-end vector of the
chain, R is the equilibrium in-plane end-to-end distance,
and O7 is the lag time. The conformational autocorrelation
functions for several different chain lengths are shown in
Figure 3B along with their respective linear fittings, and the
measured conformational relaxation times 7. are plotted in
Figure 3C. 7. is very near the Value of 7y and follows the same
predicted scaling 7. ~ 7y ~ N>, in agreement with experi-
ments.

We have clearly shown that our simulation model can
reproduce the qualitative features seen in experiments. These
include two distinct linear relaxation times for G(f) with
711 > 11, the proper scaling for 7y with chain length, very near
the predicted scaling for 7y, and finally that near-equilibrium
relaxation processes are associated with 7y, as demonstrated
by the fact that 7. ~ 7q;.

One final experimentally accessible measurement we ob-
tained is the time 7., at which the crossover extension
occurs. This is defined as the time where the two linear
fittings for G (7) intersect (see Figure 3A). Although 7. oss
can be found from experiments, to date this analysis has not
been performed. 7...ss i @ measure of the when the transition
between un-confined-like relaxation and near-equilibrium,
sterically confined relaxation occurs. Based upon the current
mechanisitic model of confined relaxation, the approach to
this transition should be driven by the un-confined-like
relaxation process leading up to it. Therefore, it is expected
that Zeross should scale as feross ~ 71 ~ No&2. Indeed, this is
clearly seen in Figure 4.

4.2. Transverse Dynamics. We now turn to the relaxation
dynamics in the two transverse directions (y and z), which
cannot currently be determined by experiments. Studying the
of the out-of-plane behavior of these chains is particularly
important because it can shed light on the physics of relaxa-
tion in confinement and help assess the validity of the current
physical model.

4.2.1. General Features and Characteristics. We measured
the 1D radius of gyration squared Rng in the direction of
each of the three coordinates (i can be either x, y, or z).

(20)
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Figure 5. (A) Characteristic plot of the 1D radius of gyration squared
in all three directions for a confined chain (Ny = 75 and 2 = 300 nm).
(B) Plot of the 1D radius of gyration squared in all three directions for a
single chain length (N; = 75) both unconfined and in a 300 nm channel.
The observed power law regions and their approximate scalings with
time are also shown. (C) Plot of the 1D radius of gyration squared in all
three directions for several chain lengths in a 300 nm channel. Also
shown are the predicted values for each of the power law regimes as
determined from the Hookean, Rouse-like theory given in eq 30.

Characteristic relaxation curves for all R, 7 are shown in
Figure 5A for a confined chain. In the longltudmal or
x-direction, Rg - remains fairly constant and slowly relaxes
to its equlhbrlum value in an exponential manner only at
long times. The behavior for the transverse directions is richer.
Ry yz and Rg,zz, initially, are equal and grow together. However,
at some point, the size of the chain in the confined dimension
Rg s restncted by the presence of the walls, and it peels off
from the R, % curve and quickly plateaus at its equilibrium
value. On the other hand, the unconfined, transverse direction
R, yz continues to grow even after R, ? has plateaued, and it
finally reaches the same equlhbrlum value as the longitudinal
direction so that at long times Rg = Rg e

In Figure 5B, characteristic curves for unconfined relaxa-
tion have been added for comparison to the curves shown in
Flgure SA for conﬁned relaxation. In the unconfined case,
Rg ,~ and Rgz are always equivalent, all the way to their
equilibrium. Additionally, at equilibrium all three dlrectlons
have the same value so that R, > = Ry,” = R,.” = Rq 0 ’/3.
Itis clear that, at short times, relaxation in all directions is the
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same in both the confined and the unconfined cases. At
intermediate times, Rg,_.2 plateaus for the confined case, while
in the unconfined case it continues to grow, but the other two
dimensions ngx2 and ngyz continue to remain the same in
both the confined and the unconfined cases. It is only at long
times near equilibrium that R, ,* and R, ,” differ between the
two cases. The unconfined chain has a smaller equilibrium
value and it reaches this equilibrium sooner than the confined
case. Lastly, two power law regimes are clearly see in the
growth of the transverse directions R, JZand Rg -“atshortand
intermediate times. The first regime is linear in trme while the
second appears to follow a scaling close to ~¢'>. We will
derive these scalings for a Rouse chain shortly.

Now that we have commented on the general features of
the relaxation for a single chain, we look at the effect of chain
length on the relaxation dynamics. In Figure 5C, we show the
three 1D radii of gyration squared for several different chain
lengths. As expected, Rgv\.2 is highly length dependent since
its initial value is proportional to the chain length squared.
Additionally, the relaxation times for the exponential decay
and the final equilibrium values of Rgv\.2 are length dependent
and have already been studied in section 4.1. On the other
hand, the relaxation of the two transverse dimensions ap-
pears to change little based upon the length of the chain. Rgﬁz2
nearly falls on a universal curve for all time and chain
lengths, With only slight deviations which will be discussed
later. R, % also falls on a universal curve until it nears its
equilibrium value, at which point it stops growing and
plateaus at its length dependent final size.

Now that we have identified the general features of the
relaxation process in the transverse dimensions, we turn to
understanding the mechanisms behind the observed behav-
ior. In particular, we would like to identify the important
physics governing each of the observed power law regimes.
And, with this in hand, we can study how the dynamics in the
confined dimension affect, and are affected by, the longi-
tudinal stretch.

4.2.2. Unconfined, Ideal Hookean Chain. Before we con-
sider the relaxation dynamics in the confined dimension, we
will look at the much simpler case of the transverse relaxa-
tion of an unconfined, Hookean chain. Because all three
directions act independently for a linear chain, we only need
to consider a 1D bead—spring chain with N springs each
with a Hookean spring constant of Hj. Initially, the chain
starts with all of the beads at the same point or, alternatively,
with all of the springs having an initial stretch of zero. In this
case, three different regimes arise during the relaxation
process. We start by considering each of these from a scaling
perspective and then use a continuous 1D Rouse model to
prove some of our scalings and develop more quantitative
expressions for the chain’s size as a function of time.

At very short times, the bead movement is dominated by
thermal forces. The springs are not yet extended enough to
exert any significant force on the beads, so the beads act
independently like an ideal gas. Therefore the cham size
initially grows in a diffusive manner such that R ~ Dyt.

This growth continues until the spring forces are large
enough to compete with the thermal forces. If this occurs when
the spring lengths are of order /*, then the spring forces are
a.pprox1mdtely H*I* and the thermal forces are kgT/I*. Balan-
cing these forces grves I ~ (kgT/Hy)"?. At this point, the
scahng of the chain size with time changes to a new power law

~ At*, where A and a will be determined below. Due to the
mﬂuence of the significant spring forces, which impede the
advancement of individual beads, the chain begins to grow
subdiffusively so that oo < 1. We will refer to this new regime
as the tension-dominated regime. The transition from the
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diffusive regime to the tension-dominated regime begins when
Rg2 is approximately kg T/H,, which occurs at t ~ kgT/HDy,.

The third regime, which we call the equilibrium regime,
occurs when the chain reaches its final size of Rg2 ~ NkgT]/
H,. This should occur at times on the order of the longest
Rouse relaxation time of the chain or # ~ N %kg T/H,. We can
determine the power law exponent o and the scaling of the
prefactor A for the tension-dominated regime by matching the
end of the diffusive regime and the beginning of the equilib-
rium regime to the beginning and the end of the tension-
dominated regime, respectlvely Matching to the diffusive
regime gives the expression R ~ kBT/H A(kgT/HDy,)*, and
matching to the equrlibrrum regime gives R, 2~ NgkyT, /H ~
AN kg T/H, Db) . This only holds valid for o=1/2and 4~
(kBTD,/H,)". Comblnrng all of our results, we finally arrive
at a scaling for the chain size in all three regimes as a function
of time

Dut, ¢ < JsT
H,Dy,
1/2 2
R2~ kg TDy, ; ’ kgT << Ny°kgT (21)
& Hs HsDb HsDb
NykgT . N2kgT
Hs ’ HsDb

To more rigorously confirm our scalings, particularly in
the tension-dominated regime, we now briefly develop a
continuous 1D Rouse model for the transverse relaxation
of an initially straight chain. Lengthier more detailed deriva-
tions are available elsewhere.'”** We start with a discrete
bead—spring chain with Ny, beads connected by Ny = Ny, — 1
Hookean springs with spring constant Hy. If we allow the nth
bead position to be a continuous variable, we can recast the
discrete bead—spring model as a continuous chain obeying
the partial differential equation

or,

b__

B
n2 +FF (22)

where the second moment of the Brownian force is

(F)(1) =0

(FR()FB(¢)y = 2kpTCo0(n—m)o(t—1) (23)

The initial condition and boundary conditions are given by

ory,

ary,
rﬂit:() = o =

= =0 (24)

n= n=N,

The normal coordinates of the system can be found by
solving the eigenvalue problem.

We are interested in the chain’s ensemble-averaged radius
of gyration squared

1

(R,*(1)) = <N_b /O B dn[l‘n(t)—Rc<m.(t)]2> (25)

where R. ., (7) is the center of mass of the chain. Using
normal coordinates and linear response theory, it can be
shown that

At long times, the exponential dies off, and only the sum
Z;Llp_z = 7%/6 remains. This gives an equilibrium value of
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(Rgz(t)) = NpkgT/6H,, which is exactly the expected theoret-
ical result.

If we transform the summation ) ,—; in eq 26 to an
integral fﬁ/,,”dp (the lower bound has been chosen so that
the equilibrium value remains the same) then our expression

becomes
NpkgT 1 — 72H, ,
—exp| ———
6Hs P -7'[2Nb2€b

T2H. T2H
s—terfe| [ ——5—1 (27)
NGy, NG,

Flnally, since we are interested in short times (i.e., t <
Ny 26/ 72 H), we can expand this expression into a power
series and keep only the leading order term

(R?(1)) =

2kg TDy, ;

(RA(0) = |72

(28)

As predicted by our preV1ous scahng arguments, in the
tension-dominated regime R, 2~z

For the diffusion- domlnated reglme Rg is simply the mean-
squared displacement of a gas of beads that all 1n1t1d11y start at
the same point. This gives the well-known result R = 2Dyt

If we take all of our results, we can determine the locations
of the regime transitions from the intersections of the
expressions. Finally, combining all of our findings, we find

2Dy, t < flfgb
R, ~ (LCBTDL’ t) P kT << Nk T (29)
8 J'L‘Hs ’ HsDb HsDb
Nk T . N32kgT
6H, ’ HDy,

Comparing this to eq 21, we find that our predicted scalings
are, indeed, correct.

Our theoretical predictions for the two power law regimes
of the unconflned case are plotted in Flgure 5C to be
compared to Ry,” It is clear that our expression catches
the qualitative behavior seen in the simulations. It quantita-
tively predicts the value in the diffusive regime at short times,
but it overestimates the time at which the transition to the
tension- domlnated regime occurs. This leads to an over-
prediction of Rg ,~ in the tension-dominated regime. These
discrepancies are due to the nonlinearities in the spring law
used in the simulations when the chain is initially stretched
beyond its linear regime. Effectively, this increases the spring
constant H; felt by the beads which, according to eq 29,
should decrease the time of the transition to the tension-
dominated regime as well as the value of R, ,” in this regime.
So incorporating the spring law nonlinearities into the above
Hookean analysis should bring the theoretical prediction
more in line with the simulation results. The effects of these
nonlinearities will be discussed in greater detail later.

4.2.3. Confined, Ideal Hookean Chain. When a Hookean
chain relaxes in a channel of herght h < (NgkT/H,)"?, the
equilibrium s1ze of the chain in the confined dimension
decreases to R ~ h*. Going further, if we assume that the
bead dlstrrbuuon across the channel height is uniform, then
R, 2 = }?/12. This is actually an overprediction of R
because the bead distribution is not truly uniform and has
a Gaussian quality to it.
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Assuming that /1 > (kgT/H,)"?, the effect of confinement
is both to limit the chain size and to truncate the width of the
tension-dominated regime so that

kT
2Dyt <<
b, HSDb
1/2 4
Rg2 ~ <2kBTDb l‘) , kBT << J'[Hsh (30)
wHy HyDy, 288kp TDy,
ﬁ . THh*
12’ 288kg TDy,

A similar expression can be written if 1 < (kg T/Hy)", but in
that case, the diffusive regime is truncated and the tension-
dominated regime is eliminated entirely.

This prediction for the confined case is also plotted in
Figure 5C to be compared to Rg,_,z. Again, fairly good
qualitative agreement exists between theory and simulations
except that the tension-dominated reglme is not seen in the
theoretical prediction, as i < (kg T/H,)"?, but it is present in
the simulation results. As in the unconﬁned case, this is due
to the nonlinearities in the spring law.

4.2.4. Excluded Volume. As mentioned in section 4.1, the
EV forces are not significant for moderately stretched chains.
This means that the effects of EV will not be seen until the
chain has relaxed significantly in the longitudinal direction,
which only occurs on time scales on the order of 7 or longer.
This can clearly be seen in Figure 6 where the curves for the
chain with EV do not deviate from those without EV until
very near equilibrium. Therefore, the effects of EV on the
transverse dynamics are minimal except at very long times.

We can demonstrate this by considering a scaling analysis
to estimate the fractional extension X, at which EV becomes
important. We accomplish this using a Flory-type approach
where an estimate of the energy gain due to excluded volume
interactions Fy is obtained using a mean field approach (see
Chapter 3 of Rubinstein and Colby?’ for more details con-
cerning the following analysis). We begin by viewing the
chain as a series of tension blobs whose in-plane dimensions
are &, and whose transverse dimensions are / (i.e., they are
small disks). Therefore the pervaded volume of a tension
blob scales as ~h§ If there are g, Kuhn lengths in a blob,
then the chain interaction parameter®’ of a blob is given by

2 ev, p
oA e S VT
kel hg? nbt S (31)
where here Fj is the energy gain for a blob and v**'P is the
excluded volume parameter for a Kuhn length. The last
scaling comes from assuming 1deal chain statistics within a
blob, as Flory did (i.e., §, ~ gy 2by). The chain interaction
parameter simply compares the energy gain due to excluded
volume interactions to the thermal energy, so the point at
which EV becomes important is when z = 1. Therefore, the
critical number of Kuhn lengths in a tension blob g,, .., where
EV becomes important is

hby?

VeV, P

8y ev 7~ (32)

which corresponds to a fractional extension of

N, ), ev v _ eV, p
Xev ~ ( K/g}a )Sy;() ~ gy,ev 1/2 ~ v 5 (33)
Nk bk hbg

For our choice of parameters, in a 300 nm channel, this
corresponds to a fractional extension of X;, ~ 0.3. Of course,
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Figure 6. Plot of the 1D radius of gyration squared in all three direc-
tions for a single chain length of Ny = 164 both with and without EV.
The initial stretch of the chain was 75% in a 300 nm channel.

10 [ —95% 7

10" 107 10
tDy /02

Figure 7. Plot of the 1D radius of gyration squared in all three
directions for a single chain length of Ny = 75 in a 300 nm channel.
The results for various values of the initial fractional extension are
shown. Also included is the Hookean theory given by eqs 29 and 30.

this is a scaling analysis, so order unity prefactors have been
ignored. But this suggests that a chain must relax signifi-
cantly in the longitudinal direction before EV effects become
important, and this only occurs at very long times. This
means that examining chain growth across multiple time
scales by plotting the chain size against a logarithmic scale
of time is inappropriate for the study of the effects of EV.
To see these effects, a linear time scale must be used, which is
precisely the sort of analysis performed in section 4.1.

EV does not directly affect the dynamics of the confined
dimension, even at long time scales, as will be shown in the
following section. However, we will show that under certain
conditions spring nonlinearities can lead to coupling be-
tween the confined dnd longitudinal dimensions that affects
the relaxation of R, . to its true equilibrium value at long
times. Therefore, R,.” is sensitive to EV insofar as the
longitudinal dlmenswn is affected by EV at long times. On
the other hand, the unconfined, transverse dimension cer-
tainly feels the effects of EV as it nears the equilibrium value
it shares with the longitudinal dimension, but at this point,
these two unconfined dimensions are governed by the same
linear relaxation processes which have already been studied
in significant detail in section 4.1. So no further analysis is
required.

4.2.5. Nonlinearities. Finally, we consider the effects of the
spring nonlinearities, which are most evident at the begin-
ning of the relaxation process when the springs are highly
stretched. One consequence of these nonlinearities is that the
spring force is no longer independent for each dimension.
This means that the strong stretching in the longitudinal
direction leads to an increased effective spring constant in
both of the transverse directions. As already pointed out in
sections 4.2.2 and 4.2.3, this can lead to deviations from the
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Figure 8. (A) Plot of lD radius of gyration squared in the confined,

transverse dimension R, - 2 for several different chain lengths in a 300 nm
channel with an initial fractional extension of 75%. Only the equilib-
rium regime is shown (see Figure 5C for the entire relaxation process).
Two curves are seen for Ny = 75 and 300 because the data from both the
short time and long time simulations are plotted. (B) Plot of 1D radius
of gyration squared in the confined, transverse dimension Rg,z2 for a
single chain length of Ny = 75 in a 300 nm channel with an initial
fractional extension of 75%. The results for three different cases are
shown: with EV, without EV, and the longitudinal stretch held fixed.
Only the equilibrium regime is shown. (C) Plot of 1D radius of gyration
squared in the confined, transverse dimension R, > vs the 1D radius of
gyration squared in the longitudinal dimension R, % for a single chain
length of N = 75in a 300 nm channel. The results for several different
initial fractional extensions is shown.

Hookean theory and retards the growth of the transverse
dimensions during the tension-dominated regime.

To clearly demonstrate this effect, we simulated the
relaxation of a chain from several different initial fractional
extensions. The results are shown in Figure 7. It has been
observed that chains behave in a Hookean manner up to
fractional extensions around 30%. In accordance with this,
excellent agreement is seen between the Hookean theory and
the chain initially stretched to 30%. As the initial extension is
increased, the size in the transverse dimensions falls farther
below that of the theory. This is precisely the expected effect
of the strong nonlinearities in the springs at high extensions.

The nonlinearities also affect the equilibrium regime of the
confined, transverse dimension. Figure 8A shows a zoomed
in view of Rg .~ from Figure 5C for several different chain
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Figure 9. (A) Characterlstlc plot of the confined transverse relaxation
function G.(1) = [Rgzo — R0 %)/I% for chain length Ny = 164. The
fitting for the linear region is shown. (B) Plot of the un-confined-like
relaxation times 7y and TR, VS chain length N. Also shown is the
predicted scaling TR~ T = N2

lengths. We have zoomed in on the region that looks like a
plateau in Figure 5C, which we have been referring to as the
equilibrium regime. In Figure 8A, Rgvz2 is the same for
all three chain lengths through the diffusive and tension-
dominated regimes, but they behave somewhat differently
once they reach the equilibrium regime. (Note that the two
curves seen for both Ng; = 75 and 300 are due to the inclusion
of both the short time and long time s1mu1at10ns ) The
Hookean theory of section 4.2.3 predicts that Rgz should
immediately plateau to its final equilibrium value after the
tension-dominated regime, but clearly the dynamics are
richer for real chains. All three chain lengths exit the tension-
dominated regime by temporarily pausing their growth of Rg,z2
at an intermediate value slightly below their final equilib-
rium. The duration of this pause is dependent upon the chain
length. For Ny = 10, the pause is only barely evident, while it
is quite significant for Ny = 300. After this interruption in its
growth, R,:,,_,2 slowly approaches its final value.

To prove that this behavior is due to the spring nonlinea-
rities, we ran a simulation where an initially stretched chain
was allowed to relax in the transverse directions, but its
initial longitudinal stretch was held fixed for all time. The
result is shown in Figure 8B along with the results for chains
with and without EV that are allowed to relax in the longi-
tudinal direction. The two chains that are allowed to relax
in all dimensions are nearly identical except that the chain
with EV has a slightly higher final equilibrium value at long
times. Therefore, EV cannot account for this behavior. On
the other hand, the chain whose stretch is held fixed pla-
teaus at its final value precisely where the other chains tem-
porarily pause. Clearly, this temporary arrest in the growth
is due to the nonlinearities of the springs, and the subse-
quent slow approach to equilibrium is due to the relaxation
of the longitudinal stretch which reduces the tension in the
springs.

Macromolecules, Vol. 44, No. 2, 2011 391

To demonstrate that relaxation of the longitudinal stretch
is responsible for the slow approach to equilibrium after the
pause, we have taken the data from Figure 7 and plotted Rg .
against Rg + - This is shown in F1gure 8C for different initial
chain extensions. Initially, R, - % grows during the diffusive
and tension-dominated regimes without much change in
Rg\ , which relaxes on much longer time scales. But once
the equilibrium regime is reached, all the curves fall on the
same universal curve, This reveals that a quasi- steady equl-
librium exists for R, 2 during the equilibrium regime and it is
slaved to the relaxation of the longitudinal stretch. This also
verifies the quasi-steady assumption made in the tension-blob
physical model for the relaxation, as discussed in section 2.2.2.

A consequence of this quasi-steady equilibrium is that
during the equilibrium regime, R, . .2 is a measure of the
relaxatlon of the longitudinal stretch. This means analyzing

R, - 2 provides another way of studying the relaxation times
of the chain. We can do this by defining a relaxation function
G(1) = [Re-0° — Rg-0°/Is for the confined dimension. A
characteristic curve for G.(¢) is shown in Figure 9A. An
obvious linear region is seen, indicative of a single exponential
decay with the time constant 7g_-. Because this approach
to equilibrium is due the nonhnearmes in the spring law
when the longitudinal direction is extended beyond 30%,
it is expected that 7z > should provide an estimate of the
un-confined-like relaxation time 7y. Indeed, good agreement
is found between the two as seen in Flzgure 9B, and it is clear
that they follow the same scaling T, =~ 71 ~ 22

5. Conclusions

We have used Brownian dynamics simulations to study the
relaxation of initially stretched chains in slitlike confinement. We
have shown that our simulation technique is capable of reprodu-
cing the qualitative findings of recent experimental studies. In
particular, our simulations clearly show the existence of two
distinct relaxation times in the linear force regime: one that scales
similar to an un-confined-like relaxation time and another that
follows the scalings predicted by blob theory. We have conclu-
sively demonstrated that the emergence of the second relaxation
time is due to excluded volume effects and not hydrodynamic
interactions.

We developed a Rouse-like theory to describe the confined
relaxation of the transverse dimensions of an initially straight
bead—spring chain and find good agreement between our theory
and the simulations. The effects of excluded volume and spring
nonlinearities on the dynamics were also explored. It was found
that these nonlinearities lead to a quasi-steady equilibrium be-
tween the size of the chain in the confined dimension and in the
longitudinal dimension. This corroborates one of the underlying
assumptions of the physical model for confined relaxation
proposed by Balducci and co-workers.'”

Our results are important to developing a clear mechanistic
understanding of the relaxation of polymers in slitlike confine-
ment. Not only is this a problem of fundamental importance in
polymer physics, it also has practical interest for the development
of microfluidic devices that exploit confinement to manipulate
DNA molecules. This work only considered the scalings of the
relaxation times with chain length, and the height of the channel
was not varied. Future studies should examine the predicted
scalings of the relaxation times with channel height. Additionally,
hydrodynamics interactions were not included in the simulation
model, and their effects should be explored at a later date.
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