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ABSTRACT: The process of assembling particles into organized
functional structures is influenced by the rheological properties of the
matrix fluid in which the assembly takes place. Therefore, tuning these
properties represents a viable and as yet unexplored approach for
controlling particle assembly. In this Letter, we examine the effect of the
matrix fluid yield stress on the directed assembly of polarizable particles
into linear chains under a uniform external magnetic field. Using particle-
level simulations with a simple yield stress model, we find that chain
growth follows the same trajectory as in Newtonian matrix fluids up to a critical time that depends on the balance between the
yield stress and the strength of magnetic interactions between particles; subsequently, the system undergoes structural arrest.
Appropriate dimensionless groups for characterizing the arresting behavior are determined and relationships between these
groups and the resulting structural properties are presented. Since field-induced structures can be indefinitely stabilized by the
matrix fluid yield stress and “frozen” into place as desired, this approach may facilitate the assembly of more complex and
sophisticated structures.

1. INTRODUCTION
The assembly of colloids and nanoparticles into complex and
highly ordered structures continues to be an important and
effective method for creating functional materials with unique
and technologically attractive properties.1,2 Through manipu-
lation of the thermodynamic and kinetic interactions between
particle building blocks, authors have demonstrated the
assembly of materials such as photonic crystals3 and electronic
circuits,4,5 as well as biomaterials such as peptide-based
scaffolds for regenerative medicine.6,7 Approaches to control-
ling the assembly process generally fall into three categories:
adjusting particle or template properties like shape, size,
patterning, and chemical functionality;8,9 tuning particle
interactions via thermodynamic variables such as temperature
or pH;10,11 and directing particle behavior with external flows
or fields, such as electric or magnetic fields.2,12 In particular, by
applying a uniform magnetic field to polarizable colloids
suspended in a matrix fluid, directed assembly of the particles
into aggregated chain-like structures in the direction of the
external field can be achieved.13 The anisotropic mechanical
properties of these structures have been exploited in magneto-
rheological (MR) fluids,14,15 which undergo dramatic changes
in bulk rheological properties upon formation of particle chains,
as well as for lab-on-a-chip separations.16 The matrix fluid in
most particle assembly studies, as well as in most MR fluids and
devices, is typically Newtonian; however, it has long been
known in the rheology community that the behavior of
suspended particles is significantly influenced by the matrix
fluid rheology.17 For example, Feng and Joseph demonstrated

that spherical particles dispersed in viscoelastic Boger fluids
subjected to bulk torsional flow undergo radial migration to
form distinct ring patterns; by contrast, no such microstructure
was observed in the Newtonian case.18 Additionally, the use of
yield stress matrix fluids to prevent sedimentation in MR
suspensions has motivated questions about the effects of the
yield stress on the formation of field-induced structures.19,20

With these considerations in mind, we present in this letter a
new approach to controlling particle assembly via the non-
Newtonian properties of the matrix fluid. Because of the
immediate relevance to MR fluid technology, we specifically
demonstrate this approach by examining the effect of the matrix
fluid yield stress on the directed assembly of polarizable
particles under a uniform external magnetic field. Using 2-D
particle-level simulations, we find that chain growth initially
follows the same trajectory as in Newtonian matrix fluids, but is
arrested at a critical time that scales with a dimensionless group
that characterizes the balance between the yield stress and
interparticle magnetic stresses. Adjusting this balance allows the
properties of the arrested structure, including the average
cluster size, to be tuned. Assuming the matrix fluid yield stress
dominates over other forces on particles (i.e., thermal,
gravitational, electrostatic, etc.), arrested structures are
indefinitely stable even after the magnetic field is removed,
being essentially “frozen” in the matrix until additional
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manipulation is desired. This behavior is generic to particle
dynamics in yield stress matrix fluids and could be exploited in
other types of assembly processes, including assembly via
electric fields, fluid flow, or chemical interactions. Finally, this
Letter will have important implications for the formulation and
understanding of MR suspensions stabilized by yield stress
matrix fluids. We identify regimes in which the arrest of dipolar
chain formation due to the matrix fluid yield stress is expected
to significantly impact the field-induced rheological properties.

2. SIMULATION DETAILS
The simulation method used in this work is adopted from a previously
described algorithm,21,22 which was developed to study field-induced
chaining of dipolar particle suspensions in Newtonian matrix fluids.
We review the essential features of this method and discuss the
modifications necessary to incorporate a matrix fluid yield stress. The
pairwise magnetic interaction energy Uij

mag between two dipoles
separated by a distance rij is given by
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Here m = ∥m∥ is the magnitude of the dipole moment, μ0 is the
magnetic permeability of the medium (assumed to be equal to the
permeability of free space), and θij is the angle that the line connecting
the particle centers makes with the direction of the applied magnetic
field. Though eq 1 neglects mutual magnetic induction and treats
particles as point dipoles with identical dipole moments aligned with
the external magnetic field, this expression has been successful in
quantitatively capturing the particle-level behavior in MR suspensions
subject to a uniform external magnetic field,21,23,24 providing results
consistent with experimental observations.25 In the work of
Haghgooie,22 the Heyes−Melrose displacement algorithm is used to
correct for hard-sphere overlaps between dipolar particles at each time
step of the simulation.26 This approach complicates the incorporation
of a matrix fluid yield stress, however, because it accounts for excluded
volume interactions through a constraint rather than an explicit
potential. Additionally, we find that when attempts are made to
incorporate a matrix fluid yield stress, the Heyes−Melrose algorithm
leads to unphysical behavior such as “kinked” chains that drift in a
direction perpendicular to the applied magnetic field. Therefore, we
instead include a short-ranged repulsive potential between particles:27
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where d is the particle diameter and rc is a constant that controls the
range of the interaction. For our work, we set rc = 0.05d. Lower values
of rc better approximate a hard-sphere potential, but require
prohibitively short time steps. The pre-exponential factor, including
its dependence on m and μ0, ensures that the magnetic and excluded
volume interactions are of a similar order of magnitude for particle
separations on the order of rc, resulting in stable simulations that
approximate the behavior of hard-sphere magnetic particles. In order
to simplify the simulation so that effects of the matrix fluid yield stress
can be more easily distinguished, we neglect thermal forces and
hydrodynamic interactions. In this case, the total force Fi on particle i
at time t is calculated as

∑ θ= −∇ +
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The Langevin equation describing the particle velocity is then

ζ
≃t t tr Fd ( )

1
( ) di i (4)

where ζ is the drag coefficient of a particle. Equation 4 therefore
represents a balance between magnetic, excluded volume, and drag

forces on a particle. In order to generalize the simulation results, eq 4
is made dimensionless using the characteristic length scale d and the
characteristic force Fchar = πd2μ0(ρM)2/24, where ρ is the particle mass
density and M is the particle magnetization per unit mass. M is related
to the dipole moment m via the expression M = m/Vρ, where V is the
volume of a particle. Fchar represents the force between two particles
aligned with the field and in contact. Applying these scalings, the
dimensionless Langevin equation becomes

̂ ̂ ≃ ̂ ̂ ̂t t tr Fd ( ) ( ) di i (5)

where the accent ∧ represents dimensionless variables. Setting tchar =
24ζ/πdμ0(ρM)2 as the characteristic time scale removes all free
parameters from the dimensionless Langevin equation. This time scale
represents the time necessary for a particle to move a distance of one
particle diameter in response to the characteristic driving force Fchar.

A Bingham viscoplastic model for a yield stress matrix fluid is
incorporated by applying a constraint to eq 5. We make the simple
approximation that a particle moves during a time step only if the sum
of the forces on the particle (including both magnetic and short-range
steric forces) is sufficient to overcome the matrix fluid yield stress, τy.
Otherwise, the particle remains motionless for that time step.
Mathematically, if ∥Fi∥ ≥ πd2τy/2C, then the particle executes a
step according to eq 5; otherwise, drî is set to 0. C is a constant that
relates the matrix fluid yield stress to the critical force necessary to
cause an embedded particle to yield. For spherical particles in Bingham
fluids, Beris et al. showed using finite-element modeling that C ≈
0.143.28 In dimensionless terms, the criteria for yielding is
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The dimensionless yield parameter YM* can be understood as the
characteristic interparticle magnetic stress divided by the matrix fluid
yield stress τy. That is, for YM* ≫ 1, magnetic forces dominate over the
yield stress, while YM* ≪ 1 corresponds to an immobilized system in
which magnetic forces are too weak to overcome the yield stress. Note
that this dimensionless group is similar to the so-called “magnetic yield
parameter” introduced by previous authors.19

Simulations are conducted in 2-D with a uniform external magnetic
field in the vertical direction. The simulation box is square with a side
length equal to 100 particle diameters and periodic boundary
conditions on all sides. To begin simulations, particles are initially
placed in the box in a random configuration with no particle overlaps
and eq 5 is integrated forward in time using a simple Euler scheme for
1000 time steps at a time-step size of Δt ̂ = 3.3 × 10−7. The purpose of
this short preparatory simulation using a very small time step is to
resolve the trajectories of any particles positioned very close to each
other in the random initial placements. Subsequently, the time-step
size is increased to Δt ̂ = 3.3 × 10−4 for the remainder of the
simulation. The constraint in eq 6 is applied at each time step. A
dimensionless spatial cutoff (scaled with the particle diameter) for the
interparticle forces of 15 was used along with a linked-list binning
algorithm with bin sizes that slightly exceed the cutoff value.21,22,29

Interested readers are referred to earlier communications for additional
details about the simulation algorithm.21,22

3. RESULTS AND DISCUSSION
It is well-known that applying a uniform magnetic field to a
dispersion of polarizable spherical particles in a Newtonian
matrix fluid results in the formation of long-chain structures in
the direction of the external field. Since a matrix fluid with a
strong enough yield stress will completely immobilize particles,
we examine magnetic directed assembly in a regime where both
magnetic interactions and the matrix fluid yield stress play an
important role in structure formation. Because the characteristic
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force in our simulations is defined as the maximum force
between two dipolar particles, the regime of interest
corresponds to values YM* > 1.
Images of magnetically assembled structures after long times

(t ̂ = 2667) are shown in Figure 1 for dispersions with a particle
area fraction of ϕA = 0.15 and magnetic yield parameters of (A)
YM* = 6.7, (B) YM* = 67, and (C) the Newtonian case (YM* →
∞). At YM* = 6.7, only a marginal development of the structure
from the initial condition is observed, as the arrested
configuration consists of a randomly distributed mixture of
individual particles and small chains; the magnetic interactions
are not strong enough to generate large-scale structures. At
YM* = 67, the average chain length is significantly longer in the
arrested state, and the vast majority of particles are
incorporated in vertically aligned chains. As YM* increases, the
limiting Newtonian case is approached, for which domain-
spanning chains are formed and some lateral aggregation of
chains is evident. We note that while (A) and (B) represent
arrested configurations, chaining and lateral aggregation
continue very slowly in the Newtonian system even up to t ̂ =
2667. See the Supporting Information included with this article
for movies of magnetic directed assembly at ϕA = 0.15 and
various values of YM* .
As a first step toward understanding this behavior, we

consider a simpler system of two dipolar particles in a yield
stress matrix fluid. With one particle fixed at the origin, yielding

occurs if the distance to the second particle is sufficiently small
that the interparticle force overcomes the matrix fluid yield
stress; otherwise, both particles remain immobile. For this
system, the critical positions for yielding can be found by
solving for the contour on which the magnitude of the
dimensionless force on the second particle is equal to 1/YM* , as
in the yield criteria in eq 6. Neglecting the repulsive steric force,
which is much smaller than the magnetic force for these
interparticle distances, the magnitude of the force on the
particle is calculated from eqs 1 and 3:
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The magnitude of the dimensionless force is therefore
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Setting ∥F̂∥ = 1/YM* gives the expression for the yield contour.
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Contours corresponding to eq 10 are plotted in Figure 1D for
identical vertically directed dipole moments m and YM* values of
6.7, 67, and 333. As YM* increases, the contours expand and
particles positioned farther from the origin are able to yield in
response to the applied magnetic field. Because of the angular
dependence of dipolar interactions, the interparticle force is
either attractive (0° ≤ θij < 55°, solid lines), for which yielded
particles undergo aggregation, or repulsive (55° < θij ≤ 90°,
dotted lines), for which particles tend toward an unaggregated
arrested state. Though only one quadrant is shown in Figure
1D, the contours are symmetric across the vertical and
horizontal axes. While multiparticle interactions captured in
the full simulations (including the behavior of particle chains)
are more complex than this two-particle system, the contours in
Figure 1D are nonetheless helpful in understanding the basic
physical phenomena underlying dipolar particle suspensions in
the presence of a yield stress. In particular, Figure 1D implies
that a particle (or a chain of particles) is arrested when the
envelope defined by the yield contour becomes devoid of
particles. By extension, the entire system becomes arrested
when all distances between distinct clusters fall outside of the
yield contours that result from the summation of all
interparticle interactions.
The images in Figure 1 imply that the magnetically

assembled structures consist primarily of vertically connected,
chain-like aggregates, and that a relatively small amount of
lateral aggregation can occur at higher values of YM* . To explore
the directionality of structures quantitatively, we calculate the
vertical connectivity, Cv, and the horizontal connectivity, Ch,
defined as the number of vertical and horizontal connections,
respectively, scaled by N − 1, where N is the number of
particles in the simulation.22 One connection is counted for
each pair of particles with centers separated by a dimensionless

Figure 1. Magnetically assembled structures at ϕA = 0.15 at long times
(t ̂ = 2667) for dimensionless magnetic yield parameters of (A) YM* =
6.7 and (B) YM* = 67, and (C) the Newtonian case (YM* → ∞). The
applied magnetic field is in the vertical direction. While a mixture of
individual particles and short chains is observed at YM* = 6.7, increasing
YM* results in an arrested state with greater numbers of particles
incorporated into longer chains. In (D), contours show the critical
configurations at which yielding occurs in a two-particle system at
various values of YM* . With one particle fixed at the origin, a second
particle yields if its position is on or inside the contour (given by eq
10); otherwise, the system is arrested. Depending on the angle
between the line connecting the particle centers and the direction of
the dipole moment m, magnetic interactions are attractive or repulsive.
The yield contours expand with YM* and are symmetric across the
vertical and horizontal axes.
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distance of at most 1.05 (i.e., the radii at contact +5%).
Connections are considered to be vertical if θij ≤ 30° or θij ≥
150°, and horizontal if 30° < θij < 150°. The vertical and
horizontal connectivities Cv and Ch, respectively, are plotted in
Figure 2 as functions of the dimensionless time for various
values of YM* , with the top curves representing Cv and the
bottom curves representing Ch. All simulations begin with the
same initial condition of randomly placed particles. The vertical
connectivity Cv generally grows with time and, after an initial
rearrangement of the starting configuration, is at least an order
of magnitude greater than Ch for all YM* . These observations are
consistent with the formation of vertically aligned chains as
shown in Figure 1. The horizontal connectivity Ch decreases
during the initial rearrangement, exhibiting some scatter due to
very small numbers of horizontal connections, then increases as
some lateral aggregation of chains occurs on longer time scales.
Perhaps the most striking feature of the results is that at a
critical time (which increases with YM*) both connectivity
measures diverge from the common trajectory that coincides
with the behavior of the Newtonian system. Subsequent to this
separation, both Cv and Ch plateau and cease to evolve in the
systems with a yield stress matrix fluid. Movies of the particle
behavior (see the Supporting Information) confirm that all
particles are immobilized when the plateau in the connectivity
data is attained. This behavior implies that while the matrix
fluid yield stress does not affect the mechanism of structural
development, it results in an arrest of chain growth. Though it
is reasonable to expect that a matrix fluid yield stress would
hinder structure formation, it is remarkable that the dynamics
for all YM* values appear to follow the Newtonian trajectory
until a critical time corresponding to the onset of structural
arrest.
The observation that suspensions of dipolar particles in yield

stress matrix fluids undergo structural arrest from a common
trajectory is also supported by data for the time-evolution of the
average cluster size, ⟨c⟩, shown in Figure 3 for the same
simulation conditions shown in Figure 2. The average cluster
size is calculated as ⟨c⟩ = N/Nc, where Nc is the total number of
clusters and a cluster is identified as a collection of continuously
connected particles according to the definition of a connection

given above.22 The average cluster size grows with time and, in
accordance with the connectivity results, data at finite values of
YM* break away from a common trajectory at a critical time that
increases with YM* . Upon reaching structural arrest in the yield
stress systems, ⟨c⟩ plateaus at values that grow with YM* but are
uniformly smaller than the long-time Newtonian result. Taking
the critical arrest time, târrest, as the time at which ⟨c⟩ becomes
less than 90% of the Newtonian value, we plot târrest as a
function of YM* in the inset of Figure 3 for four different
concentrations of magnetic particles. The data follows a power
law behavior, and least-squares fitting provides the relationship
târrest ≈ 0.26(YM*)

1.3, which is shown by the black line. The
results for all four concentrations collapse onto this function,
indicating that the arrest time is approximately independent of
area fraction ϕA and that YM* is the appropriate dimensionless
group for characterizing the dynamics of structural arrest over a
range of concentrations.
While the correspondence of statistical quantities like Cv, Ch,

and ⟨c⟩ between the Newtonian and yield stress systems prior
to arrest is a compelling indicator of a common trajectory of
structural states, these averaged quantities do not uniquely
identify the magnetically assembled structures. To more
convincingly demonstrate that systems at finite values of YM*
truly pass through the same structural states as the Newtonian
system, it is useful to examine the positions of each particle at a
given time. A simple and instructive way to compare the
positions of many particles simultaneously is to effectively
subtract a snapshot of a simulated structure in a yield stress
matrix fluid from that of the Newtonian system at the same
dimensionless time. This can be accomplished by displaying the
structure of the Newtonian system in black, and overlaying the
structure of yield stress system in white, so that any visible black
regions indicate structures that are not common between the
two systems. Such comparisons between structures in a
Newtonian matrix fluid and a matrix fluid at YM* = 67 (starting
from the same initial condition at ϕA = 0.15) are shown in
Figure 4 at dimensionless times of (A) t ̂ = 3.3 and (B) t ̂ = 67,
corresponding to times before and just after the onset of
structural arrest in the yield stress system, respectively (here

Figure 2. Time evolution of the vertical and horizontal connectivities
(Cv and Ch, respectively) of magnetically assembled anisotropic chain
structures for a system at ϕA = 0.15 and various values of YM* . All
simulations begin with the same initial condition of randomly placed
particles. With the exception of an initial decline in Ch during
rearrangement of the starting configuration, the connectivities
generally grow with time, following the Newtonian result until
deviations begin at a critical time and connectivity that increase with
YM* . The fact that Cv ≫ Ch after the initial rearrangement indicates that
chains are primarily vertically connected, as is seen in Figure 1.

Figure 3. Average cluster size ⟨c⟩ of magnetically assembled structures
as a function of time for various values of YM* . The data is extracted
from the same simulations as in Figure 2, for which ϕA = 0.15. As with
the connectivity results, ⟨c⟩ generally increases with time, but chain
growth is eventually arrested when a yield stress matrix fluid is present.
For all values of YM* , ⟨c⟩ follows a common trajectory until structural
arrest begins at a critical time (and a critical cluster size) that grows
with YM* . The arrest time, târrest, defined as the time at which ⟨c⟩
becomes less than 90% of the Newtonian case, is shown in the inset as
a function of YM* . Results for four concentrations collapse onto a single
common power law relationship.
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târrest = 60). This effective subtraction of images almost
completely obscures the structure at t ̂ = 3.3, suggesting that
the magnetically assembled structures of the Newtonian and
yield stress systems are essentially the same prior to structural
arrest. Note that the light gray outlines indicate that the white
particles of the system at YM* = 67 are overlaid almost exactly on
the black particles of the Newtonian simulation [see the
Supporting Information for a magnified image of Figure 4A]. At
t ̂ = 67, however, there are significant deviations between the
two systems, reflecting the fact that while chain-formation
continues in the Newtonian system, structural evolution in the
yield stress system has slowed almost to a halt. These images
are consistent with the behavior presented in Figures 2 and 3,
and support the hypothesis that particles in the Newtonian and
yield stress systems follow very similar trajectories up to the
critical arrest time târrest, after which the yield stress systems are
quenched and deviations between the structures in the two
systems grow. Movies analogous to the overlaid images in
Figure 4A and B are provided as Supporting Information. The
deviations between the Newtonian and yield stress systems can
be explored quantitatively by calculating the ensemble-averaged
root-mean-square difference in particle position between the
structures in the Newtonian matrix fluid and the yield stress

matrix fluid. Denoted ⟨(ri,Newt − ri)
2⟩1/2, this quantity is zero if

particles are in the same positions in the two systems, and
grows as the structures diverge. Figure 4C shows that for all YM* ,
⟨(ri,Newt − ri)

2⟩1/2 ≈ 0 up to a critical time that increases with
YM* and corresponds approximately with the values of târrest
shown in the inset of Figure 3. Subsequently, ⟨(ri,Newt − ri)

2⟩1/2

grows with time as the yield stress systems are arrested and
structural development continues in the Newtonian system.
These results provide further demonstration that the magneti-
cally assembled structures in yield stress matrix fluids closely
match those in Newtonian matrix fluids up to a critical time
corresponding to the onset of structural arrest in the yield stress
systems. See Figure S2 in the Supporting Information for a plot
analogous to Figure 4C, but with time rescaled by târrest to
demonstrate that the deviations between particle positions
develop due to the onset of structural arrest in the yield stress
systems.
The results presented thus far have implications in the design

of structures generated via directed assembly or self-assembly.
While previous approaches to tuning particle assembly have
focused on modifying particles (i.e., their shape, size,
patterning, or chemical functionality8) or employing particle
systems that respond to externally applied fields or stimuli,30

the concept of regulating assembled structures via matrix fluid
rheology has yet to be explored. Our simulations suggest that
by incorporating a matrix fluid with a yield stress, the chain
structures that form in suspensions of dipolar particles in
Newtonian matrix fluids can be arrested at essentially any point
in their development. If the yield stress is sufficient to suppress
sedimentation and Brownian motion, then arrested structures
will be “frozen” into place indefinitely even if the magnetic field
is decreased or removed. Increasing the magnetic field (i.e.,
increasing YM*) leads to the continuation of chain growth, and
the resulting long-time value of ⟨c⟩ is approximately
independent of the exact history as long as it is approached
from below. See the Supporting Information for a figure
demonstrating this behavior. In order to confirm the results
presented here, it will be necessary to show that experiments
corroborate our observations. These experiments could be
accomplished by examining the magnetic directed assembly of
monodisperse spherical polymer-based superparamagnetic
particles (available from a variety of vendors) in a yield stress
matrix fluid. A simple yield stress fluid that exhibits negligible
thixotropy, such as a Carbopol “microgel”, would be useful in
exploring and demonstrating the basic phenomena of these
field-activated suspensions.31,32 For example, a system at YM* ≈
67 could be achieved by suspending 4.5 μm Dynabeads
superparamagnetic particles (Invitrogen, Carlsbad, CA) in a
dilute Carbopol microgel with a yield stress of about 0.1 Pa33

and by applying a uniform magnetic field of about 0.1 T
(according to magnetization data provided by the manufac-
turer).
With the exception of data for the critical arrest time shown

in the inset of Figure 3, all the results presented thus far have
been at a representative concentration of ϕA = 0.15. While
systems at different concentrations exhibit qualitatively similar
behavior (and, in particular, Figure 3 shows that târrest is
approximately independent of concentration), it would be
beneficial to identify the scaling relationship between structural
parameters and particle concentration. A simple approximation
for the effect of particle concentration can be obtained by
adjusting the characteristic length scale in the problem to reflect
the concentration dependence of the average interparticle

Figure 4. Comparison of the magnetically assembled structures for
particle suspensions in Newtonian and yield stress matrix fluids at ϕA =
0.15. An imposed magnetic field in the vertical direction induces a
vertically aligned dipole moment on the particles. For times of (A) t ̂ =
3.3 and (B) t ̂ = 67, images of a Newtonian system are shown in black
and images of a yield stress system at YM* = 67 are overlaid in white.
Therefore, any visible black structures indicate differences between the
two systems. (A) and (B) correspond to times before and just after
structural arrest in the yield stress system, respectively. At early times,
the structures of the two systems are nearly identical, whereas
significant deviations are apparent after the onset of structural arrest.
The Supporting Information provides movies analogous to these
overlaid images, as well as a magnified image of (A) that more clearly
portrays the particle overlaps. In (C), the ensemble-averaged root-
mean-square difference between particle positions in the Newtonian
and yield stress system is plotted as a function of time for various
values of YM* . This measure of the deviation in the structure from the
Newtonian case is essentially zero up to a critical time, then grows
once the yield stress systems become arrested.
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distance in the random initial condition. For a two-dimensional
homogeneous spatial distribution of spherical particles with
diameter d, the average interparticle distance scales according to
dϕA

−1/2. The effect of redefining dϕA
−1/2 as the new

characteristic length scale can be seen from the non-
dimensionalization and rearrangement of eq 8, for example.
With this new scaling, the expression analogous to eq 10
contains the product YM*ϕA

2 rather than simply YM* as in eq 10.
This motivates the definition of a rescaled yield parameter,
YM,ϕ* , that incorporates the concentration dependence:

ϕ
μ ρ

τ
ϕ* = * =ϕ

C M
Y Y
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2 0

2

y
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By analogy with the yield parameter YM* , we expect largely
immobilized particles for YM,ϕ* ≪ 1, and extensive chain
formation for YM,ϕ* ≫ 1. The average cluster size at structural
arrest, ⟨c⟩arrest, is shown as a function of YM,ϕ* in Figure 5 for
four particle area fractions. Despite the crude approximations
used to arrive at the concentration scaling in eq 11, plotting
⟨c⟩arrest as a function of YM,ϕ* collapses data at different
concentrations over almost 2 orders of magnitude of YM,ϕ* . For
YM,ϕ* values of about 0.2 to 7, a range in which both the matrix
fluid yield stress and magnetic interactions are expected to play
significant roles in the structure and dynamics, ⟨c⟩arrest is given
by the expression ⟨c⟩arrest ≈ 4.5(YM,ϕ* )0.65 for 0.10 ≤ ϕA ≤ 0.25.
The collapse of data for different concentrations indicates that
eq 11 provides an appropriate scaling for describing the
arrested structure in this regime. The scaling breaks down,
however, above about YM,ϕ* ≈ 7. In this regime, the values of ⟨c⟩
at long times approach the Newtonian values and for YM,ϕ* ≈ 60
the systems essentially behave as Newtonian. The gray band
gives the range of long-time ⟨c⟩ values for Newtonian systems
with concentrations 0.10 ≤ ϕA ≤ 0.25, which represents an
upper bound for ⟨c⟩arrest at a given concentration. For the
Newtonian systems, the values of ⟨c⟩ at long times exhibit a
weak dependence on ϕA that precludes perfect collapse of the
data at large values of YM,ϕ* . Below about YM,ϕ* ≈ 0.2, the
arrested structures consist almost entirely of unyielded
individual particles that are arrested immediately in their initial
positions, so that ⟨c⟩arrest approaches 1 for YM,ϕ* ≪ 1.

4. CONCLUSIONS
The chain structures formed when dispersions of polarizable
particles are subjected to a uniform magnetic field provide the
basis for a number of emerging and promising technologies
involving multiphase complex fluids, including magneto-
rheological suspensions15 and lab-on-a-chip separation techni-
ques.16 More generally, field-directed assembly of magnetic
colloids and nanoparticles has been exploited to design and
engineer highly ordered functional materials34 with unique
optical12 or electrical35 properties. In this Letter, we have used
particle-level simulations to investigate a new approach for
mediating the field-induced assembly of dipolar particles via
control of the non-Newtonian properties of the matrix fluid.
Specifically, we have demonstrated the ability of the matrix fluid
yield stress to arrest chain formation and growth at a critical
point along the Newtonian trajectory. The magnetic yield
parameter YM* (eq 7), which characterizes the balance between
interparticle magnetic stresses and the matrix fluid yield stress,
as well as the more general form YM,ϕ* = YM*ϕA

2 (eq 11)
incorporating concentration variations, have been identified as
the appropriate dimensionless groups that govern the structure

and dynamics in these systems. This work addresses important
questions in the field of magnetorheological (MR) suspensions
regarding the nature of the field-induced microstructure when
yield stress matrix fluids are used to prevent magnetic particle
sedimentation.19,20 Our observations indicate that for YM,ϕ*
values less than about 10, the matrix fluid yield stress will
arrest chain growth and significantly decrease the size of
clusters compared to the Newtonian case. Depending on the
gap thickness in the rheometer or MR device, these truncated
clusters will likely diminish or eliminate the gain in the yield
stress anticipated upon application of the magnetic field. It is
therefore desirable to operate yield-stress stabilized MR devices
in the regime YM,ϕ* ≫ 10, where the structures giving rise to the
MR effect closely resemble those in Newtonian matrix fluids.
While the arrested structures demonstrated here represent

states along the Newtonian trajectory, the effect of the matrix
fluid yield stress to “freeze” structures in place could be
exploited in more exotic systems to assemble and stabilize more
complex anisotropic particle structures with high degrees of
order. As long as the interparticle forces in the final structured
states are insufficient to overcome the matrix fluid yield stress
(a balance that could be characterized by dimensionless groups
analogous to those used here), the assembled structures will be
stable essentially indefinitely. If necessary, the structures can be
adjusted subsequently by increasing the forces on particles as
desired, or, alternatively, by decreasing the yield stress. This
approach is not limited to magnetic assembly, but is
straightforwardly extendable to systems with other types of
particle interactions or external forces (e.g., electric fields,
optical tweezers, etc.). It is even possible that different assembly
techniques could be applied sequentially, with the yield stress
matrix fluid trapping particles in place between steps, allowing
the complexity of achievable structures to be greatly expanded.
Additionally, other types of non-Newtonian behavior in the
matrix fluid could be similarly utilized to alter assembly.
Though the task remains to confirm experimentally the
behavior presented here, our results are physically reasonable
and expected to be in at least qualitative agreement with
experiments as long as the matrix fluid yield stress and
interparticle dipolar interactions are the dominant phenomena.

Figure 5. Average cluster size at structural arrest, ⟨c⟩arrest, as a function
of the concentration-scaled magnetic yield parameter, YM,ϕ* (see eq
11). Data for four concentrations of magnetic particles collapse onto a
universal power law over almost 2 orders of magnitude in YM,ϕ* . Below
about YM,ϕ* = 0.2, the arrested structures consist primarily of individual
particles, so that ⟨c⟩arrest approaches unity. The scaling begins to break
down for YM,ϕ* values greater than about 7, as Newtonian behavior is
approached.
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rescaled by the arrest time târrest; section of a magnified image of
Figure 4A. This material is available free of charge via the
Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION
Corresponding Author
*(P.S.D.) E-mail: pdoyle@mit.edu. Tel: +1-617-253-4534. Fax:
+1-617-324-0066. (G.H.M.) E-mail: gareth@mit.edu. Tel: +1-
617-258-0754. Fax: +1-617-258-8559.

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The authors thank Dr. Ramin Haghgooie for providing the
initial version of the simulation code and for many helpful
discussions. We additionally thank William Uspal for assistance
in using computational facilities. Acknowledgement is made to
the Donors of the American Chemical Society Petroleum
Research Fund (ACS-PRF Grant No. 49956-ND9) for financial
support.

■ REFERENCES
(1) Whitesides, G. M.; Grzybowski, B. Self-assembly at all scales.
Science 2002, 295, 2418−2421.
(2) Grzelczak, M.; Vermant, J.; Furst, E. M.; Liz-Marzan, L. M.
Directed Self-Assembly of Nanoparticles. ACS Nano 2010, 4, 3591−
3605.
(3) Xia, Y. N.; Gates, B.; Li, Z. Y. Self-assembly approaches to three-
dimensional photonic crystals. Adv. Mater. 2001, 13, 409−413.
(4) Gracias, D. H.; Tien, J.; Breen, T. L.; Hsu, C.; Whitesides, G. M.
Forming electrical networks in three dimensions by self-assembly.
Science 2000, 289, 1170−1172.
(5) Boncheva, M.; Andreev, S. A.; Mahadevan, L.; Winkleman, A.;
Reichman, D. R.; Prentiss, M. G.; Whitesides, S.; Whitesides, G. M.
Magnetic self-assembly of three-dimensional surfaces from planar
sheets. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 3924−3929.
(6) Cui, H. G.; Webber, M. J.; Stupp, S. I. Self-Assembly of Peptide
Amphiphiles: From Molecules to Nanostructures to Biomaterials.
Biopolymers 2010, 94, 1−18.
(7) Zhang, S. Building from the bottom up. Mater. Today 2003, 6,
20−27.
(8) Glotzer, S. C.; Solomon, M. J. Anisotropy of building blocks and
their assembly into complex structures. Nat. Mater. 2007, 6, 557−562.
(9) Yin, Y. D.; Lu, Y.; Gates, B.; Xia, Y. N. Template-assisted self-
assembly: A practical route to complex aggregates of monodispersed
colloids with well-defined sizes, shapes, and structures. J. Am. Chem.
Soc. 2001, 123, 8718−8729.
(10) Park, S. J.; Lazarides, A. A.; Mirkin, C. A.; Letsinger, R. L.
Directed assembly of periodic materials from protein and oligonucleo-

tide-modified nanoparticle building blocks. Angew. Chem., Int. Ed.
2001, 40, 2909−2912.
(11) Choi, J.; Rubner, M. F. Influence of the degree of ionization on
weak polyelectrolyte multilayer assembly. Macromolecules 2005, 38,
116−124.
(12) Golosovsky, M.; Saado, Y.; Davidov, D. Self-assembly of floating
magnetic particles into ordered structures: A promising route for the
fabrication of tunable photonic band gap materials. Appl. Phys. Lett.
1999, 75, 4168−4170.
(13) Fermigier, M.; Gast, A. P. Structure evolution in a paramagnetic
latex suspension. J. Colloid Interface Sci. 1992, 154, 522−539.
(14) Klingenberg, D. J. Magnetorheology: applications and
challenges. AIChE J. 2001, 47, 246−249.
(15) de Vicente, J.; Klingenberg, D. J.; Hidalgo-Alvarez, R.
Magnetorheological fluids: a review. Soft Matter 2011, 7, 3701−3710.
(16) Doyle, P. S.; Bibette, J.; Bancaud, A.; Viovy, J.-L. Self-assembled
magnetic matrices for DNA separation chips. Science 2002, 295, 2237.
(17) Chhabra, R. Bubbles, drops, and particles in non-Newtonian fluids;
CRC Press: Boca Raton, FL, 1993.
(18) Feng, J.; Joseph, D. D. The motion of solid particles suspended
in viscoelastic liquids under torsional shear. J. Fluid Mech. 1996, 324,
199−222.
(19) Rankin, P. J.; Horvath, A. T.; Klingenberg, D. J. Magneto-
rheology in viscoplastic media. Rheol. Acta 1999, 38, 471−477.
(20) Rich, J. P.; Doyle, P. S.; McKinley, G. H. Magnetorheology in an
aging, yield stress matrix fluid. Rheol. Acta 2012, in review.
(21) Haghgooie, R.; Doyle, P. S. Transition from two-dimensional to
three-dimensional behavior in the self-assembly of magnetorheological
fluids confined in thin slits. Phys. Rev. E 2007, 75, 061406.
(22) Haghgooie, R. Structure and Dynamics of Magnetorheological
Fluids Confined in Microfluidic Devices; Massachusetts Institute of
Technology: Cambridge, MA, 2006.
(23) Mohebi, M.; Jamasbi, N.; Liu, J. Simulation of the formation of
nonequilibrium structures in magnetorheological fluids subject to an
external magnetic field. Phys. Rev. E 1996, 54, 5407−5413.
(24) Zhang, H.; Widom, M. Field-induced forces in colloidal particle
chains. Phys. Rev. E 1995, 51, 2099−2103.
(25) Flores, G. A.; Ivey, M. L.; Liu, J.; Mohebi, M.; Jamasbi, N. In
Proceedings of the Fifth International Conference on ER Fluids, MR
Suspensions, and Associated Technology, University of Sheffield, Sheffield,
UK, 1995; Bullough, W., Ed.; World Scientific: Singapore, 1996; p 140.
(26) Heyes, D. M.; Melrose, J. R. Brownian dynamics simulations of
model hard-sphere suspensions. J. Non-Newtonian Fluid Mech. 1993,
46, 1−28.
(27) Pappas, Y.; Klingenberg, D. J. Simulations of magneto-
rheological suspensions in Poiseuille flow. Rheol. Acta 2006, 45,
621−629.
(28) Beris, A. N.; Tsamopoulos, J. A.; Armstrong, R. C.; Brown, R. A.
Creeping motion of a sphere through a Bingham plastic. J. Fluid Mech.
1985, 158, 219−244.
(29) Frenkel, D.; Smit, B. Understanding Molecular Simulation: From
Algorithms to Applications, 2nd ed.; Academic Press: Boston, MA, 2002.
(30) Velev, O. D.; Bhatt, K. H. On-chip micromanipulation and
assembly of colloidal particles by electric fields. Soft Matter 2006, 2,
738−750.
(31) Møller, P. C. F.; Fall, A.; Bonn, D. Origin of apparent viscosity
in yield stress fluids below yielding. Europhys. Lett. 2009, 87, 6.
(32) Møller, P. C. F.; Fall, A.; Chikkadi, V.; Derks, D.; Bonn, D. An
attempt to categorize yield stress fluid behaviour. Philos. Trans. R. Soc.,
A 2009, 367, 5139−5155.
(33) Roberts, G. P.; Barnes, H. A. New measurements of the flow-
curves for Carbopol dispersions without slip artefacts. Rheol. Acta
2001, 40, 499−503.
(34) Ahniyaz, A.; Sakamoto, Y.; Bergstrom, L. Magnetic field-induced
assembly of oriented superlattices from maghemite nanocubes. Proc.
Natl. Acad. Sci. U.S.A. 2007, 104, 17570−17574.
(35) Tanase, M.; Silevitch, D. M.; Hultgren, A.; Bauer, L. A.; Searson,
P. C.; Meyer, G. J.; Reich, D. H. Magnetic trapping and self-assembly
of multicomponent nanowires. J. Appl. Phys. 2002, 91, 8549−8551.

Langmuir Letter

dx.doi.org/10.1021/la204240f | Langmuir 2012, 28, 3683−36893689

http://pubs.acs.org
mailto:pdoyle@mit.edu
mailto:gareth@mit.edu

