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ABSTRACT: We experimentally investigate the influence of slitlike confinement on the coil—stretch
transition of single DNA molecules in a homogeneous planar elongational electric field. We observe a more
gradual coil—stretch transition characterized by two distinct critical strain rates for DNA in confinement,
different from the unconfined case where a single critical strain rate exists. We postulate that the change in the
coil—stretch transition is due to a modified spring law in confinement. We develop a dumbbell model to
extract an effective spring law by following the relaxation of an initially stretched DNA. We then use this
spring law and kinetic theory modeling to predict the extension and fluctuations of DNA in planar
elongational fields. The model predicts that a two-stage coil—stretch transition emerges in confinement, in

accord with experimental observations.

1. Introduction

Advances in nanofabrication technologies have inspired inter-
est in nanodevices that promise to provide fast and accurate
methods for the analysis of genomic length DNA. Many such
applications, including DNA separation' and single molecule
mapping,** rely on the ability to stretch individual DNA mole-
cules from their initial coiled configurations into extended states.
Understanding how polymer deforms under confinement is
therefore of considerable importance for device design and
optimization. Meanwhile, such knowledge can also aid to the
development of fundamental polymer physics. The unique ad-
vantage of using nanoconfinement to stretch DNA lies in its
capability to alter the shape and dynamics of polymers through
both steric interactions and modulation of intramolecular hydro-
dynamic interactions (HI).>”® Recent studies have used tubelike
confinement (representing channels with height ~ width) to
substantially change the equilibrium DNA conformation from
a coil to a highly extended state.*'> Alternatively, slitlike
confinement (representing channels with height < width) has
been employed to facilitate stretching DNA far from equilibrium
in elongational fields.'* In this case the polymer deformation
results from the competition between the stretching force im-
posed by the field gradients and the DNA elastic spring force that
resists stretching.”> In contrast to the equilibrium behavior of
confined polymer that has gained much attention to date (see
ref 16 for a review), the influence of confinement on this none-
quilibrium process has only recently begun to be examined. Initial
studies in this field'*!'” have demonstrated a unique feature of
DNA stretching in slitlike nanochannels: the steric interactions
between DNA and the confining walls become weaker and
eventually vanish as the molecule extends, suggesting that the
stretching process may be conformation-dependent.

Several experimental studies have investigated the stretching of
unconfined DNA in extensional hydrodynamic flows'® > and
electric fields.”*** A sudden increase in the steady-state extension
of DNA was observed near a critical velocity (electric field)
gradient or strain rate of &. The values of & determined in these
experiments agree well with the theoretical prediction of ¢, ~ 0.5/,
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where 7 is the longest relaxation time of the polymer.”> The
abrupt coil—stretch transition is closely related to the shape of the
spring force law."® For DNA in bulk, the force law is character-
ized by a linear force regime from equilibrium to ~30% relative
extension and a highly nonlinear response at large extensions (see
Figure 1B). For ¢ < &, the stretching force exerted on the
polymer is lower than the spring force, and thus the conformation
is weakly perturbed. As soon as the strain rate is increased above
&, the stretching force exceeds the linear portion of the spring
force, and the polymer stretches into a significantly extended state
until its nonlinear elasticity limits any further extension. During
this conformational transition, polymer molecules also exhibit
slowed-down transient dynamics toward steady-state and an
increased magnitude of extension fluctuations,”>**? similar to
the critical phenomena observed in a thermodynamic phase
transition. The essential physical reason for these unique beha-
viors is the existence of large number of configurations corre-
sponding to vastly different extensions that are accessible close to
the critical strain rate, at which the stretching force balances the
entire linear region of the elastic spring force.** In potential flows,
this configuration space can also be interpreted in terms of a
conformational energy landscape'® that becomes relatively flat
near the coil—stretch transition. The aforementioned character-
istics of the coil—stretch transition, i.e., the drastic deformation,
the dynamic slowdown, and the significant conformation fluc-
tuations, are enhanced by the extension-dependent hydrody-
namic drag coefficient, a result of the dominant intramolecular
HI for DNA in bulk."**72>?7 The drag coefficient of the
polymer directly impacts on the stretching force imposed by the
field gradients. An extremely large increase in the drag coefficient
as the polymer fully extends from the coiled state can lead to
conformational hysteresis at the coil—stretch transition.'>%
Slitlike nanochannels offer a very powerful method to change
the course of DNA deformation by impacting both the applied
stretching force and the DNA spring force. The stretching force is
affected through modulation of intromolecular HI: nanoslits
with height smaller than the equilibrium size of DNA are capable
of screening long-range HI, leading to an increased drag coeffi-
cient of DNA and thus stronger stretching force.”** Meanwhile,
the increase in drag coefficient is more dramatic for coiled DNA
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Figure 1. (A) Schematic of the DNA stretching process in slitlike
nanochannels. (B) Schematic comparison of the effective spring force
law for DNA in confinement and in bulk. The bulk spring force varies
linearly with the end-to-end distance below ~30% relative extension. In
confinement, DNA molecules near equilibrium are sterically confined,
and the corresponding spring force is reduced. Highly extended DNA is
no longer confined, and the spring force restores back to the bulk force
law.

than that for highly extended molecule, hence the overall exten-
sion dependence of the drag coefficient is significantly reduced.
Modification of the DNA spring force relies on the steric
interactions between DNA and the confining walls, which,
however, are only important for DNA molecules at moderate
extensions.'” A highly extended DNA is not sterically confined in
the nanochannels, and the corresponding spring force stays
unaffected (i.e., identical to the bulk spring force; see Figure 1).
As the extension decreases, the lateral dimension of the DNA
(z-dimension in Figure 1A) grows until it becomes equivalent to
the channel height /. After this point, the conformation of the
DNA is constrained by the steric confinement and the spring
force is reduced. In nanochannels much taller than the persistence
length of the DNA, this transition occurs within the bulk linear
force regime (i.e., below 30% fractional extension),'* and the
spring force for confined DNA near equilibrium is still linear with
extension but the spring constant is smaller.”** As a result, the
spring force law of DNA in slitlike confinement contains two
linear regimes: a confined linear force regime close to equilibrium
and a truncated bulk linear force regime at larger extensions (see
Figure 1B), which are connected by a transition region where the
spring force gradually restores to the bulk force law as the DNA
stretches. The relative widths of these regions depend upon the
channel height A.'*'” The compound effect of the more uniform
drag coefficient and the newly introduced conformation depen-
dence in the spring force of DNA under confinement results in a
very different stretching process. In the confined linear spring
force regime, DNA molecules can be more easily deformed due to
the increased drag coefficient and softened spring, pointing to the
fact that confinement may allow a much earlier coil—stretch
transition. As the DNA extends into the transition region, the
spring stiffens and acts to limit the amount of extension. Once the
DNA becomes nonsterically confined, stretching progresses as if
the DNA were in bulk but with an increased drag coefficient. We
have previously shown experimental evidence of this “bulklike”
deformation at large extensions and found that despite the fact
that the spring force in this region does not differ from the bulk
force law, the increased drag coefficient reduces the strain rate
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Figure 2. (A) Diagram of the cross-slot stretching device geometry. The
geometrical parameters of the channels used in this study are summar-
ized in Table 1. (B) Schematic of the motion and stretching of DNA
molecules in the device. Independent applied voltages to the left and
right arms of the channel allow adjustment of the location of the
stagnation point and trapping of the DNA molecules. Also shown is the
geometrical setup for the measurement of the angle of the principal axis
of the radius of gyration (). (C) Setup of the Brownian dumbbell model
ina planar homogeneous extensional electric field. The center of mass of
the dumbbell is fixed at the stagnation point.

required to stretch DNA to a certain extension.'* The purpose of
this study is to investigate the coil—stretch transition that takes
place at moderate extensions where the DNA spring force is
affected by the steric confinement. The existence of two linear
spring force regimes with distinct spring constants foreshadows
that confinement will both quantitatively and qualitatively mod-
ify coil—stretch transition.

2. Experiments

2.1. Device Geometry. We electrophoretically stretched single
DNA molecules in homogeneous extensional electric fields
under varying degrees of confinement. In a planar homogeneous
extensional electric field, the electrophoretic velocity of a point
charge varies linearly with position:

vy = uE, = éx (1)
vy =uE, = —¢éy )

where v, and v, are the velocities in the x and y directions,
respectively, E, and E, are the electric fields in the x and y
directions, respectively, u is the electrophoretic mobility, and the
strain rate € is a constant. This type of field kinematics was
achieved by applying symmetric potentials to a cross-slot chan-
nel with the incorporation of hyperbolically curved sidewalls
(see Figure 2A,B). Since the shape of the sidewalls matches
exactly the streamlines in a planar homogeneous extensional
field, there are no inhomogeneities to disrupt the linear electric
field profile over the entire intersection region.®! For the same
planar geometry (x—y plane), the field lines do not depend on
channel height so long as the height is uniform within a device.
The channel has been recently used to study stretching of
confined DNA at large extensions.'* A unique feature of the
device is that it allows for extremely long residence time (#s) of
DNA in the extensional electric field so that any molecular
individualism effects'®!® can be overcome, and the steady-state
behaviors of DNA can be observed. The long residence time was
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achieved by applying independently controlled potentials to the
side reservoirs and thus enabling sensitive adjustment of the
stagnation point position via perturbations to the field (see
Figure 2B). With this capability of stagnation point control,
any DNA molecules of interest can be trapped at the stagnation
point for very high accumulated strains (¢ = &fcs).

2.2. Channel and DNA Preparation. Cross-slot channels with
three different heights were used in this study. 2 um tall micro-
channels were constructed in polydimethylsiloxane (PDMS,
Sylgard 184, Dow Corning) using soft lithography on a silicon
master (SU8-2 photoresist). The PDMS channels were soaked in
0.5 x Tris-Boric acid-EDTA (TBE, Omnipure) buffer at 40 °C
overnight to eliminate permeation driven flow through the
PDMS,*? rinsed and dried briefly, and sealed to a glass cover-
slide. Glass nanochannels with two different heights (& = 300
and 150 nm) were created by a photoresist protected etch in
buffered oxide etchant and thermally bonded to a glass cover
slide as described previously.*® The glass nanochannels were
filled with filtered deionized water and rinsed via application of
potentials at the fluid reservoirs before use. All channels were
flushed with the experimental buffer prior to exposure to DNA
molecules. The experimental buffer was 0.5 x TBE solution with
0.1% 10 kDa polyvinylpyrrolidone (PVP, Polysciences) and an
oxygen scavenger system consisting of 4 vol % f-mercaptoetha-
nol (BME, Cabiochem), 12.5 mg/mL glucose (Mallinckrodt),
0.16 mg/mL glucose oxidase (Sigma), and 9.6 ug/mL catalase
(Sigma). Channels were flushed with new buffer every 2 h during
experiments to ensure a constant ionic strength environment.>*
T4 DNA molecules (165.6 kbp, Nippon gene) and A-DNA
molecules (48.502 kbp, New England Biolabs) were stained (at
a DNA concentration of 0.69 ug/mL) with YOYO-1
(Invitrogen) dye at a base pair to dye ratio of 4:1 and allowed
to sit at least overnight. DNA samples were diluted 2—10-fold
immediately before experiments to reach an optimal concentra-
tion for observation.

2.3. DNA Stretching Experiments. Prior to each stretching
experiment, the electric field kinematics in every channel were
experimentally verified, and the strain rate was calibrated
against applied voltage by tracking the center of mass of
electrophoresing A-DNA as described previously'* (see Sup-
porting Information for details). T4 DNA was used for the
stretching experiments. A typical molecule was electrophoreti-
cally driven into the channel intersection, trapped at the stagna-
tion point, and observed for 9 min or at least 20 units of strain at
desired strain rate. The time constraint is to limit photobleach-
ing of and photoinduced damage to the stained DNA molecules.
We used an inverted Zeiss Axiovert 200 microscope with a 63 x
1.4 NA oil-immersed objective to observe single DNA mole-
cules. Images were captured using a Hamamatsu EB-CCD
camera (model 7190-21) and NIH image software. The max-
imum extension of the DNA was measured from a simple
threshold, and the angle of the principal axis of the DNA radius
of gyration tensor with respect to the axis of elongation was
extracted following procedures described in ref 30. For each
strain rate studied, images of 25—35 DNA molecules were taken.
Steady-state DNA configurations were sampled from each
individual traces at time intervals equal to the higher extension
relaxation time 7; (see section 3.2 for definition) after the
molecule has experienced a strain of 10 (except for the case of
De; = 0.1, a strain of 5 was used because 10 units of strain
cannot be attained under this very small applied strain rate due
to the limited observation time). Ensemble averages and stan-
dard deviations were calculated with the samples collected from
all traces.

3. Dumbbell Model

3.1. Model Description. In addition to experiments, we
construct a Brownian dumbbell model to obtain a qualitative
description of DNA stretching in slitlike confinement. We
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model T4 DNA as two charged beads connected by an elastic
spring. The dumbbell is placed in a homogeneous planar
extensional electric field with its center of mass fixed at the
stagnation point (see Figure 2C). According to the theorem
of electrohydrodynamic equivalence proposed by Long et al.,*®
the electrophoretic stretching force Fg on each bead equals to
the drag force exerted on the bead by a hydrodynamic flow in
which the flow velocity is the same with the bead electro-
phoretic velocity in the electric field: Fg = EWE — Vpeaq),
where &, i, and vpe,q are the bead drag coefficient, bead
electrophoretic mobility, and instantaneous velocity of the
bead, respectively. The probability density function of the
dumbbell end-to-end vector, ¥(R,z), satisfies the diffusion
equation™®

Y 2kgT o
¢ R

2
= lntp—i——Fs) (3)

g

where R is the dumbbell end-to-end vector and Fg is the
elastic spring force (see Figure 2C). We seek steady-state
solutions for ¥ which allow us to predict the steady-state
properties of the dumbbell such as the average end-to-end
distance and the degree of extension fluctuations, as will be
described later. Previous works'>2%2"*7 have employed si-
milar models to study the coil—stretch transition of polymers
in bulk in which case the drag coefficient varies with exten-
sion due to HI. Here the dumbbell model represents DNA
molecule in thin channels where long-range HI is screened,
and we assume the drag coefficient of the dumbbell to be
constant. In addition, we neglect the dumbbell extension in
the channel height dimension so that the dumbbell end-to-
end distance (R = |R]) satisfies R~ Rx2 + R},z, where R, and
R, are the dumbbell end-to-end distances in the x and y
directions, respectively. For a planar homogeneous exten-
sional electric field, the first term in parentheses on the right-
hand side of eq 3 can be expressed as VuE-R = (3/dR)['/-¢R?
cos(20)], where 0 is the angle of the dumbbell principal axis
with respect to the axis of elongation (see Figure 2C, —7/2 <
6 < m/2). The analytical solution to eq 3, for dumbbells at
steady state such that dy/dr = 0, can now be found:*®

0
= ——. E-R—
3R w(w

y(R)=K eXp{LE EeR? cos(20) + /RFS(R)-dR} } (4)

where K is the normalization constant which satisfies the
condition [gyp dR = 1.

3.2. Spring Force Law in Confinement. Information re-
garding the spring force law is required in order to compute
the probability distribution function 3 using eq 4. Since
confinement can either significantly reduce the spring
force or have no impact on the spring force depending on
the extension of the molecule, it is important that the spring
force used in the dumbbell model accounts for these exten-
sion-dependent confining effects. The wormlike chain force
law derived by Marko and Siggia®” has usually been used to
represent the spring force of DNA in bulk. The wormlike
chain spring force is given by Fspux = —HpuRAR/L.),
where L. is the contour length of the spring and Hy,y is the
unconfined Hookean spring constant which can be expressed
in terms of L. and the Kuhn step size b as Hyy = 3kgT/L:b.
The dimensionless function f{R/L.) in the force law describes
the nonlinear response of the spring

-5l ] e
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At low extensions (R/L. < 1), fis approximately unity and
the spring force becomes linear with extension: Fgpux ~
— Hy R, Considering that the DNA spring force is affected
by the steric confinement only at these small extensions
where the nonlinearity represented by f is not important,
we assume that confinement primarily contributes to mod-
ifying the spring constant. Hence, we adapt the bulk worm-
like chain spring force law to the confined case and use an
extension-dependent spring constant H to represent the
confinement-induced effects: Fs = —H(R)Rf(R/L.). Atlarge
extensions where DNA is not stertically confined, the spring
force remains identical to the bulk force law and H = Hyy.
At extensions very close to equilibrium, confined DNA
exhibits linear spring force law with a reduced spring con-
stant which we denote as the low-extension spring constant
Hiow (Hiow < Hpu). A transition region exists where the
spring constant H gradually changes from Hyy, to Hyuye With
increasing extension.

We seek the value of the spring constant H as a function of
the dumbbell extension for all three channels used in this
study. The 2 um tall channel does not significantly confine T4
DNA'*so that H = Hyyy at all extensions. In the 300 and
150 nm tall channels, DNA is confined near equilibrium and
H is extension-dependent. In order to obtain the functional
form of H with respect to the dumbbell extension, we
consider the fact that any modifications of the spring con-
stant directly manifest themselves in the DNA relaxation
dynamics, which can be measured experimentally by stretch-
ing T4 DNA molecules to nearly full extension using a high
electric field gradient, turning off the field, and monitoring
the evolution of the mean-square extension of these mole-
cules.'* Consequently, we can use the experimental relaxa-
tion data to infer the spring constant in confinement. We first
examine the effects of an extension-dependent spring con-
stant on the relaxation of an initially stretched dumbbell. The
equation of change for the mean-square dumbbell end-to-
end distance (R?) can be derived from the diffusion equation
(eq 3) by setting no electric field, multiplying the equation by
R?, and integrating over all the configuration space:*°

SkpT 4
¢ TR (6)

We examine the relaxation behavior at extensions where H is
affected by confinement. In both the 300 and 150 nm tall
channels, the deviation of H from Hyy occurs within the
bulk linear force regime'* so we employ the simplified spring
force law Fs = —HR to eq 6. We further assume fluctuation
of the dumbbell end-to-end distance is small during the
relaxation process such that (HR?) ~ H(R?), giving

d
TR =

8ksT 4H , ,
—— (R
¢ R (7)
When the dumbbell has reached equilibrium such that H =
H,,,, and d(Rz)eq/dt = 0, the mean-square equilibrium end-
to-end distance of the dumbbell can be solved from eq 7:
(Rz)eq = 2kgT/Hio. Substituting this result into eq 7 and
defining a dimensionless dumbbell end-to-end distance X =
R/L. and a scaled relaxation function G = (X°) — (Xeqz), we
arrive at

d
3 (R =

dG  4H _, 4(H — Hyy)
dt ¢ ¢
At high extensions where X > X, and H = Hy, the second
term on the right-hand side of eq 8 can be neglected, and the

(Xea®) (8)
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relaxation of G follows a single-exponential decay dG/dt =
—G/t1, where 77 is the higher-extension relaxation time given
by 71 = /4Hyu. Similarly, for molecules close to equilib-
rium, H = Hy, the second term on the right-hand side of
eq 8 vanishes, and the decay of G is also exponential with a
single time constant 7;; = /4 H,,,, which we term as the low-
extension relaxation time. The prediction of two distinct
relaxation time constants by eq 8 is in accord with recent
experimental results of DNA relaxation times in confine-
ment. !’
Equation 8 can be rearranged to give

4H 1 dG

1 (Xeg®)

CT T d w0 ©)

Multiplying eq 9 by 7; and considering the bead drag
coefficient { is assumed to be a constant for a given channel
height, we obtain

H o 71 d_G ﬂ <Xeq2>
Hyx (X2) dt mp (X?)

(10)

Equation 10 allows us to calculate the spring constant from
the relaxation data measured in experiments. We first lo-
cated on experimental data (see Figure 3A,B) the two regions
where G decays as a single-exponential function and ex-
tracted the corresponding time constants 7y and 7y, following
procedures described previously.!” Results of the relaxation
times for all three channels are summarized in Table 1 (see
Supporting Information for a comparison between the re-
laxation times of T4 DNA measured here and these reported
in ref 14 for the same channel heights). The low-extension
spring constant H, is given by Hyow/Hpux = T1/711- We next
evaluated the first-order time derivative of the relaxation
function and finally used eq 10 to calculate the spring
constant in the transition region where H varies with extension.
As a result, the above approach of relating the dumbbell
model relaxation to experimental relaxation data directly
gives the value of H,, and, more importantly, the quanti-
tative extension dependence of the spring constant in terms
of a smooth transition region.

Figure 3C and 3D show the extracted spring constant
(normalized by Hyyi) as a function of the dumbbell end-to-
end extension X for all three channels and the resulting
spring force laws, respectively. It is clearly seen that the
nanochannels change both the magnitude and the functional
form of the spring force within the bulk linear force regime
(0 = X < 0.3). At small extensions, we observe a second
linear force regime corresponding to sterically confined
DNA with a reduced spring constant H,,,. This confined
linear regime is connected to a truncated bulk linear force
regime present at larger extensions through a rather wide
transition region where the spring force increases nonlinearly
with X toward the bulk force law. The nonlinearity of the
spring in the transition region primarily results from the
gradual increase of the spring constant from Hoy, to Hpu. A
decrease in channel height not only lowers the value of Hj.,,
but also broadens both the confined linear force regime and
the transition region. Consequently, the steric confining
effects hold for a larger range of extensions (i.e., H restores
to Hypyk at a larger extension) in the more confined channel,
in agreement with previous scaling analysis.'” In the 150 nm
tall channel, the extension at which transition region termi-
nates has been pushed up very close to X = 0.3. We expect
that with further decrease in channel height the transition
region will eventually extend into the nonlinear regime, and
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Figure 3. (A, B) Experimental relaxation data and relaxation of the dumbbell model calculated using eq 8 with the extracted spring constant for the 300
nm tall channel (A) and the 150 nm tall channel (B). The two regions where H is a constant are indicated with dotted lines and the transition region
where H varies with extension is indicated with the black solid line in the dumbbell relaxation curve. (C) The ratio H/Hpyy as a function of the
dimension less dumbbell end-to-end distance X extracted from experimental relaxation data for the 2 gm, 300 nm, and 150 nm tall channels. (D) The
corresponding dimensionless dumbbell spring force Fs/,/kgT as a function of X for the three channels; /, is the persistence length of the DNA.

Table 1. Channel Dimensions and T4 DNA Relaxation Times

h [ (um) w (um) 71 (8) 711 (8)
2.0 ym 100 40 1.9 1.9
300 nm 50 40 3.0 6.4
150 nm 50 40 5.7 21.2

the confined linear force regime will become the only linear
region in the spring force law. We note that the spring force
used in the dumbbell model represents the global effective
spring force of a real DNA chain, which is the compound
effect of the polymer’s intrinsic entropic elasticity and the
repulsive interactions among monomers (i.e., intramolecular
excluded volume forces). The intrinsic spring constant (i.e.,
neglecting excluded volume effect) of a completely 2D chain
is two-thirds that of a 3D bulk chain.?® However, we observe
that the effective spring force law can decrease by more than
50% compared to the bulk value. The excluded volume
effect, therefore, should be playing an important role.

Now we have all the information needed to compute the
dumbbell configuration probability density function . We
rewrite eq 4 in terms of dimensionless parameters and finally
arrive at the equation that is used to calculate 1:

X
P(X,0) =K expg — 3N (/ ixf(x) dx — Dep X? cos(29)>
0 Hbulk

(11)

where N is the number of Kuhn steps in the spring N = L./b,
and the dimensionless group Dej is the Deborah number
defined using the higher extension relaxation time De; = £1;.

3.3. Predicting Experimental Observables. The probability
density function 9 can be used to predict the steady-state
properties of the dumbbell for given values of Deborah
number De;. We focus on three important properties that
characterize the coil—stretch transition: the average exten-
sion, the degree of extension fluctuations, and the molecular
orientation in the extensional electric field. However, the

dumbbell model is used to represent the end-to-end vector of
a real DNA chain which is not experimentally observable.
Instead, the maximum extension R,,,x of the DNA was
measured in experiments. We use X,,.x to denote the frac-
tional maximum extension of the DNA: X .x = Ruax/Le. At
large De; where DNA molecules are highly extended, the
maximum extension and the end-to-end distance are almost
identical and share similar distributions. At low De; where
DNA molecules do not significantly deviate from equilibri-
um, the distributions of X}, can be quite different from the
distribution of X. Specifically, we expect the end-to-end
distance X to hold a lower average value and exhibit more
fluctuations. In order to predict the behavior of the max-
imum extension, we constructed a special probability dis-
tribution function, P(Xpay/X), defined as the probability
distribution of the maximum extension when the end-to-
end distance of the molecule is fixed at a certain value.
P(Xmax|X) was determined using Brownian dynamics simu-
lations of a multi bead—spring model (see Supporting In-
formation for details). This function allows us to map the
dumbbell model prediction for X to the distribution of the
maximum extension, P(Xpax):

1 /2
P(Xe) — / P X) dX [ p(X,00Xdo  (12)
0 — /2

The average fractional maximum extension can now be
computed using

1
</Ymax> = / XmaxP(Xmax) deax (13)
0

We calculated the standard deviation (o) of Xy« to indicate
the magnitude of extension fluctuations.

o= \//1 (Xmax - <Xmax>)2P(Xmax) deax (14)
0
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Figure 4. Experimental results and the dumbbell model predictions of
the steady-state DNA behaviors. (A) The ensemble average steady-state
maximum extension. (B) The standard deviation of the maximum
extension which is a direct indication of the degree of extensional
fluctuations; inset shows just the experimental standard deviation data
for better clarity. (C) The root-mean-square angle of the principal axis
of the molecule relative to the axis of elongation (O s, in degrees). All
quantities are plotted against Dey.

The orientation of the DNA in the stretching electric field has
been experimentally examined by measuring the root-mean-
square angle (Arms, see Figure 2B) of the principal axis of the
DNA radius of gyration.'* We thus calculated the same
quantity for the dumbbell model:

1 pm/2
Orns = \/ / / 0*y(X,0)X dX do (15)
0 — /2

In the T4 DNA relaxation experiments described earlier,
we also only measured the maximum extension of DNA. We
transformed the measured mean-square maximum extension
(Xmax’) into the square end-to-end distance X2 so that eq 10
can be applied to calculate H. With the function P(X .| X),
the mean-square maximum extension corresponding to a
certain end-to-end distance X can be determined: (X, max2> =
f (I)Xmasz(XmaX\X) dXax. The transformation was per-
formed by simgly seeking backward for the square end-to-
end distance X~ at a given (Xma2).

4. Results and Discussion

4.1. Steady-State Extension. Figure 4 shows both the
experimental results and dumbbell model predictions for
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the steady-state properties of T4 DNA molecules (contour
length L. &~ 75 um). All quantities are plotted against Dey,
the Deborah number using the higher-extension relaxation
time (77) to normalize the strain rate. Figure 3A presents the
average maximum fractional extensions of T4 DNA for the
three channels with different heights. The experimental
data collapse at large Dej, confirming that 7y is the correct
time scale that governs DNA stretching in confinement at
large extensions.'* At small values of Dej, DNA molecules
in the nanochannels clearly exhibit a distinct deformation
process comparing with molecules in the 2 um tall channel
which does not significantly confine T4 DNA. While a
rather abrupt increase in extension is observed near De; =
0.5 in the 2 um tall channel, the coil—stretch transition
becomes more gradual in confinement: the onset of DNA
stretching occurs much earlier, and the sharpness of the
transition reduces with decreasing channel height. The
dumbbell model qualitatively predicts the stretching of
DNA in confinement. Specifically, the predicted coil—
stretch transitions agree almost quantitatively with experi-
mental data at low Dey, and the extension curves correspond-
ing to different channel heights collapse at high De;. The
model overpredicts DNA extension at large stretch, possibly
due to the fact that the dumbbell model overestimates the
stretching force by representing a continuous polymer with
two beads positioned at the polymer’s termini, which are
subject to stronger field strengths than a majority of the
polymer in between.

4.2. Extension Fluctuations. A unique feature accompany-
ing the coil—stretch transition is the greatly enhanced con-
formation fluctuations near the critical strain rate.”” We
probe the steady-state extension fluctuations of T4 DNA
by measuring the standard deviation (o) of the fractional
maximum extension. Results of ¢ as a function of De; are
displayed in Figure 4B. A single peak is clearly observed in
the experimental standard deviation plot for DNA in the
2 um tall channel (see inset of Figure 4B). The peak occurs at
De; ~ 0.6, in good agreement with that reported in a similar
study for T4 DNA in bulk hydrodynamic elongational flow
performed by Gerashchenko and Steinberg.”” The magni-
tude of the peak measured in their study, however, is about
1.7-fold larger than that observed here for the same DNA in
the 2 um tall channel. We believe that a probable reason for
this disparity is the much stronger extension dependence of
the drag coefficient of DNA in bulk due to dominant
intramolecular HI (see Supporting Information for details).
The location of the peak in o for the 2 um tall channel also
corresponds well to where the drastic increase in extension is
seen in Figure 4A. In fact, the maxima of the standard
deviation provide a quantitative criterion for the determina-
tion of the critical strain rates in the coil—stretch transition,>>
which, for the confined case, can be difficult to identify from
the more gradual increase in extension.

The standard deviation data for DNA in the nanochannels
show dramatically different characteristics. The peak at Dej ~
0.6 still exists but has a lower amplitude in the more confined
channel. More importantly, we observe increased fluctua-
tions at equilibrium (i.e., De; = 0) and the emergence of a
second small peak at lower values of De;. As the channel
height decreases, the value of this local maximum increases
and its location moves toward smaller De; (peak occurs at
De; ~ 0.3 in the 300 nm tall channel and De; ~ 0.2 in the
150 nm tall channel). The existence of a second peak suggests
that the coil—stretch transition in these nanochannels is
characterized by two critical strain rates, a phenomenon
unique to confinement in polymer rheology. The dumbbell
model confirms the shift from a single critical strain rate in
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Figure 5. (A—C) Comparison between the stretching force exerted on a dumbbell with 6 = 0 at the critical Dej and the dumbbell spring force, for the
2 um tall channel (A), the 300 nm tall channel (B), and the 150 nm tall channel (C). Both forces are nondimensionalized with kgT//,. The red lines in (B)
and (C) indicate the transition regions of the spring force where the spring constant increases with X. Insets show the dumbbell model prediction of the
standard deviation o versus Dej for corresponding channel heights. The critical Deborah number is determined by seeking local maxima of o for each
channel. A single critical Deborah number De . exists in the 2 ym tall channel while there are two critical Deborah numbers for the nanochannels, De; ¢
and Dey ¢». (D—F) The effective conformational energy (E/kgT) of the dumbbell as a function of X at different values of De; for the 2 um tall channel
(D), the 300 nm tall channel (E), and the 150 nm tall channel (F). The energy landscapes at the critical Deborah numbers in each channel are highlighted

with the black solid lines.

the microchannel to two critical strain rates in confinement.
The predicted values of the critical De; corresponding to
the local maxima in 0 match experiments well. Effects of the
channel heights on the magnitude of these peaks and the
equilibrium fluctuations are also qualitatively captured in
the model. However, the dumbbell model overpredicts the
magnitude of the peak near equilibrium and underpredicts
that at the larger De;. Considering that the dumbbell model
is a very simplistic description of a real DNA molecule, we
would expect some moderate quantitative differences.

4.3. Molecular Orientation in the Extensional Electric
Field. Figure 4C shows the root-mean-square angle (Ogrns)
of the principal axis of the in-plane DNA radius of gyration
versus Dey. Orms indicates the degree of alignment toward
the axis of elongation (x-axis) from the equilibrium average
of Orms.cq = 52°. Highly extended molecules align comple-
tely with the stretching electric field and give Ormseq = 0°
(see Figure 2B). It is clearly seen that DNA molecules start to
orient toward the x-axis at very low values of De; and yield
strong measurable response of Orns. Both the experimental
data and the dumbbell model predictions show dramatically
faster alignment of DNA molecules with the stretching
electric field in the nanochannels. In all three channels, the
molecules have already become fairly aligned with the
stretching field at the Deborah number where significant
stretching occurs or the first peak in the standard deviation
emerges, indicating that this orientational response charac-

terizes the behaviors departing from equilibrium dynamics
prior to coil—stretch transition.'* The molecule must first
align with the field in order to be deformed, and the faster
molecular orientation in the nanochannels is thus in accord
with the earlier onset of stretching observed in Figure 4A.

4.4. Force Balance and Effective Conformational Energy.
Both the experiments and theory show that the coil—stretch
process is qualitatively different in confinement and the
existence of two critical Deborah numbers. Further insight
can be gained by revisiting the dumbbell model and con-
sidering both a force balance and effective conformational
energy landscape. The conformation of a polymer in an
elongational field is a competition between the spring force
and the stretching force (electric field). The counterbalance
between these two forces can be further related to an effective
conformational energy landscape, which is very useful for
the interpretation of the coil—stretch transition.'>20:213%:40
From eq 11, we can define an effective dumbbell conforma-
tional free energy E that satisfies 1y ~ exp(E/kgT):

b%
EW.9) =3N / i xf(x) dx — DerX? cos(20) | (16)
ks T 0 Hpux

We consider a dumbbell at steady-state and assume it is
completely aligned with the axis of elongation (6 = 0). The
electrophoretic stretching force exerted on each bead now
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varies linearly with the dumbbell extension: F = 'A/zgéR. We
nondimensionalize the force with kgT/l,, giving F'g = Fgl,/
kgT = 3DerX. The dimensionless spring force is given by
Fs = Fslp/kgT = (3/2)(H|Hyui) Xf(X) and reduces to F'g =
(3/2)(H/Hypu) X at small values of X. The effective confor-
mation energy of the dumbbell as a function of X is calcu-
lated with eq 16 by setting & = 0. Figure 5 shows the
comparison between Fg at the crmcal Deborah numbers
and the dumbbell spring force F for each channel as well as
the corresponding effective conformational energy land-
scapes at several different values of Dey. The critical Deborah
numbers are determined by seeking local maxima of the
predicted standard deviations (see insets of Figure SA—C):
De; . = 0.55 for the 2 um tall channel, De;; = 0.3 and De; ¢, =
0.6 for the 300 nm tall channel, and De;; = 0.18 and De; o, =
0.65 for the 150 nm tall channel.

Figure 5A shows the force comparison for the 2 um tall
channel in which the bulk spring force law applies. It is
clearly seen that the linear region of the spring force is
balanced by the stretching force at the critical Deborah
number. This force balance creates a flat effective energy
profile within the entire bulk linear force regime (see
Figure 5D), indicating that the dumbbell has equal prob-
ability to sample at any of these end-to-end extensions (0 <
X < 0.3) and thus exhibits large extension fluctuations. At
De; < Dey, the stretching force is lower than the spring
force at all extensions (except for X = 0) so the dumbbell
remains collapsed. This collapsed state is also implied by the
effective energy landscape which shows a single minimum at
X = 0 at these small values of De;. Once Dej is increased
above Dey, the stretching force becomes larger than the
spring force within the linear force regime, and we observe
the formation of a deep energy well with the minimum point
now located at a much higher extension (beyond the linear
force regime). As a result, the linear nature of the bulk spring
force at small extensions induces this sudden shift in the
location of the energy minimum and eventually leads to the
sharp coil—stretch transition.

In the nanochannels, the presence of two linear regimes
with different spring constants in the DNA spring law is
responsible for the two critical strain rates in the coil—stretch
transition. As shown in Figure 5B and 5C, the confined linear
force regime at small extensions and the truncated bulk
linear force regime at larger extensions are balanced by the
stretching force at two different critical Deborah numbers,
Dey and Dey,, respectively. The force balance is clearly
seen at Dej.; but less evident at Dej ., especially for the
150 nm tall channel. Alternatively, the effective energy land-
scape can provide a much clearer demonstration of this force
balance because the exact superposition of the stretching
force and the spring force is not required for a relatively flat
energy profile: we observe in Figure SE and 5F that the
energy landscape becomes flat within the range of extensions
where the magnitudes of Fg and F'g are close to each other at
both critical Deborah numbers. Early stretching occurs once
the Deborah number exceeds De;; as the effective energy
starts to show a clear minimum at X > 0. The stretching pro-
cess, however, is limited by the nonlinear transition region of
the spring force (indicated as the red lines in Figure 5B,C).
For Deborah numbers between De;; and Dey¢,, the non-
linear spring force restricts the locations of the energy
minimum to extensions within the transition region and thus
results in a more gradual increase in extension with De;.

Using the simple scaling of F ~ F, we can estimate the
values of the critical Deborah numbers for all three channel
helghts For the 2 um tall channel H = Hyy, and thus Fg =

3/,X in the linear force regime, giving De; <~ 0.5. For the
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nanochannels, the sprmg force is given by F's = (3/2)(Hiow/
Hyun)X and Fg = /ZX in the two linear regimes, respec-
tively. The resulting two critical Deborah numbers are Dej ¢;
~ How/2Hpui (this yields Dey¢; ~ 0.24 for the 300 nm tall
channel and De;¢; ~ 0.13 for the 150 nm tall channel) and
De; o, ~ 0.5. The estimations of the critical Deborah num-
bers from the scaling analysis are similar to these determined
from the standard deviation data.

The magnitude of the steady-state extension fluctuation is
directly linked to the flatness of the effective conformational
energy landscape. From Figure SD—F we see that as the
channel height decreases, the effective energy for a molecule
at equilibrium (i.e., De; = 0) shows a more gradual increase
from X = 0 due to the reduced spring constant at these small
extensions. As a result, a thermal disturbance (AE ~ kgT)
produces a larger change in extension in the more confined
channel, consistent with the enhanced equilibrium fluctua-
tions observed in experiments. At the critical strain rates in
each channel, the magnitude of the standard deviation o is
proportional to the span of extension over which the effective
energy has a flat profile. Since the flat energy landscape
results from the balance of the stretching force with the linear
region of the spring force, the width of the corresponding
linear spring force regime essentially determines the value of
o at these critical strain rates. A decrease in channel height
broadens the confined linear force regime and narrows the
truncated bulk linear force regime (see Figure 3D), leading to
an increased peak in the standard deviation at Der; and a
suppressed peak at Dey ¢, as observed in Figure 4B. Finally,
we point out that the existence of two critical strain rates in
the coil—stretch transition requires two distinct ranges of
extensions where the spring force keeps strong linearity. As
discussed in section 3.2, further decrease in the channel
height from 150 nm may push the transition region into the
nonlinear regime of the spring force (i.e., X > 0.3), and the
resulting spring force law returns to possessing a single linear
force regime. Under this condition, we postulate that a single
peak in the standard deviation exists at Dey . ~ Hiow/2 Hpuik.
and the coil—stretch transition is again characterized by a
single critical strain rate. These effects of further confine-
ment are yet to be examined.

5. Conclusions

We have used a nanofluidic cross-slot device to investigate the
influence of slitlike confinement on the coil—stretch transition of
single DNA molecules in a 2D homogeneous extensional electric
field. We examine the evolution of three steady-state properties
with applied strain rate that characterize the coil—stretch transi-
tion: the average extension, the magnitude of extension fluctua-
tions, and the molecular orientations in the extensional electric
field. Comparing with the sharp transition occurred near a single
critical strain rate in the unconfined case, DNA molecules in the
nanochannels exhibit highly modified coil—stretch processes.
Specifically, the onset of DNA stretching starts earlier, the
transition progresses more gradually, and most importantly, we
identify two distinct critical strain rates in the transition. Prior to
the conformation transition, DNA shows much faster alignment
with the stretching electric field in the nanochannels. We have
constructed a Brownian dumbbell model in which the confine-
ment effects are represented with a constant drag coefficient and
an extension-dependent spring constant extracted from experi-
mental relaxation data. The dumbbell model is able to provide
qualitative predictions of the coil—stretch transition of DNA in
confinement. By exploring the interplay between the stretching
force and the spring force as well as the effective energy landscape
of the dumbbell model, we conclude that the essential physical
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reason for the different coil—stretch transition is the altered DNA
spring force law which for the channel heights studied here
contains two linear force regimes with distinct spring constants.
Further experiments should be performed to explore the effects of
even stronger confinement. Our results are not only of funda-
mental importance to the understanding of the interactions
between confinement and a deforming polymer but also useful
in the design of devices aiming to exploit confinement to
manipulate DNA molecules.
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