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ABSTRACT: We theoretically treat the problem of DNA collisions with large, ideally conducting posts
during electrophoresis.We exploit a separation of time and length scales that allows the problem to be broken
into two connected problems: (i) compression of a molecule against a flat wall by an applied transverse field
and (ii) transport of a molecule across the post surface due to both tangential diffusion and convection. We
address the former using a combination of statistical mechanics and blob theory and the latter utilizing a
Fokker-Planck approach. The theoretical predictions are then compared with the results of Brownian
dynamics simulations.

1. Introduction

The development of microfluidics and “lab-on-a-chip” devices
has opened a new era for the study of DNA electrophoresis and
polymer physics more generally. Such devices have provided plat-
forms to study fundamental problems in polymer physics,1-6 and
along theway, theyhave foundapplications inDNAseparations7-9

and genomic mapping.10,11 In particular, one problem that has
received considerable attention is the collision of a DNA molecule
with a cylindrical post.12-18

Post arrays and similar devices have been used to achieve
separation of large DNA molecules.7,19,20 When a DNA molecule
is electrophoretically or hydrodynamically driven into a post, it
frequently forms a hook by wrapping around the post and into a
hairpin-like configuration.13,14,16,21-23 The subsequent unhooking
process, which is often described by a rope-over-pulley model,
results in a length-dependent unhooking time and establishes the
basis for length-based separations in large arraysofposts.12,13,21,22,24

More fundamentally, collisions offer a simple way to mani-
pulate individual molecules by applying forces on the molecular
length scale. For example, post collisions have been used to
deformDNAmolecules so that their ensuing relaxation processes
can be studied.2,5 In addition, our group has exploited collisions
to “precondition” DNA for subsequent stretching in an elonga-
tional field25 to overcome molecular individualism.26 Cylindrical
posts have also been used to create field gradients near the post
surface that can stretch and deform molecules.15,27

Past post work has tended to focus on the small post limit
where the posts are much smaller than the equilibriumDNA coil
size. These “point obstacles” virtually guarantee the formation of
a large number of molecular hooks as long as the field strength is
strong enough28 and the posts are properly positioned.29,30

However, from a theoretical perspective, modeling of the direct
interactions between a point obstacle, and a molecule is fairly
simple with the post being treated as little more than a simple
pivot point during a collision.22 That is not to say that collisions
with point obstacles are trivial. The dynamics of such events can
be quite complex,22 but the characteristics of the post itself are
completely neglected. When the finite size of the posts is taken
into account, the problem becomes much richer. The relative size
of the post becomes important,14,15 and new types of collision

processes are possible (e.g., “roll-offs”14). In addition, distur-
bances of the electrophoretic velocity field due to the presence of
the post must be considered.15,27,31

When finite-sized posts were first examined, the field distur-
bances due to the post were neglected, and a uniform field was
assumed everywhere.14 Later, when researchers began to account
for the field disturbances, the posts were assumed to be electrically
insulating so that the field lines avoid and are repelled by the post
surface.15,16,27 Indeed, on the post surface, the field lines are every-
where tangential to the post. The deformation of the field lines leads
to field gradients near the post surface that are able to deform
molecules both on the front and backside of the posts,27 and this
deformation aids in hook formation.15 However, a large number of
molecules are quickly swept around the post by the nearly tangen-
tial field lines close to the surface. These molecules and their
trajectories are only weakly affected by the presence of the post.

2. Problem Statement

In this work, we consider the case of an ideally conducting
post. By this, we mean a post whose dielectric constant, εp, is
much greater than that of the surrounding fluid, εf (i.e., εp . εf).
Unlike the insulating case, the field lines for a conducting post,
which are shown inFigure 1A, are attracted to and focused by the
post. This means that the molecules also tend to be attracted to
the post and interact very strongly with it. We are interested in
understanding the fundamental physics that govern a molecule
that is being electrophoretically driven into an ideally conducting
post. Because this is the first attempt to study conducting posts,
we only consider linear electrophoresis in our analysis and neglect
any nonlinear electrokinetic effects, which may be present.

3. Initial Analysis of Problem

3.1.Qualitative Features of aCollision.The electrophoretic
velocity field, μE, surrounding an ideally conducting post is
given by
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whereμ is the electrophoreticmobility of themolecule,E¥ is the
strength of the electric field far away from the post applied in
the-exdirection,R is the radiusof thepost, and randθgive the
position in polar coordinates with the origin at the post center.

On the post surface at r=R, it is clear from eq 1 that μEr is
strong over most of the surface, whereas μEθ is identically
equal to zero. (See Figure 1A.) Therefore, the field lines
always intersect the post surface perpendicularly. On the
upstream side of the post (-π/2< θ<π/2), the field lines are
directed into the post, whereas on the downstream side (π/2<
θ < 3π/2), the field lines are directed away from and out of
the post. As a molecule approaches the post, it is driven into
the upstream side of the impenetrable surface. For our study, we
have restricted our analysis to large posts, whereby wemean that
R . Rg, where Rg is the radius of gyration of the colliding
molecule. This guarantees that hooking of the molecule around
the post is precluded and that, for reasonable applied field
strengths, the field gradients are weak so that strong stretching
of a molecule is also impossible. Therefore, the molecule is com-
pressed and “trapped” against the post by the strong radial field.

There are two mechanisms by which a molecule can
“escape” from the post: diffusion and convection. Clearly,
the molecule experiences tangential diffusion, and given
enough time, diffusion will guarantee eventual escape.
But the molecule also experiences a weak tangential velo-
city, νθ.

Although μEθ=0 for r=R, for r > R, it is nonzero. The
strength of μEθ increases with increasing r, and it is always
directed toward the downstream side of the post. Because
a compressed molecule still has some finite size, it is exposed
to the weak tangential field that exists just off the post sur-
face. This means that the average tangential velocity of the
molecule Æνθæ 6¼ 0, and it is slowly convected around the post
and finally “escapes”. Because Æνθæ depends upon the dis-
tance of the molecule from the post surface, we must under-
stand how μEr compresses the molecule against the post and
affects its size.

3.2. Analysis of μE Near the Post Surface. Because mole-
cules are “trapped” against the post, we are particularly
interested in the behavior of μE near the post surface. We
can exploit the fact that R . Rg and linearize the field
around

r

R
� RþRg

R
� 1 ð2Þ

Additionally, we can replace the radial position, r, with an
new coordinate, dp (Figure 1A), which is the distance from
the post surface

dp

R
¼ r

R
- 1, 1 ð3Þ

Combining these two approximations, we can simplify the
nonlinear radial term in eq 1

r

R

� �- 2

� 1- 2
r

R
- 1

� �
� 1- 2

dp

R
ð4Þ

If we use this result to approximate μE near the post surface,
then we obtain

μE

μE¥
� - 2 cos θer þ 2

dp

R
sin θeθ ð5Þ

3.3. Two Connected Problems. The disparity of the length
scales due to the large post size, leads to a separation of time
scales between the dynamics occurring in each of the dimen-
sions. In the eθ direction, the convective and diffusive time
scales are based on the length, R, so the molecular escape
time is quite large. Compression in the er direction is due to a
competition between convection toward the post surface and
diffusion away from it. This results in a time scale for
compression based on lengths similar to Rg so that it is very
short. Therefore, the dynamics in the er direction occurmuch
more quickly than those in the eθ direction. This allows us to
break the collision problem into the two connected problems
shown in Figure 1.

We refer to the first of these as the “post problem”, which
occurs on the scale of the post∼R. From this vantage point,
the molecule looks as though it is being transported across
the post surface because of a combination of tangential
diffusion and convection. The average tangential velocity is
approximated based on eq 5

Æυθæ � 2μE¥
Ædpæ
R

sin θ ð6Þ

The average distance from the wall Ædpæ is based on the fast
compression dynamics that occur in the radial dimension,
and because Ædpæ= f(μEr ≈ -2μE¥ cos θ), it varies as the
molecule moves across the post surface, but because the

Figure 1. (A) Cartoon of a DNA molecule being electrophoretically
driven into an ideally conducting post along with the field lines for the
electrophoretic velocity field. This is referred to as the “post problem”.
(B) DNA molecule is driven into a flat surface by a uniform transverse
electrophoretic velocity field. This problem is called the “local pro-
blem”. Also shown is the information flow between the two problems.
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compression dynamics are fast, we canmake a pseudosteady
approximation and assume that Ædpæ is always in equilibrium
with the local radial field, μEr.

The second problem shown in Figure 1B is the “local
problem” that occurs on the length scale of∼Rg. Effectively,
we have “zoomed” in on the molecule. We can neglect the
curvature inherent in the post problem because the post
surface now looks like a flat wall, and μE looks uniform.
The only important phenomenon occurring on this scale is
the compression of the molecule by the transverse compo-
nent of the uniform field, which we call μE0 for the local
problem.We can analyze this situation to determine how the
average distance from the wall, which we call Ædwæ for the
local problem, depends upon μE0.

These two problems are clearly connected, as seen in
Figure 1. The post problem provides the local problem with
the strength of the transverse field (μE0= μEr(θ)), and in
return, the local problem feeds the post problem the average
distance from the post (Ædpæ=Ædwæ) for use in determining the
average tangential velocity, Æνθæ.

3.4. Approach. In our detailed analysis of the collision
problem, we begin by examining the local problem of a
Gaussian chain driven into a flat wall by a uniform trans-
verse field. We use a combination of blob theory and
statistical mechanics to derive expressions and scalings for
Ædwæ as a function of μE0. We confirm these scalings using
Brownian dynamics simulations.

We then turn to the post problem, where we use our results
from the local case to predict Æνθæ. After confirming the
validity of our predictions using simulations, we incorporate
diffusion into our theoretical model by turning to a Fokker-
Planck equation and calculating the mean escape time of a
molecule based on the initial collision location. These results
are compared with simulations as well.

4. Brownian Dynamics Simulation

DNAmolecules are modeled as chains of Nb beads connected
byNs=Nb- 1 Hookean springs. The equation of motion for the
position ri of the ith bead is

dri

dt
¼ μEðriÞþ 1

ζb
ðFS

i þFB
i Þ ð7Þ

where μ is the electrophoretic mobility of the chain, ζb is the bead
drag coefficient, Fi

S is the total spring force felt by the bead, and
Fi
B is the Brownian force.
We nondimensionalize eq 7 on the basis of the length and time

scales of a spring: l s � (kBT/H)1/2 and τb � l 2s /Db, respectively,
where H is the Hookean spring constant and Db is the bead
diffusivity. The nondimensional variables for the local problem
are

r̂ � r

l s
, t̂ � t

τb
, Ê � E

E0
, F̂ � F

kBT=l s
ð8Þ

(for the post problem we nondimensionalize E using E¥). This
gives the dimensionless form of the equation of motion

dr̂i

dt̂
¼ Peb, 0Êðr̂iÞþ F̂

S

i þ F̂
B

i ð9Þ

wherePeb,0= μE0l s/Db is the bead P�eclet number (or for the post
problem, Peb,¥ = μE¥ l s/Db).

The nondimensional Brownian force is given by

F̂
B

i ¼
ffiffiffiffiffiffi
24

Δt̂

r
½rn�i ð10Þ

where Δt̂ÃÃ is the dimensionless time step and [rn]i are uniform
random numbers such that each component [rn]i

j ∈ [-1/2, 1/2],
where j denotes the coordinate x, y, or z. Equation 10 has been
normalized so that it provides the proper variance for the
Brownian force to satisfy the fluctuation dissipation theorem.

The net dimensionless spring force on the ith bead is

F̂
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s
i, 2 i ¼ 1

f̂
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s
i, i- 1 1 < i < Nb
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where f̂ i,j
s is the force exerted on the ith bead by the jth bead.

We have included two contributions to the spring force f̂ i, j
s =

f̂ i, j
s,b þ f̂ i, j

s,w. The first is the simple bulk Hookean spring force

f̂
s, b
i, j ¼ r̂j - r̂i ð12Þ

The second contribution f̂ i, j
s,w is a correction for the presence of the

post/wall.
When a spring is located near an impenetrable surface, it

disrupts the underlying random walk upon which the entropic
spring force is based. In bulk, the configuration space of a
Gaussian chain exhibits axial symmetry around its spring (end-
to-end) vector. This leads to a Hookean spring force that is
always directed along the direction of the spring vector as is
manifest in eq 12. However, in the presence of a surface, the
chain’s configuration space is restricted, and this axial symmetry
is broken. This leads to purely entropic forces that push the chain
away from the surface and that are not necessarily directed along
the direction of the spring vector. Consideration of this force
renders the spring behavior more realistic and actually allows
us to use fewer beads (and, therefore, fewer computational
resources) to reach the predicted scaling regimes.

We can account for this effect by including a correction term in
the spring force.32 If the surface is a flat plane that passes through
the origin, the correction is given by

f̂
s,w
i, j ¼ 2ðr̂j 3 nwÞ

exp½2ðr̂i 3 nwÞðr̂j 3 nwÞ�- 1

� �
nw ð13Þ

where nw is the unit normal pointing out of the surface. This term
always pushes the beads away from the wall. It diverges as the
beads approach the surface and is sufficient to prevent the beads
frompassing through thewall, so it has the secondary benefit that
we do not have to include an additional force dedicated to
imposing the wall excluded volume. This expression can be
directly applied for the local problem because the surface is flat.
For the post problem, we assume that locally the post looks flat
and neglect any correction due to the curvature of the post
surface.

The time-stepping scheme we used for the local problem is as
follows

Δt̂ ¼
N - 1

b Peb, 0
- 2=5000 Peb, 0 < Nb

- 3=2

Peb;0
- 4=3=5000 N

- 3=2
b e Peb, 0 < 1

Peb, 0
- 2=5000 Peb, 0 g 1

8>><
>>: ð14Þ

For thepostproblem,weused the sameschemewithPeb,0=2Peb,¥.

5. Analysis of Local Problem/Field-Induced Compression

The local problem shown in Figure 1B is characterized by
a polymer chain near a flat wall undergoing field-induced
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compression by a uniform electrophoretic velocity field, μE0,
applied transverse to the wall in the -ez direction. Note that for
the local problemwe have neglected the curvature inherent in the
global post problem. Therefore, we use Cartesian coordinates
when describing the local problem, but we will resume using
cylindrical coordinates in Section 6 when we return to the global
post problem. In our analysis of this problem, we first consider
the behavior of a point particle and of a Hookean dumbbell.
Using statistical mechanics, we can derive exact analytical results
for these cases,which provide basic insight into the problemand a
way to validate our numerical model. We then look to blob
theory to tackle the more complicated problem of a multibead
Gaussian chain.

5.1. Point Particle and Dumbbell. The average distance
from the wall for a point particle with a diffusivity of D is
easily shown to be Ædwpp æ = D/μE0. This result owes its
simplicity to the fact that there is no geometric length scale
in the problem because the wall is infinitely large, and the
particle is infinitely small. (There is no spring to consider in
this case.) Therefore, the only length scale is the dynamic one,
Ædwpp æ, which follows from balancing the opposing forces of
convection and diffusion on the particle. If we arbitrarily
define a field-independent length scale l for the problem,
then the result for a point particle becomes

Ædpp
w æ
l

¼ Pel
- 1 ð15Þ

where Pel = μE0l /D is a P�eclet number based on the
arbitrary length scale, l . This result is useful because we
expect that even large multibead chains should recover point
particle behavior when the applied field strength is extremely
weak.

The derivation for the average distance from the wall for a
Hookean dumbbell Ædwdb æ is more involved. Because of the
linearity of the Hookean spring, all three dimensions act
independently, and the problem is 1D in the ez direction. The
probability density of finding a dumbbell with a center of
mass located at dw and a spring length of q is proportional to
the Boltzmann distribution

Pðdw, qÞ

∼ exp - 2Peb, 0
dw
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where Peb,0 = μE0l s/Db. From this, we can determine the
average distance from the wall
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This result is shown in Figure 2.

There are two regimes connected by a transition region
that describe the behavior of Ædwdb æ. The first is a weak field
regime where Peb,0 , 1. Under these conditions, the dumb-
bell typically is far away from the wall and only occasionally
interacts with it. Therefore, the dumbbell behaves verymuch
like a point particle. Indeed, in the limit of Peb,0 , 1 the

expression given in eq 17 reduces to Ædwdb æ/l s ≈ (2Peb,0)
-1

which is the expected behavior of a point particle with a
diffusivity of D = Db/2. (See Figure 2.)

The transition region occurs aroundPeb,0≈ 1. At this field
strength, Ædwdb æ is comparable to the equilibrium spring
length l s, and the dumbbell no longer acts like a single point
particle. This can clearly be seen by considering the 1D radius
of gyration of the dumbbell in the direction transverse to the
wall Rg,w

db , which is given by
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and can also be seen in Figure 2. For Peb,0 , 1, ÆRg,w
db 2æ/l s2

remains unperturbed and maintains a constant value of 1/4.
But as Peb,0 approaches 1, ÆRg,w

db 2æ/l s2 begins to drop as the
internalmode of the dumbbell is affected by thewall presence.

The second regime is a high field limit where Peb,0 . 1.
When the field strength is very large, the dumbbell is strongly
pushed against the wall, and both beads are always very near
the wall surface (r1,z/l s,r2,z/l s , 1). This also guarantees that
the distance between the beads in the transverse direction is
always very small compared to the equilibrium spring size
(|r2,z- r1,z|/l s , 1). The result of these two conditions is that
the transverse component of the bulk spring force (f̂ i,j

s,b)z
given by eq 12 is negligible, and the wall correction for the
spring force on the ith bead (f̂ i,j

s,w)z given by eq 13 approaches≈
(ri,z/l )

-1. These two findings indicate that the beads become

Figure 2. Plot of the average distance of the center ofmass Ædwdbæ from a
flat wall for a Hookean dumbbell in a uniform field versus the field
strength for the BD simulations alongwith the analytical result given by
eq 17 (top). Plot of the radius of gyration squared of a Hookean
dumbbell in the direction transverse to the wall ÆRg,w

db 2æ versus the field
strength for the simulations and the exact solution given by eq 18
(bottom).
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uncoupled in the ez direction when the dumbbell is pushed
strongly against the wall. So for large field strengths, the two
ends of the dumbbell should act independently of each other and
behave as point particles of diffusivityD =Db. Indeed, in the limit
ofPeb,0. 1, eq 17 reduces to Ædwdbæ/l s ≈ 2Peb,0

-1, which, except
for the factor of 2, is the expected result for a point particle. (See
Figure 2.) The factor of 2 comes from the wall correction for the
spring force (f̂ i,j,

s,w)z ≈ (ri,z/l )
-1, which does not exist in the case

of a true point particle. But this additional force does not change
the predicted scaling with Peb,0; it just affects the numerical
prefactor.

Also shown in Figure 2 are the results from our BD
simulations of a molecule pushed against a flat wall. The
data from the simulations match the exact analytical results,
thereby validating our numerical model.

5.2. Multibead Chain. The added complexity of multibead
chains does not allow for exact analytical solutions; however,
on the basis of the point particle and dumbbell results, we can
predict the behavior of multibead chains at both very small
and very large Peb,0. Additionally, the increased number
of internal modes leads to the emergence of a third, inter-
mediate “blob” regime, where globally a chain is strongly
deformed by the applied field, but locally individual
springs remain virtually unperturbed from their equilibrium
configurations.

For very strong field strengths where Peb,0 . 1, the beads
become uncoupled in the transverse direction, just as they do
in the case of a dumbbell. Therefore, the individual beads
behave very much like point particles so that Ædwæ=l s �
3Peb, 0

- 1 in the case of Nb . 1. The prefactor is different
from the dumbbell result because, except for the ends, each
bead is connected to two springs instead of just one. Addi-
tionally, it can be shown that ÆRg, w

2æ=l s2 � 3Peb, 0
- 2.

For very weak field strengths (we will define how weak
momentarily), we expect to recover the point particle beha-
vior exhibited by a dumbbell. In the case of a chain with Nb

beads, the chain diffusivity is given by D = Db/Nb (we
assume that the chains are free-draining), and we predict
that Ædwæ=l s � ðNbPeb, 0Þ- 1. Additionally, we expect the
1D radius of gyration to take on its equilibrium value
of ÆRg,w

2æeq=l s � Nb=6 (which assumes Nb . 1). The weak
field regime is characterized by the condition that Ædwæ .
(ÆRg,w

2æeq)1/2, which guarantees that the configuration of the
chain is nearly unperturbed from its equilibrium configuration.
This condition is first violatedwhen (NbPeb,0)

-1≈ (Nb/6)
1/2. So,

we can say that weak field regime is defined for Peb,0,Nb
-3/2.

This leaves a large region between the weak and high field
regimes where Nb

-3/2 , Peb,0 , 1. This is the new “blob”
regime that emerges as Nb increases, and it is characterized
by strong global deformation of the chain structure while
leaving smaller subunits of the chain fairly unperturbed.
These subunits are referred to as “blobs” and are often used

in scaling analyses associated with chains confined in slits
and tubes.We canmake use of the blob theory framework to
analyze the problem of field-induced confinement by intro-
ducing an electrical energy associated with the applied
electrophoretic velocity field as shown in Figure 3.

We start by considering the well-known problem of a
chain confined between two parallel plates separated by a
distance h. For an ideal chain consisting ofNKKuhn steps of
length bK, it can be shown that the energy required to confine
the chain is proportional to the number of blobs formed33

and scales as

Gconf � kBTNK
h

bK

� �- 2

ð19Þ

In the case of field-induced confinement, we replace the
constant plate separation, h, with a field-dependent compression
size,dw. (SeeFigure 3.)Wealso introduce an electrical energy for
the chain

Gelec � NKqK, effE0dw ð20Þ
where qK,eff is the effective charge of a Kuhn segment. qK,eff can
be derived by considering the free solution electrophoresis of a
Kuhn segment. By balancing the electric force, qK,effE0, driving
the segment forward against the opposing drag force -ζKν =
-ζKμE0, where ζK is the drag coefficient for a Kuhn step, we
discover that qK,eff = ζKμ.

By minimizing the total energy Gtot ≈ Gconf þ Gelec with
respect to dw, we find that

Ædwæ
bK

� bKμE0

kBT=ζK

� �- 1=3

� PeK
- 1=3 ð21Þ

where PeK is a P�eclet number based on a Kuhn step. It is
interesting to note that dw is independent of chain length in
the blob regime. This is because adding chain length in-
creases the number of blobs, but it does not change their size.

Also, we expect in the blob and high-field regimes that
Rg,w≈ dw. This is reasonable because both describe the size of
the compressed chain given that it is always pushed against
the wall. This is not the case in the weak field regime, where
Rg,w is basically unperturbed from its bulk value.

Finally, we can adapt these results to bead-spring chains
by substituting springs for Kuhn steps. In doing so, we
replace bK with l s, ζK with ζb, and PeK with Peb,0.

Combining all of our above predictions for multibead
chains, we have for the average distance from the wall

Ædwæ
l s

�
ðNbPeb, 0Þ- 1 Peb, 0 , Nb

- 3=2

RPeb, 0 - 1=3 N
- 3=2
b , Peb, 0 , 1

3Peb, 0
- 1 Peb, 0 . 1

8>><
>>: ð22Þ

and for the average 1D radius of gyration squared

ÆR2
g,wæ
l 2s

�
Nb=6 Peb, 0 ,Nb

- 3=2

βPeb, 0 - 2=3 Nb
- 3=2 ,Peb, 0 , 1

3Peb, 0
- 2 Peb, 0.1

8><
>: ð23Þ

In both of these expressions,we have includedproportionality
constants, R and β, to describe the blob regime. This is to
highlight the fact that unlike the weak and strong field
regimes, we only have scalings for the behavior of the chains

Figure 3. Cartoon depicting the blob scaling approach used to find
dw. The results for slitlike confinement are used to find the entropic
penalty for confinement. This energy is then added to an electrical
energy in the case of field-induced confinement. The total energy is
minimized to find dw.
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in the blob regime. We have no way of determining R and β a
priori, so we must fit real data if we wish to determine them.

To test our predictions, we simulated several different
chain lengths (Nb = 20, 40, and 100) at various values of
Peb,0. The results of these simulations are shown in Figure 4.
The theoretical predictions for the three different regimes
given in eqs 22 and 23 are also included as well as slope lines
for the predicted scalings.

There is excellent agreement between simulations and
theory. The strong and weak field regimes not only exhibit
the predicted scalings but also asymptotically approach the
predicted quantitative values. The locations of the transi-
tions between regimes are also correctly predicted.

The emergence of an apparent scaling regime with increas-
ing Nb between the strong and weak field regions confirms
the existence of a blob regime. Indeed, the simulation results
match the predicted blob theory scalings. But to more
rigorously demonstrate the existence of the blob regime, we
plotted the ratio of Ædwæ and (ÆRg,w

2æ)1/2. In regions where
both of these quantities are predicted to scale the same way,
we expect to see a broad plateau in the plot of their ratio.
ÆRg,w

2æ is a constant in the weak field regime, so the ratio
should diverge as Peb,0 decreases. In the strong field regime,
the ratio should plateau to a constant value of

√
3. If the blob

regime does indeed exist, then a similar plateau should be
seen for Nb,0

-3/2 , Peb,0 , 1, although it ought to have a
different numerical value than

√
3. This is exactly what is

seen in Figure 4, and it clearly and convincingly demon-
strates the presence of the predicted blob regime.

Itwas found thatR=1.26 andβ=0.30by fitting the results
ofNb = 100 to the predicted scalings for Ædwæ and (ÆRg,w

2æ)1/2,
respectively, in the blob regime.

6. Analysis of Global/Post Problem

With our results for the local problem in hand, we are now
equipped to address fully the post problem shown in Figure 1A.
We begin by determining the average tangential velocity of the
molecule, Æνθæ. We then use this result to develop a 1D Fokker-
Planck equation tobalance the effects of convection anddiffusion
along the post surface. From this, we calculate the mean escape
time, ÆTescæ, of a molecule as a function of its initial collision
location, θ0. We compare all of our predictions against simula-
tion results.

We also restrict our analysis to field strengths where the
compressed chains are in the blob regime for the local problem.
Clearly, depending on the strength of the applied field, we could
develop different velocity predictions for each of the low-field,
high-field, and blob regimes. However, it seems sufficient to
analyze only one of these, knowing that the same type of analysis
should be applicable to the other two. We have chosen the blob
regime because it seems to be the richest of the three.

6.1. Determination of Æνθæ. We have previously shown in
eq 6 that Æνθæ ∼ Ædpæ. From the result in eq 22 for the blob
regime, we expect that

Ædpæ � R l sPeb½ μErðθÞ�- 1=3 ð24Þ
where Peb[μEr(θ)] is the P�eclet number based on the local
value of μEr(θ), which is given in eq 5. Combining these
results, we arrive at

Ædpæ
l s

� Rð2Peb,¥ cos θÞ- 1=3 ð25Þ

If we insert this expression into eq 6, then we find that

Ævθæ
Db=NbR

� RNbð2Peb,¥Þ2=3 cos- 1=3 θ sin θ ð26Þ

where we have nondimensionalzed the velocity based on
the post length scale, R, and the chain diffusion time scale,
NbR

2/Db. On the basis of this equation for the velocity, we
can define a governing P�eclet number for the post problem

PeP ¼ Nbð2Peb,¥Þ2=3 ð27Þ

In Figure 5, we compare the prediction for Ædpæ versus
Peb(θ) given in eq 24 to the results from simulating the
collisions of several different chain lengths at various values
of PeP with a post of radiusR=l s ¼ 50. Excellent agreement
is seen, except for PeP = 40. This discrepancy at high PeP
occurs because the smaller chain lengths (Nb = 10 and 20)
have been pushed beyond the blob regime into the high field
regime (Peb. 1), where eq 24 is not applicable. These results
confirm that our analysis of the local problem, particularly
eq 22, is correct, even for the more complicated post pro-
blem.We also compare our predictions for Æνθæ given in eq 26
to the simulation data in Figure 6. We have nondimensio-
nalized Æνθæ by the predicted scaling RPePDb/NbR to achieve
universal collapse of all the curves. Our theoretical treatment
matches the data, except when blob theory breaks down for
the smaller chains at large PeP.

Figure 4. Plot of the average distance of the center of mass from a flat
wall Ædwæ formultibead chains in a uniform field versus the field strength
along with the theoretical prediction given by eq 22 (top). Plot of the
radius of gyration squared of the chains in the direction transverse to the
wall ÆRg,w

2æ versus the field strength along with the theoretical
prediction given by eq 23 (middle). Plot of the ratio of Ædwæ and
(ÆRg,w

2æ)1/2 versus the field strength (bottom).
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The velocity Æνθæ at the most upstream point on the post
(θ= 0) is zero, and initially, it increases nearly linearly with
increasing θ, but Æνθæ begins to rise rapidly as θ approaches
π/2. This is due to a sharp decrease in μEr(θ) near θ = π/2,
which causes the chain to expand quickly. This increase in
Ædpæ leads to greater exposure of the chain to the tangential
electrophoretic velocity field and a rapid increase in the
average molecular velocity, Æνθæ. Our prediction for Æνθæ
given in eq 26 actually diverges at θ = π/2, which is clearly
aphysical. This is because our model neglects several realities
including that our linearization of μEθ is not valid for large
Ædpæ and that the chain cannot expand instantaneously

(i.e., separation of the radial and angular dynamics breaks
down). However, our prediction is still very good over the
entire domain, except very near θ = π/2.

Another problem with our model is that it predicts that a
chain located at θ = 0 will never escape from the post
because Æνθæ = 0. To predict accurately the behavior of a
chain near θ = 0, we must incorporate diffusion into our
model.

6.2. Incorporating Diffusion. To include diffusion in our
theory, we turn to a Fokker-Planck (FP) approach. We
consider the post problem to be a time-dependent 1D
problem in the eθ direction with r = R. We develop a
Fokker-Planck equation for a molecule with a diffusivity
of D = Db/Nb. If we assume the molecule is being trans-
ported in a velocity field Æνθæ, then we can write

Dp
Dt

¼ Db

Nb

D2p
DðRθÞ2 -

D
DðRθÞ ðÆvθæpÞ ð28Þ

where p is the probability density of finding a molecule at a
given time and location and Rθ is the arc length. Because of
the symmetry around the most upstream point of the post at
θ=0,we restrict our analysis to the domain 0e θe π/2.We
use our previously determined expression for Æνθæ given in
eq 26. For tractability, we make the approximation cos-1/3

θ sinθ≈θ,which is verygoodovermostof thedomain.Finally,
we nondimensionalize time based on the diffusion time scale
of the chain over the length scale of the post: τ = NbR

2/Db.
This leads to the nondimensional form of the FP equation

Dp
Dτ

¼ D2p
Dθ2

-RPeP
D
Dθ

ðθpÞ ð29Þ

We use a reflecting boundary condition at θ = 0 because of
symmetry and an absorbing boundary condition at θ= π/2 to
signify the “escape” of the molecule

Dp
Dθ

ðτ, θ ¼ 0Þ ¼ pðτ, θ ¼ π=2Þ ¼ 0 ð30Þ

For the initial condition, we choose a unit impulse at θ0 to
model the initial collision location of amolecule at that location

pðτ ¼ 0, θÞ ¼ δðθ-θ0Þ ð31Þ
This is the problem of a particle diffusing in an inverted

harmonic potential, and interestingly, it has been considered
before inDNA collisions with point obstacles.17,21 Although
we cannot obtain a solution for p(τ,θ), we can calculate the
mean first passage time to θ= π/2 of a particle that starts at
θ= θ0. This is exactly the average escape time of a molecule
from the post surface, ÆTescæ. The theory of first passage
times34 tells us that for this particular problem

ÆTescæ
NbR2=Db

¼
Z π=2

θ0

dx exp -
RPeP
2

y2
� �Z x

0

dy exp
RPeP
2

x2
� �

ð32Þ
We can recast this expression in terms ofDawson’s integral35

½DðxÞ ¼ e- x2
Z x

0

ey
2

dy�

ÆTescæ
NbR2=Db

¼
ffiffiffiffiffiffiffiffiffiffiffi
2

RPeP

r Z π=2

θ0

D

ffiffiffiffiffiffiffiffiffiffiffi
RPeP
2

r
x

 !
dx ð33Þ

Figure 6. Plots of the average tangential velocity, Æυθæ, of multibead
chains trapped against a conducting post as a functionof locationon the
post surface, θ. The theoretical prediction given by eq 26 is also plotted.

Figure 5. Plot of the average distance of the center of mass from the
post surface, Ædpæ, for multibead chains trapped against a conducting
post versus the local transverse field strength, μEr. The fitted scaling
from the flat wall studies is shown for comparison (eq 24).
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Finally, the integral ofD(x) can bewritten in terms of general-
ized hypergeometric functions35 [pFq(a1, ..., ap; b1, ..., bq; z)]

ÆTescæ
NbR2=Db

¼ 1

2

"
π2

4
2F2 1, 1; 3=2, 2; -

RPeP
2

π2

4

 !

-θ202F2 1, 1; 3=2, 2; -
RPeP
2

θ20

� �#
ð34Þ

In Figure 7, we have plotted this prediction for ÆTescæ, non-
dimensionalized by the convective time scale NbR

2/RPePDb

for several values of PeP including for the purely convective
case (i.e., PeP = ¥).

We expect that in the region of the domain dominated by
convection the curve will collapse onto the result for pure
convection, and indeed, this is what occurs for θ near π/2,
where the velocity is the strongest. Near θ = 0, diffusion
dominates, and the curve falls well below that of pure
convection because diffusion is helping to speed up the
escape process. It is also clear in Figure 7 that the location
of this transition from the diffusive region to the convective
region occurs at smaller and smaller values of θ as PeP
increases. This is expected because a larger portion of the
domain is dominated by convection at large values of PeP.
Indeed, this increasingly small diffusive region near θ = 0
forms a boundary layer for PeP . 1.

We can derive a scaling for the size of the region domi-
nated by diffusion θBL by estimating where the convective
and diffusive time scales are comparable. The convective
time scale isNbR

2/RPePDb, whereas the diffusive time scale
is Nb(RθBL)

2/Db. Balancing these two gives the scaling
θBL ∼ PeP

-1/2.
To confirm this scaling for θBL, we used the location of the

intersection of ÆTescæ for a finite PeP with the curve for the
purely convective case as a measure of θBL. Figure 7 shows
the results of this analysis. At high PeP, the predicted scaling
is correct.

The results for ÆTescæ from our simulations are shown in
Figure 8, where we have nondimensionalized the escape time
by the convective time scale.Goodagreement is seen between
the simulations and the predictions of eq 34. The only
notable exception is for Nb = 10 at PeP = 40, which is
expected because the chain has been pushed well beyond
the blob regime, as previously shown.Ourmodel clearly does
a very good job of predicting the behavior of these chains.

7. Conclusions

We have examined the problem of electrophoretic collisions of
DNAwith large, ideally conducting posts, andwe have identified
and characterized the essential physics that govern the problem.
We have purposefully simplified this problem to develop analy-
tically solvable models and scaling theories that prove that the
important physics are well understood. In particular, we have
studied the field-induced compression amolecule against the post
surface and how it determines the velocity of the chain as itmoves
around the post. Although we have used the simple model of an
ideal, Gaussian chain, we believe the basic physics and funda-
mental character of the problem have been captured. However,
our approach allows for a more realistic molecular description.
For example, excluded volume effects could easily be incorpo-
rated into our blob theory framework, and new scalings could be
derived.

Also, by considering large posts, we have precluded all hook-
ing phenomena, but in applications involving DNA separations,
hooking and the subsequent unhooking process are typically the
major reasons that length-dependent separation arises. However,
our results can still be applied to examine the more realistic
and complicated situation of moderately sized conducting
posts where hooking should occur. For example, our predic-
tion for the tangential velocity of a molecule (eq 26) is nearly
linear in θ, which makes it look very similar to an elongational
field. This suggests that for strong enough field gradients,
molecules will stretch around the post. Such behavior would be
important for understanding hook formation in these more
realistic cases.

We believe that conducting posts could offer advantages over
insulating posts because of the way they attract and directly

Figure 7. Plots of the average “escape” time ÆTescæ predicted by eq 34
for various values of RPeP, including the purely convective case (i.e.,
PeP=¥) (top). Plot of the locationof the intersectionpointθBLof ÆTescæ
for a given value of PeP with the purely convective case (bottom). The
predicted scaling for θBL, which is a measure of the boundary layer size,
is shown for comparison.

Figure 8. Plots of the average escape time, ÆTescæ, ofmultibead chains as
a function of where they are initially trapped by a conducting post,
θ0. The theoretical prediction given by eq 34 is also shown.
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interact with DNA molecules. Insulating and dielectrically
matched posts tend to move molecules around their surfaces
quickly, and detrimental channeling is often seen in arrays of such
posts.31 The attractive nature of conducting posts might decrease
the effects of channeling and enhance separation efficiency.
Additionally, it could also lead to new modes of separation that
have not yet been observed or predicted.

Currently,weknowof no experimental studies that have looked
at conducting posts, butwe can imagine at least twodifferentways
to achieve such a system.The firstwould be to usemetal postswith
biased AC fields. Because metal posts are impenetrable to ions, a
DC field would simply polarize the surrounding double layer, and
eventually, the field lines would resemble those of an insulating
post. Using properly timed AC fields should prevent this polar-
ization from occurring.36 The second way would be to use a
charged hydrogel that is impermeable to DNA. Unlike a metal
post, a charged hydrogel would be permeable to small ions, and its
higher conductivity than the bulk fluid would result in the desired
field lines.

To end, we would like to provide estimates of some of the
parameters and measurables that might be used or seen in a real
experiment under reasonable conditions. For order of magnitude
purposes, we assume that for DNA in buffers typically used by
our group22 and others, the length and the diffusivity of a Kuhn
segment are around bK ≈ 100 nm and DK ≈ 20 μm2/s, respec-
tively, and that a typical value for the electrophoretic mobility is
μ ≈ 1.5 μm/s. For T4-DNA, which has a contour length of L ≈
70 μm, a bulk radius of gyration of Rg ≈ 1.5 μm, and a bulk
diffusivity of D ≈ 1 μm2/s, we estimate that the blob regime
occurs at applied field strengths in the range of E¥ ≈ 0.005-
50 V/cm. We obtain this estimate from eq 22 by replacing the
bead P�eclet number, Peb, with the P�eclet number based on a
Kuhn step, PeK. Using this range of field strengths, we can
estimate the characteristic escape time, Tesc, for a particular post
size using the convective time scale of the global post problem,
R2/(2PeK,¥)

2/3DK. However, we must also ensure that the con-
vective time scale is faster than the diffusive time scale, R2/D,
which provides the upper limit for Tesc. On the basis of this
calculation, we find that the convection-dominated blob regime
occurs in the range of E¥ ≈ 1-50 V/cm. For a post size of R =
5 μm, the characteristic escape timewould beTesc≈ 1-20 s. For a
post size ofR=15 μm, thiswould increase toTesc≈ 10 s to 3min.
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