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Synopsis

We have examined a new method for generating coarse-grained models of polymers. The resulting
models consist of bead-spring chains with the spring force law taken from the force-extension
behavior in the constant extension ensemble. This method, called the polymer ensemble
transformation method, is applied to the freely jointed chain. The resulting model illustrates why
current bead-spring chain models are insufficient in describing polymer behavior at high
discretization. Applying the method to the freely jointed chain with unequal rod lengths showed
the effect of varying flexibility in the chain. The method was also used to generate a bead-spring
model of F-actin, which shows how the method is not restricted to one molecular model and
can even be applied to experimental data. The current limitations of the method are discussed,
including the need for approximate bending potentials to model the worm-like chain with
a bead-spring chain. We discuss practical issues such as using the bead-spring models in Brownian
dynamics simulations and develop a simple spring force law that can accurately represent a freely
jointed chain with only a few rods per spring. Because of the functional form of this new
force law, existing computer simulations can be easily modified. © 2005 The Society of
Rheology. �DOI: 10.1122/1.2008294�

I. INTRODUCTION

Polymer kinetic theory �Bird et al., 1987� has become an important tool to understand
rheology of polymers as well as to understand single polymer molecule experiments
�Doyle et al. �2000�, Hur et al. �2000�; Larson et al. �1997��. The most detailed models
typically used to study flow properties are the freely-jointed chain �FJC� �Flory �1989��
and Kratky-Porod �Kratky and Porod �1949�� models. These models assume that the
polymer at smaller length scales remains at local equilibrium. The remaining effect of the
atomistic makeup of the polymer is the determination of the Kuhn length or persistence
length. Within this assumption of local equilibrium these detailed models would presum-
ably have the desired accuracy but are computationally intractable for the long polymers
and long time scales of interest. A reduction of the degrees of freedom is possible if these
models are coarse-grained further to bead-spring chains.

Initially few springs were used and the polymers contained many persistence lengths
so the spring force laws were obtained by examining the behavior of the detailed models
for very large number of persistence lengths. This led to the derivation of the Marko and
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Siggia interpolation formula �Marko and Siggia �1995�� and the inverse Langevin force
law. Comparison with single molecule experiments have shown that the global behavior
of long molecules is well approximate by these force laws in the so-called entropic region
�Bustamante et al. �1994��. Recently, it has become more common to use a larger number
of springs. When modeling a polymer with the same contour length with a larger number
of springs, a spring must represent a smaller segment of polymer. To date, these submol-
ecules are still being modeled with the Marko and Siggia or inverse Langevin force law.
However, this has been shown to be in error if each submolecule no longer contains a
large enough number of Kuhn lengths or persistence lengths �Underhill and Doyle
�2004��.

If each spring is chosen to model only a few Kuhn lengths of a freely jointed chain,
the necessary force law can look strange compared to conventional spring force laws.
This may seem confusing if the whole polymer contains many Kuhn lengths. Consider,
for example, a freely jointed chain with 200 rods. If one examined the average force as a
function of extension for the whole chain, it would be very close to the inverse Langevin
function. However, if one models this polymer with a bead-spring chain containing 100
springs, the spring force law needed for each spring is dramatically different from the
inverse Langevin function. Not only is this strange force law needed to model the be-
havior of the freely jointed chain on the scale of two rods, but also it is necessary in order
to get the correct overall force-extension behavior and rheological behavior for the whole
chain.

The increase in the number of springs is not simply motivated by increasing compu-
tation power, but may be necessary to capture essential physics of interest. Increasing the
number of springs increases the number of relaxation modes of the polymer and distrib-
utes the viscous drag more evenly along the contour. In addition, recently a number of
applications have surfaced with microdevices in which the behavior of the polymer at a
smaller length scale is of critical importance �Doyle et al. �2002�; Jendrejack et al.
�2003�; Han and Craighead �2000��. Accurately modeling this behavior requires having a
coarse-grained model that can reproduce the behavior at that length scale quantitatively
yet also is computationally tractable.

Here we discuss how to systematically determine the spring force law that should be
used if each spring does not represent a large number of Kuhn lengths. In this way we
bridge the gap between detailed models such as the FJC and Kratky-Porod, and bead-
spring chains with a large number of persistence lengths per spring. While these models
will be guaranteed to reproduce some specified property of the polymer, note that if a
large number of beads is used, they may still not be computationally feasible. Our ap-
proach will start from a model such as the FJC and determine the spring force law needed
for a bead-spring chain model without assuming each spring represents a large number of
Kuhn steps. We will apply this method to a number of “toy problems.” Each of these
examples illustrates an important point about coarse-graining into bead-spring chains.

We also discuss some practical issues of using these force laws. In some situations it
may be easier to use models that are not accurate in all situations. For example, if long
flexible polymers are near equilibrium, Hookean springs are sufficient to capture the
response. For long DNA, freely jointed chains can capture much of general response over
large length scales except gives different approaches towards full extension. Other types
of approximations include things like using the FENE or Cohen force laws �Warner,
�1972�; Cohen �1991�� as approximations of the inverse-Langevin function or using rigid

rods �constraints� instead of very stiff Fraenkel springs.
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II. METHOD

The general method we will be using was first introduced by Underhill and Doyle
�2004�. For completeness we give here a brief review of the method and its justification.
An overview of the coarse-graining approach is shown in Fig. 1, comparing it with the
current bead-spring chain models. We require that the model behaves identically when
placed in the same external environment. The behavior we consider here is the force-
extension behavior in the constant force ensemble �how much the molecule extends under
application of a constant force�, �z��f�. The Marko and Siggia and inverse Langevin force
laws correspond to using directly the constant force behavior of the polymer. Our method
instead uses the constant extension behavior of the polymer, so we call it the polymer
ensemble transformation �PET� method.

While one reason the constant force ensemble was used previously to obtain a spring
force law is the ability to perform analytic calculations, it may be comforting that the
very behavior trying to be modeled �the constant force response� is used directly in
building the bead-spring model. In fact, it may seem counterintuitive to use the constant
extension ensemble to build the bead-spring chain considering both the real polymer and
the beads in the model are free to move. The resolution of this paradox is illustrated
pictorially in Fig. 2.

We first note that the behavior of the polymer is an average over all possible configu-
rations. Consider performing that average by choosing a series of reference points on the
polymer where the beads in the bead-spring model will be �shown by black circles in Fig.
2� and separate all the polymer configurations into categories for which each category has
fixed reference points. First the average is performed within each category, for which the
reference points are fixed, thus the constant extension ensemble is needed. In this way we
replace each category �which contains many configurations� by a single configuration of
the bead-spring chain.

We can show mathematically that this method works by examining the partition func-
tion of the polymer. If the bead-spring chain produced has the same partition function as
the polymer being modeled, then the model will reproduce the polymer behavior. This is

FIG. 1. There are multiple paths to build a bead-spring model. The goal of coarse-graining is to produce a
model such that its behavior, �z�m�f�, matches the polymer’s behavior, �z�p�f�. The paths �arrows� represent
different methods of taking a property of the polymer to be the spring force law. The PET method introduced
here, path I, uses the constant extension polymer behavior as the spring force law. The conventional method,
path II, uses the constant force behavior as the spring force law.
similar to coarse-graining from quantum chemistry calculations to repeat unit level mod-
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els using the distribution function of the detailed model to determine the potential energy
of the coarser model �Baschnagel et al. �2000��. The partition function of the polymer in
the constant force ensemble is

Z�f� =� exp�− U + f · Rtot

kBT
	dV , �1�

where U is the total internal energy, f is the constant external force applied to the end of
the polymer, Rtot is the total end-to-end vector of the polymer, kB is the Boltzmann’s
constant, T is the absolute temperature, and the integral is taken over all configuration
space of the polymer.

For simplicity, let us first examine the development of a single spring �dumbbell�
model. By using a Dirac delta function we can introduce the new variable r and can
rewrite the partition function as

Z�f� =� ��r�exp� f · r

kBT
	dr , �2�

where

��r� =� exp�− U

kBT
	��r − Rtot�dV �3�

is the constant extension ensemble partition function for which the end-to-end vector is
held constant at r. One can verify this equivalence by inserting Eq. �3� into Eq. �2� and
doing the r integral. The partition function in Eq. �2� is of the same form as the partition
function for a single dumbbell, which is given by

Z�f� =� exp�− Us�r�
kBT

	exp� f · r

kBT
	dr . �4�

FIG. 2. The physical justification for the PET method is based on sorting all configurations of the polymer into
categories. Within each category the reference points �black circles� are held fixed. The lines signify different
polymer configurations within the category. When performing the average over the configurations in a category,
the segment between reference points is effectively in the constant extension ensemble. This segment is re-
placed by a spring in the bead-spring model.
If the spring potential energy in the dumbbell is
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Us�r� = − kBT ln ��r� , �5�

then the model will have the same partition function �and thus equilibrium behavior� as
the real polymer. This forms the basis of the PET method, in which the constant extension
ensemble behavior of the polymer is used to produce the bead-spring model. While this
was a derivation for a single dumbbell model, a similar procedure can be used for chains.
Each of the spring coordinates can be introduced into the polymer partition function
using Dirac delta functions. For example, if two springs were desired then after the
appropriate transformation the partition function would be

Z�f� =� ��r1,r2�exp� f · �r1 + r2�
kBT

	dr1dr2, �6�

where ��r1 ,r2� is the partition function of the true polymer given that the vector con-
necting the beginning to the midpoint of the contour length is held at r1, and the vector
connecting the midpoint to the end is held at r2. The partition function for a two spring
chain is

Z�f� =� exp�− Us�r1,r2�
kBT

	exp� f · �r1 + r2�
kBT

	dr1dr2, �7�

where Us�r1 ,r2� is the potential energy of having spring 1 with connector vector r1 and
spring 2 with connector vector r2. Note that this energy is not necessarily decoupled into
independent contributions for each spring. Again we see that if we take

Us�r1,r2� = − kBT ln ��r1,r2� , �8�

then the bead-spring chain model will have the same equilibrium behavior as the true
polymer.

While we have shown that the PET method generates a bead-spring chain that has the
same constant force ensemble partition function as the true polymer, it is not obvious
whether models with more than a single spring will have the same behavior as the
polymer in the constant extension ensemble. In fact, there is a one-to-one correspondence
between the two partition functions that guarantees that the model will have the correct
constant extension behavior. Writing the partition function for an imaginary force, we see
the integral is a Fourier transform

Z�ikBTk� =� ��r�exp�ik · r�dr . �9�

The constant extension partition function is therefore given by the inverse Fourier trans-
form

��r� = 
 1

2�
�d� Z�ikBTk�exp�− ik · r�dk , �10�

where d is the dimensionality of the vectors. Thus using the general PET method sum-
marized in Eq. �8� reproduces the polymer behavior in both constant force and constant
extension ensembles.

Looking at the relation between the constant extension and constant force partition
functions, we see that they are related analogously to other conjugate ensembles such as
the microcanonical and canonical ensembles �Pathria �1996��. There has been recent
interest in the constant extension and force ensembles, including what constitutes a “large

system” so the ensembles are equivalent and what concepts from thermodynamics do not
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apply for the single molecule analysis �Keller et al. �2003��. While our work here also
discusses the two ensembles, it is different from previous discussions. Most previous
researchers studying these ensembles are discussing them in the context of comparison
with stretching experiments of single molecules. Depending on the constraints imposed in
the experiment, a different ensemble can be appropriate for the analysis. We have shown
that when coarse-graining, the spring force law should be taken from the constant ex-
tension ensemble so that the coarse-grained model has the same response as the polymer
under all constraints.

III. RESULTS AND DISCUSSION

A. Freely jointed chain

The first model we discuss is the freely jointed chain in order to review the simplest
application of the method. The largest difficulty in calculating the spring force needed to
model a polymer is determining the partition function ��r1 ,r2 ,…�. Because there is a
great simplification in this calculation for the freely jointed chain polymer, we consider it
here. The result, called the random walk spring �RWS� model, is a collection of spring
force laws in which the form of the spring force depends on the number of Kuhn lengths
represented by each spring.

It is well-known that the probability distribution of a chain with infinitely stiff Fraen-
kel springs is the random walk distribution �Bird et al. �1987��. This is the system that we
call here the freely jointed chain. A system with rods as rigid constraints without a
corrective metric force would have correlations between rods resulting in a distribution
different from the random walk distribution. We do not consider this case here.

The calculation of the partition function, ��r1 ,r2 ,…�, for the FJC is simplified be-
cause the joints correspond to free hinges. This decoupling between the segments of the
polymer causes the partition function to be separable into a product of partition functions:

��r1,r2,…� = ��r1���r2� ¯ . �11�

Because the spring potential is chosen from the logarithm of the partition function, the
spring potential becomes a sum over each spring �with no cross terms�

Us�r1,r2,…� = Us�r1� + Us�r2� + ¯ . �12�

This is a significant simplification because the problem has been reduced to finding the
spring potential energy for only dumbbell models.

The spring force law is calculated by first determining the constant extension partition
function given in Eq. �3� or alternatively in Eq. �10�. The result is proportional to the
well-known probability density of a three-dimensional random walk given by Rayleigh’s
formula �Rayleigh �1919�� or Treloar’s formula �Treloar �1975��. Using Rayleigh’s inte-
gral form, the partition function is

��r� �
1

r
�

0

�

u sin�ur�� sin�uA�
uA

	�

du , �13�

where r= �r�, A is the Kuhn length, � is the fully extended length of a spring, and �
=� /A is the number of Kuhn lengths represented by each spring. Alternatively, the par-

tition function can be written as Treloar’s summation formula as
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��r� �
1

r


t=0

�
�− 1�t

t ! �� − t�!�� − �r/A� − 2t

2
	�−2

, �14�

where the upper limit � is taken from the condition

�� − r/A�/2 − 1 � � 	 �� − r/A�/2. �15�

The spring potential energy to within an arbitrary additive constant is found using Eq. �5�
to be

Us�r� = − kBT ln� 1

r
�

0

�

u sin�ur�� sin�uA�
uA

	�

du� . �16�

The spring force is calculated as the derivative of the potential energy where by conven-
tion a positive value is a retractive force. Recall that this set of spring force laws exactly
reproduces the behavior of the FJC for integer �, while in current simulations the inverse
Langevin function, or some approximation to it, is being used for all �. In Fig. 3 we
compare the force laws from the RWS model with the inverse Langevin function for
different values of �.

The first case to consider is �=1. One important property of a coarse-graining method
is that if the level of coarse-graining is reduced to the level of the detailed model, the
result of the “coarse-graining” is the same as the detailed model. The probability of a
random walk after a single step is a delta function, which is reproduced by Eq. �13�. One
way of getting a spring with a delta function distribution is to use an infinitely stiff
Fraenkel spring.

We see that for small � the RWS model has special features that are not conventionally
seen in bead-spring chain models. Note that these features are necessary in order for the
model to have the correct behavior. When �=2 the RWS model spring force increases
with decreasing extension, diverging at zero extension. There is also a discontinuous

FIG. 3. Comparison of spring force laws of the random walk spring model �dashed line� with the inverse

Langevin function �solid line�. The dimensionless axes are f̂RWS= fRWSA / �kBT� and r̂=r /�. The results are for
�=2 �upper left�, �=3 �upper right�, �=4 �lower left�, and �=8 �lower right�.
divergence at full extension. The functional form is given by
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fRWS�r;� = 2� =
kBT

r
, r 	 � . �17�

For �=3 the force law is zero below one-third extension, at which point there is a jump
discontinuity. Above one-third extension the spring force is

fRWS�r;� = 3� =
3kBTA

�3A − r�r
, �/3 	 r 	 � . �18�

For �=4 the force has a nonzero limit at zero extension and a discontinuous first deriva-
tive at half extension

fRWS�r;� = 4� =
3kBT

8A − 3r
, 0 	 r 	 �/2, �19�

fRWS�r;� = 4� =
kBT�4A + r�

�4A − r�r
, �/2 	 r 	 � . �20�

The dramatic changes in the form of the force law come about when the true polymer
takes configurations of a certain form. They also correspond to changes in the upper limit
� in Treloar’s formula, Eq. �15�. To better illustrate this, in Fig. 4 we show � ,Us , fRWS,
and sample configurations for �=3. We see that the step discontinuity occurs when the
ends are separated by a distance equal to one rod. For end-to-end distances less than one
rod, the partition function �number of configurations� is constant, resulting in a vanishing
force. Beyond this special point the partition function decreases but with a discontinuous
slope. This change in slope causes a jump discontinuity in the force. The change is
discontinuous because the rods are stiff. If one were to coarse-grain three Fraenkel
springs into a single spring, it would be continuous, with the discontinuity appearing

FIG. 4. Progression from the constant extension partition function to the spring force in the random walk spring

model for �=3. The dimensionless axes are Ûs=Us / �kBT�, f̂RWS= fRWSA / �kBT� and r̂=r /�. Sample configura-
tions are shown for the three rod system at fractional extensions of r̂=1/3 and r̂=2/3.
when the Fraenkel springs become infinitely stiff.
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B. Unequal rod lengths

The freely jointed chain discussed thus far consists of rods of equal length. We can
examine how sensitive the spring potentials are to a distribution of rod lengths, which
would correspond roughly to a polymer with regions of differing flexibility. If the scale
over which the flexibility changes is larger than the Kuhn length, a freely jointed chain
with changing rod lengths should be a reasonable model. This situation could appear in
block copolymers, atactic polymers, and DNA having blocks with the same repeated base
pair. We first must discuss the behavior of the system that is to be modeled. For the equal
rod case, the constant force response is the Langevin function for any number of rods.
However, the behavior of a general chain is a sum over the response of each rod

�z� = 

i=1

Nr

�zi� = 

i=1

Nr

AiL
 fAi

kBT
� , �21�

where i denotes the different rods in the chain which is to be modeled by a spring, Nr is
the number of rods, Ai is the length of rod i, and L is the Langevin function. In general,
this summation does not simplify. To understand how this response differs from the
response with equal lengths, we examine the small and large force limits and try to
identify an effective Kuhn length for which this appears like a single Langevin function.

If we examine the limit when f is large compared to kBT /Ai even for the smallest Ai,
the average fractional extension of the chain becomes

�z�
�

� 1 −
kBTNr

f�
, �22�

where � is the fully extended length of spring and is equal to the sum of the rod lengths

� = 

i=1

Nr

Ai. �23�

Comparing this behavior with a system with equal rod lengths gives a high-force effec-
tive Kuhn length

Aeff,h =
�

Nr
=

1

Nr


i=1

Nr

Ai = Ā . �24�

We have introduced the overbar notation for the average over the rods in the chain. If we
expand the fractional extension for small force, the behavior becomes

�z�
�

�
f

3kBT


i=1

Nr

Ai
2/� . �25�

Therefore the low-force effective Kuhn length is

Aeff,l = 

i=1

Nr

Ai
2/� = 


i=1

Nr

Ai
2/


i=1

Nr

Ai = A2/Ā . �26�

The high-force value is simply the average rod length, while the low-force value in Eq.
�26� is larger. The larger the spread in rod lengths, the larger the difference between the
two.

After understanding the constant force response of the bead-rod chain, we can exam-

ine the spring force needed in a bead-spring model that gives the same constant force
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response �which itself differs from a single Langevin function�. As shown previously, this
spring force comes from the constant extension response of the bead-rod chain. This can
be written again using Rayleigh’s formula but for a random walk with nonidentical steps.
For example, to use a spring to model a three rod system with rod lengths A1 ,A2, and A3

one should use a spring potential energy of

Us�r� = − kBT ln�1

r
�

0

�

u sin�ur�
sin�uA1�

uA1

sin�uA2�
uA2

sin�uA3�
uA3

du	 . �27�

The spring force is the derivative of this potential.
Let us examine a specific system to illustrate the behavior of these unequal rod chains.

Figure 5 shows the spring force needed for a series of chains each with m rods of length
A and m rods of length 5A for m ranging from 1 to 6. Similar to the equal rod case, for
short chains �small m� the spring force laws needed have discontinuities. For example,
when m=1 it is impossible for the fractional extension to be less than 2/3. Because a
positive force is a retractive force, the force diverges to −� to prevent the fractional
extension from being less than 2/3. Only in the large m limit does the spring force-law
approach the constant force behavior. Note that even in this limit the spring force needed
differs from a single Langevin function based on the average rod length.

Figure 5 allowed us to examine how the chains approach the infinitely long limit if the
rods have a significant difference in lengths. To further examine how different rod lengths
affect the spring force law needed to model the chain, we will compare chains will the
same contour length but with different ratios of rod lengths. The system contains m rods
of length A and m rods of length pA. The constraint of constant contour length means that
m�1+ p� is held constant. Figure 6 shows an example of the rod system with m�1+ p�
=12 and m ranging from 1 to 6. Note that the m=2 case was already seen in Fig. 5, and
the m=6 case has 12 equal length rods. For this example, two effects help make the
response closer to the inverse Langevin function as m increases; not only does the

FIG. 5. Series of spring forces necessary to model chains with m rods of length A and m rods of length 5A for

m=1, 2, 3, 4, 5, 6, with the arrow denoting increasing m. The dimensionless axes are f̂ s= fs3A /kBT and r̂
=r /�. The dashed line corresponds to m=�. The dotted line is the inverse Langevin function. Note that the
m=1 force law diverges at r̂=2/3 and r̂=1.
number of rods increase with m but also the variance in rod lengths decreases.
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In Fig. 6 we scaled the force using the average rod length, which changes with m. We
saw that for the constant force response this scaling made curves for all distributions of
rod lengths and number of rods have the same high force limiting behavior. Let us
examine closer the constant extension response near full extension. Consider a chain of �
rods with lengths A1 ,A2, to A�. We denote the smallest rod length by As. It has been
observed that in the region �−2As	r	� the partition function is

��r� �
�� − r��−2

r
. �28�

This has been explicitly verified for a number of examples for small �, while a general
proof for arbitrary � appears excessively tedious like a related proof given in Appendix F
of Flory �1989�. The spring force needed in this region of extension is

fs�r� = kBT
1

r
+

� − 2

� − r
� . �29�

If we nondimensionalize the force using the average Kuhn length, Ā, the force as a
function of fractional extension, r̂, is

fsĀ

kBT
=

1 + �� − 3�r̂
�r̂�1 − r̂�

. �30�

Because this force only depends on � and not the exact distribution of rod lengths, the

force is the same in this region as an equal rod system having � rods each of length Ā.
Note that this relation is exact over a finite range which is determined by the smallest rod
length. This can be compared with the constant force response, for which it only matches

the response of � rods each of length Ā in the limit r→�.
By examining the FJC with unequal rod lengths, we have examined a crude model for

chains with variable flexibility. Both the constant force response and the constant exten-

FIG. 6. Series of spring forces necessary to model chains with m rods of length A and m rods of length pA for
m=1, 2, 3, 4, 5, 6, with the arrow denoting increasing m. The value of p is determined from the condition of

constant contour length, m�1+ p�=12. The dimensionless axes are f̂ s= fs�6/m�A /kBT and r̂=r /�. The dotted line
is the inverse Langevin function. Note that the m=1 force law diverges at r̂=5/6 and r̂=1.
sion response differ from the equal rod case �a single Langevin function�. In other words,
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even in the infinite chain limit, the unequal rod system can be distinguished from an
equal rod model. Also, throughout the analysis, the order of the rods within a spring did
not matter. This can be seen directly from Eq. �27� for the three rod system. The formula
is the same independent of the ordering of the rods.

C. Worm-like chain

The next polymer model we examine is the worm-like chain �WLC�, but initially only
for dumbbell models. The next section discusses the extension to multispring chains. The
application for a dumbbell follows the general prescription given in Eq. �5�. If the worm-
like chain contains a large number of persistence lengths, then the spring force law
reduces to the long chain limit approximated by the Marko-Siggia interpolation formula.
However, many biopolymers of interest, such as F-actin and microtubules, do not contain
many persistence lengths. In contrast to the FJC, for which exact analytical results can be
obtained for short chains, the analytical calculation of the exact distribution function for
short WLCs cannot be done at this time. However, a number of numerical and approxi-
mate analytical techniques have been developed recently �Wilhelm and Frey �1996�; Dhar
and Chaudhuri �2002�; Samuel and Sinha �2002��.

As an example, we calculate the spring force needed to model a single actin filament
using a dumbbell. Because the end-to-end distance distribution for an actin filament has
been measured experimentally �Le Goff et al. �2002��, this example illustrates how the
use of the distribution function to produce a bead-spring model is not restricted to ana-
lytical models. The distribution function can come directly from experiments.

Le Goff et al. �2002� show that the distribution for actin matches well to the worm-
like chain, and Wilhelm and Frey �1996� develop a good approximation to that behavior.
In Fig. 7�a� we show the distribution function of a three-dimensional WLC calculated
from the approximate formula given by Wilhelm and Frey �1996� for the actin parameters
found by Le Goff et al. �2002�: L=13.40 
m, Ap=16.1 
m. In Fig. 7�b� we compare the
resulting spring force necessary to reproduce the actin distribution with the Marko and
Siggia interpolation formula. The dramatic difference between the force laws illustrates
the importance of choosing the correct one, because the incorrect use of the Marko and

FIG. 7. �a� Constant extension partition function of a single F-actin filament. �b� Comparison of the spring
force law determined by the PET method �solid line� for a dumbbell model of an F-actin filament with the
Marko-Siggia interpolation formula �dashed line�. The force is made dimensionless using the persistence length,

f̂ s= fsAp /kBT.
Siggia form would result in significant errors.
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D. Multispring worm-like chain models

In order to develop a multispring model of the worm-like chain, one must calculate the
multidimensional partition function ��r1 ,r2 ,…�. This illustrates a hurdle with imple-
menting the PET method. For models such as the worm-like chain with coupling across
the reference points �black circles in Fig. 2�, the multidimensional partition function is
not separable, and therefore the spring potential energy is not separable into a sum over
each spring.

However, we can use the same thought process used in Fig. 2 to overcome the diffi-
culty in a systematic way. We can eliminate the coupling between the segments by further
restricting the category of configurations. The new type of model is illustrated in Fig. 8.
In addition to holding points along the polymer with fixed positions, the tangent vector of
the polymer is held fixed at each of these points. Because the tangent vector is held fixed,
there is no coupling across the points. We can replace the category of configurations by
a single configuration of a coarse grained model. This new coarse grained model is not a
typical type of bead-spring chain, but a series of beads that have a direction associated
with them �the direction of the polymer’s tangent vector�. The interaction of two neigh-
boring beads depends both on the vector connecting the bead centers, r, and the tangent
vectors associated with the beads, t1 and t2. The “potential energy” of this interaction is

U�r,t1,t2� = − kBT ln ��r,t1,t2� , �31�

where ��r , t1 , t2� is the partition function in the ensemble where both the separation of
the ends and tangent vectors at the ends are held fixed.

While this new type of coarse grained model will give the correct equilibrium distri-
bution function as the worm-like chain at any level of discretization, it may not be
computationally desirable to perform simulations such as Brownian dynamics �BD� with
such a model.

We propose that this system can be approximated by a conventional bead-spring chain
with bending potentials. The spring force in this approximation would be taken as the
force in a dumbbell model of the short segment of polymer. This separation is a reason-
able first approximation because it correctly models the behavior at the two extremes of

FIG. 8. Restricting the configurations within a category eliminates the coupling in a multispring worm-like
chain model. Within each category the reference points �black circles� are held fixed as well as the polymer’s
tangent vector at the reference point. The lines signify different polymer configurations within the category. The
coarse-grained model consists of beads which have a vector direction which is the direction of the polymer’s
tangent vector. The interaction of neighboring beads depends both on the bead positions and the bead directions.
discretization.
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In the limit of a large number of persistence lengths between reference points, the
coupling vanishes and thus the bending energy should vanish. In the limit of zero per-
sistence lengths between reference points, the polymer acts like a rigid rod. The polymer
model of rigid rods with bending potentials is the Kratky-Porod model if we choose the
bending potential to be

Ubend��� =
kBTAp

2�
�2, �32�

where � is the angle between the directions of successive rods, � is the length of the rod,
and Ap is the persistence length. In the limit of � much smaller than Ap this approaches
the continuous WLC model. This bending energy could also be used when the spring
length, �, is much larger than the persistence length, Ap, because it correctly vanishes in
that limit. We leave a detailed analysis of the decomposition approximation using bend-
ing energy and an analysis of how the bending energy varies with �=� /A for future work.

E. Rheology of the models

The force laws presented give the same equilibrium behavior as the polymer including
force-extension behavior in both the constant force and constant extension ensembles.
Therefore it is natural to use these bead-spring chains to model the polymer behavior in
other situations such as in flow. We have previously derived the zero-shear properties of
bead-spring chains for arbitrary force law �Underhill and Doyle �2004��. We can use
those results to analyze the rheological properties of these bead-spring chains.

In Underhill and Doyle �2004� it is shown that the retarded motion expansion coeffi-
cients, which describe the rheological response in slow and slowly changing flows, can
be written in terms of the force-extension behavior. Note that the analysis is for dilute
polymer solutions and excluded volume and hydrodynamic interactions are not included.
There are no bending potentials allowed and the spring force law must be the same for
each spring. The first two retarded motion coefficients, b1 and b2, are

b1 − �s = �0,p = �np�N
�LA

12
	
N + 1

N
�
lim

f̂→0

�

� f̂
�ẑtot�m� , �33�

b2 =
− �1,0

2
= �− np�N
�2L2A2

120kBT
	�
 1

3�
lim
f̂→0

�3

� f̂3
�ẑtot�m�� �N2 + 1��N + 1�

N3 	
+ 
lim

f̂→0

�

� f̂
�ẑtot�m�2� �N + 1��2N2 + 7�

6N2�N − 1� 	� . �34�

The values of b1 and b2 are related to the viscosity of the Newtonian solvent, �s, the
polymer contribution to the zero-shear viscosity, �0,p, and the zero-shear first normal
stress coefficient, −�1,0. The parameters in the response are the number density of poly-
mers, np, the number of beads, N, the drag coefficient on a bead, 
, the polymer contour
length, L, a length proportional to the Kuhn length or persistence length, A, and the ratio
of the contour length to A ,�=L /A. The influence of the spring force law enters through
the derivatives with respect to force of the average extension in the limit of zero force.
The average z extension of the model has been made dimensionless using the contour
length L, and the force has been made dimensionless using kBT /A. In general, the de-

rivatives of the force-extension behavior can be a function of �=� /A.
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The terms other than the force-extension behavior are contributed to the fact that the
hydrodynamic drag is exerted only on the beads and not along the continuous polymer
contour. When the number of beads is large enough, these factors disappear. When using
spring force laws such as FENE or Marko-Siggia, the force-extension terms change when
each spring represents a small segment of polymer. This causes significant errors in the
rheology which places a limit on how small the springs can be �Underhill and Doyle
�2004��. Using the spring laws discussed here eliminates this error. For example, for the
RWS model discussed in Sec. III A and choosing A to be the Kuhn length in nondimen-
sionalizing the force, the bead-spring chain always has

lim
f̂→0

�

� f̂
�ẑtot�m =

1

3
�35�

lim
f̂→0

�3

� f̂3
�ẑtot�m =

− 2

15
. �36�

We can also use the retarded motion coefficients to gauge the difference between the
different dumbbell models of F-actin shown in Fig. 7�b�. For a dumbbell model, it is
useful to write b1 and b2 directly in terms of the equilibrium averages of the spring
length. These moments of the spring length are equal to

�r̂n�eq =

�
0

1

dr̂ r̂n+2exp�− U�r̂�/�kBT��

�
0

1

dr̂ r̂2exp�− U�r̂�/�kBT��
, �37�

where U is the spring potential energy. For the dumbbell models, writing b1 and b2 in
terms of these moments of the spring length gives

b1 − �s = �0,p = 
np
L2

12
��r̂2�eq, �38�

b2 =
− �1,0

2
= 
− np
2L4

240kBT
��r̂4�eq. �39�

The force laws in Fig. 7�b� will have different equilibrium averages. The averages for the
Marko-Siggia spring can be calculated using numerical integration. Using the Marko-
Siggia dumbbell to model an F-actin filament with the contour length and persistence
length from Sec. III C, the averages are �r̂2�eq=0.41 and �r̂4�eq=0.21. Alternatively, using
the dumbbell model that correctly models the worm-like chain distribution has averages
�r̂2�eq=0.77 and �r̂4�eq=0.61. This means that the spring force laws in Fig. 7�b� have a
factor of 2 different �0,p and a factor of 3 different b2.

F. Practical implementation of the models

While the models developed using the constant extension ensemble are advantageous
in that they give the correct equilibrium behavior and provide a systematic method for
changing levels of coarse-graining, some practical issues remain for using them in com-

putations such as Brownian dynamics simulations. For small numbers of rods per spring,
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the spring force laws can have discontinuities. How do discontinuous force laws perform
in BD simulations? We address this question by simulating directly using BD the two-rod
and three-rod spring force laws at equilibrium.

The two-rod spring force law is proportional to r−1 for allowable extensions. At full
extension, the retractive force must jump to +� to prevent the spring from extending past
that point. The two features not common to spring force laws are the divergence at small
extension and the discontinuity at full extension. To test the ability to use this force law
in a Brownian dynamics simulation, we use a simple explicit Euler integration scheme
�Öttinger �1996��. With this scheme it is possible for the length of the spring at the end of
a time step to be larger than the fully extended length of the spring. This is analogous to
two hard spheres which are not allowed to have a separation distance smaller than their
diameter. For this spring force law, we implement the same type of algorithm used for
hard spheres �Heyes and Melrose �1993�; Foss and Brady �2000��. If the spring is past
full extension at the end of a time step, we rescale the length of the spring to be at full
extension. This algorithm is known to converge to the correct answer as the time step is
reduced. For larger time steps, it is known that this algorithm produces a delta function in
the probability density at full extension with a corresponding depletion at smaller exten-
sions.

We tested the algorithm by choosing a random starting configuration and stepping
forward in time to equilibrate in a stagnant solvent. We then continued simulating at
equilibrium and sampling the magnitude of the extension of the spring. From this we
build a histogram of the probability distribution of the spring length. The spring length
was sampled 106 times to reduce the statistical error from finite sampling so most of the
error is due to the nonzero time step. We show in Fig. 9�a� the histograms for different
time steps compared to the true distribution. The time step is nondimensionalized as

�t̂ � �t
 kBT


�2 � , �40�

where 
 is the drag coefficient on a bead and � is the fully extended length of the spring.
We also show in Fig. 9�b� the convergence of the second and fourth moments of the
spring length, �r̂2�eq and �r̂4�eq, to the true values. To avoid ambiguity in the sign, we

FIG. 9. This shows the convergence of a BD simulation for a spring force law that models two rods of a freely
jointed chain. �a� Histogram of the probability density of the spring length from a BD simulation compared with

the exact distribution. The time steps used were �t̂=10−3 ���, �t̂=10−4 ���, and �t̂=10−5 ���. �b� The relative
error in the second moment �r̂2�eq ��� and the fourth moment �r̂4�eq ��� from the BD simulations.
define the relative error as
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� �
true value − calculated value

true value
. �41�

The three-rod spring force law also has a feature not common to force laws. It has a finite
jump in the force at 1 /3 extension. This jump is equivalent to a discontinuous slope in the
probability density. We again test the ability of a simple explicit Euler scheme to capture
this feature. Even though the spring force law does continuously diverge at full extension,
with this scheme it is possible to end a time step past full extension. While there exist
more sophisticated schemes for handling this, we opt for the simple algorithm of rescal-
ing the spring to be at 0.99999 of full extension.

We formed the probability density histogram in the same way as for the two-rod
spring. In Fig. 10�a� the histograms for different time steps are compared to the true
distribution. We also show in Fig. 10�b� the convergence of the second and fourth mo-
ments of the spring length to the true values.

These two examples show that it is possible to simulate the new spring force laws
using simple BD algorithms. More elaborate schemes may be able to increase the size of
time steps although at the increased computation cost of a more sophisticated algorithm.

The other main practical issue concerns the spring laws when each spring represents a
larger number of springs. Although we have shown that the spring force from the RWS
model �calculated from Eq. �16�� exactly represents the freely jointed chain, and similarly
for the unequal rod case, the analytical expressions for the spring force laws become
increasing complicated as each spring represents more rods. We have seen that the spring
force law has different forms in different regions of fractional extension. For the equal
rod length case the number of different regions is 1 /2 of the number of rods per spring
�rounding up to the nearest integer�. Thus as the number of rods per spring increases, the
number of different regions increases dramatically. Within each of these regions, the
force law is a rational function where the degree of the polynomials typically increases
rapidly as the number of rods per spring increases. The large number of regions and the
complexity within each region decreases the practicality of these force laws for large
number of rods per spring. However, in this limit the spring force laws are becoming
smooth, making it likely that approximate force laws can be developed in the same spirit

FIG. 10. This shows the convergence of a BD simulation for a spring force law that models three rods of a
freely jointed chain. �a� Histogram of the probability density of the spring length from a BD simulation

compared with the exact distribution. The time steps used were �t̂=10−5 ��� and �t̂=10−6 ���. �b� The relative
error in the second moment �r̂2�eq ��� and the fourth moment �r̂4�eq ��� from the BD simulations.
as approximating the inverse Langevin function by a simple rational function.
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Our task for the remainder of this section is to develop a spring force law which
approximates the RWS model, because it is that spring force law that exactly models the
freely jointed chain. We start by considering the equal rod case. We have shown that the
RWS model can be used directly when each spring represents two or three rods. When
each spring represents four rods, the RWS model only has two regions of extension, with
a simple form in each region, and so could also be easily implemented in BD simulations.

For the cases where each spring represents five or six rods the spring force laws have
three regions in extension. The force law in the third region �near full extension� is given
by Eq. �30�. We can develop a single functional form that can approximate the first two
regions. In this way we can approximate the RWS model which has three regions in
extension by a spring force law which only has two regions and so is easier to implement
in simulations. An approximate force law for the five-rod case is

fsA

kBT
�

539r̂/225

1 − 3r̂2/5
, 0 	 r̂ 	 3/5, �42�

fsA

kBT
=

1 + 2r̂

5r̂�1 − r̂�
, 3/5 	 r̂ 	 1. �43�

The parameters for the force law in the first region were chosen by first assuming a
functional form in r̂ with two adjustable constants. The parameters were constrained so
that the force law is continuous at r̂=3/5 because the RWS model for five rods is
continuous. The other free parameter was chosen to give a small error in the second and
fourth moment of the spring length at equilibrium. The error in �r̂2�eq by using this
approximate force law to model five rods is 0.02%. The error in �r̂4�eq is 0.0006%.

A similar method can be used to approximate the six-rod case. The approximate force
law is

fsA

kBT
�

63r̂/25 − 49r̂3/125

1 − 9263r̂2/13500
, 0 	 r̂ 	 2/3, �44�

fsA

kBT
=

1 + 3r̂

6r̂�1 − r̂�
, 2/3 	 r̂ 	 1. �45�

This approximate force law for the six-rod system has an error of 0.01% in �r̂2�eq and an
error of 0.02% in �r̂4�eq.

The advantage of still using two regions for the five- and six-rod cases is that we can
utilize exactly the RWS model in the final region of extension. This allows us to build an
approximation that accurately represents many properties such as the second and fourth
moments of the spring length and also the response under large stretching.

For even larger number of rods per spring the final region near full extension which
has a simple force law is only valid over a smaller and smaller region of extension. In this
case the advantage to using two spring force laws spliced together does not seem great
and so we have chosen to develop a single approximate force law over the entire exten-
sion range. While many possible forms are possible to approximate the true spring force

laws, we choose the form
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fsA

kBT
=

Cr̂ + Dr̂3

1 − r̂2 , �46�

where A is the rod length and C and D do not depend on the fractional extension, r̂, but
will depend on the number of rods represented by the spring, �. The dependence on r̂
takes the same form as the Cohen force law �Cohen �1991��. We will see that with an
appropriate choice of C and D, this can give an accurate representation of the freely
jointed chain. Because we have chosen the same form in r̂ as the Cohen force law,
calculations such as BD simulations can be easily and quickly modified to use the new
force law with no loss of computation speed but a uniformly more accurate result.

Although we are not using the RWS force law near full extension, we will still require
that the limiting behavior of our approximate form match the limiting behavior of the
RWS force law. The result of this choice will be that the approximate spring will behave
like the freely jointed chain in the limit of strong stretching. As the fractional extension
approaches 1, the RWS force law diverges as

fsA

kBT
→

1 − 2/�

1 − r̂
. �47�

For our approximate force law to diverge in the same manner, we obtain the constraint on
C and D of

C + D = 2 − 4/� . �48�

We must now develop a method for determining the remaining free parameter. One
natural method would be to examine the RWS force law at small extension, find the
coefficient to r̂ in that expansion which will be a function of �, and match this coefficient
with C. Because the constraint on C+D is to capture the strong stretching limit, the
rationale behind this choice would likely be so that the spring correctly captures the
equilibrium limit. However, with this choice the second moment of the spring length at
equilibrium, �r̂2�eq, is not correct. This is because, even at equilibrium, the spring samples
the nonlinear regions of the force law, and the shape of the approximate force law does
not exactly capture the shape of the RWS model.

Alternatively, one could calculate numerically the function C��� such that the second
moment of the spring length for the approximate force law matches exactly the freely
jointed chain �which is also the same as the RWS model�. Recall that the second moment
of the spring length is a key property that is important to capture �Underhill and Doyle
�2004��. Not only is it related to the size of the coil at equilibrium, but also it is related
to the zero-shear viscosity. In the constant force ensemble, the slope of the average
extension versus force curve at small force is also proportional to the second moment of
the spring length.

Instead of having to deal with a numerical function C���, it would be better to have a
simple approximate formula for C��� that still gives a very small error in the second
moment of the spring length. Another reason an approximate form for C��� is sufficient
is that even if we could make the error in the second moment vanish, the shape of the
spring force law will limit the ability to capture other properties like the fourth moment
exactly.

Using the asymptotic expansion developed in Underhill and Doyle �2004�, the second

moment of the spring length for the force law �Eq. �46�� with the constraint in Eq. �48� is
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�r̂2�eq �
3

�C
−

30

�2C3 +
30�24 − 7C + 2C2�

�3C5 + O
 1

�4� . �49�

We want to choose C��� such that this second moment is the same as the freely jointed
chain. The freely jointed chain has �r̂2�eq=1/�. By choosing

C = 3 −
10

3�
+

10

27�2 , �50�

the second moment of the spring length for the approximate spring force law �Eq. �46��
is

�r̂2�eq �
1

�
+ O
 1

�4� . �51�

The resulting approximate spring force law is

fsA

kBT
=

�3 − 10
3� + 10

27�2�r̂ − �1 + 2
3� + 10

27�2�r̂3

1 − r̂2 . �52�

To quantify the accuracy of this approximate spring force law, we need to compare it’s
properties with those of the underlying freely jointed chain. The average �r̂2�eq of this
spring force law is compared in Fig. 11�a� to the freely jointed chain it is meant to
represent as a function of the number of rods per spring. From the asymptotic expansion
of the second moment, Eq. �51�, we see that the relative error should go like �−3 which
we see explicitly from Fig. 11�a�. The approximate spring force law has an error of 0.01%
at �=6 and smaller error for larger �. For reference we show the error if the Cohen force
law were used. An asymptotic expansion of the second moment of the spring length using
the Cohen force law shows the relative error decays like �−1 as seen in the figure. The
slight changes made to the Cohen form have had a significant impact. The error has been
reduced by over a factor of 1000. The new force law can even be used down to four rods
per spring with only a small error.

The fourth moment of the spring length is also important to capture correctly because
of it’s impact on zero-shear rheology. Similar to the second moment, we show in Fig.

FIG. 11. Relative error in the equilibrium moments of the spring length between an approximate spring force
law compared with an equal rod freely jointed chain. The solid lines are for the Cohen force law, and the dashed
lines are for the new force law �Eq. �52��. �a� Relative error in the second moment, �r̂2�eq. �b� Relative error in
the fourth moment, �r̂4�eq.
11�b� the error in the fourth moment of the spring length for the approximate force law
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with the error of the Cohen form for comparison. The fourth moment of the spring length
for the freely jointed chain is �r̂4�eq= �5�−2� / �3�3�. Again we see that the error of the
approximate force law �Eq. �52�� is very small, only about 1% at �=6 and smaller at
larger �. The error has been reduced by about a factor of 40 below that of the Cohen force
law.

The final property we analyze here is the force-extension behavior in the constant
force ensemble. Recall that the response of the freely jointed chain in this ensemble is the

Langevin function, �ẑ�=L� f̂�. We compare the error of the approximate force law and the
Cohen force law in Fig. 12 for �=4,6 ,20,�. Note that the error does not exactly vanish
in the limit �→� because the Cohen force law is not exactly the inverse Langevin
function, although the error in fractional extension is less than 2% in that limit.

We have now developed and analyzed the error from using an approximate spring
force law �Eq. �52�� to represent freely jointed chains. The error from using this approxi-
mate force law instead of the RWS model is small enough that the dominant error in a
Brownian dynamics simulations will likely be from a nonzero integration time step and
statistical error from a finite number of samples. The error is small even when each
spring represents only four rods. It is important to emphasize that the new force law �Eq.
�52�� outperforms the Cohen force law at all levels of discretization and so should be
used instead of the Cohen force law by future simulators.

We can develop a similar approximate force law that models freely jointed chains with
unequal rod lengths by proceeding in the exact same manner. As with the equal rod case,
we will assume a form like the Cohen force law

fsĀ

kBT
=

Br̂ + Gr̂3

1 − r̂2 . �53�

The values of B and G will depend on the number of rods and also the distribution of rod

FIG. 12. Relative error in the average fractional extension between an approximate spring force law compared
with an equal rod freely jointed chain, where the number of rods each spring represents is �=4,6 ,20,� and the
arrows denote increasing �. The dotted lines are for the Cohen force law, the dashed lines are for the new
approximate force law �Eq. �52��, and the solid line is the �=� limit of both force laws. The force is nondi-

mesionalized using the rod length, f̂ = fA /kBT.
lengths. For the spring to have the correct limiting behavior at full extension we need
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B + G = 2 − 4/� , �54�

where here � is defined using the average rod length, �=� / Ā, which is equal to the total
number of rods that the spring represents. For the equal rod case, we used the expansion
of the second moment of the spring length for the approximate spring to get the remain-
ing parameter B. Because the spring force takes the same form as the equal rod case, the
expansion of the second moment of the spring length is the same

�r̂2�eq �
3

�B
−

30

�2B3 +
30�24 − 7B + 2B2�

�3B5 + O
 1

�4� . �55�

We choose B in order to match this second moment with the second moment of the freely
jointed chain. The second moment of the freely-jointed chain is �r̂2�eq=A2 /�, where A2 is

a function of the distribution of rod lengths and is defined as A2�A2 / �Ā�2. Similarly we

will define A4�A4 / �Ā�4, which we will use later in discussing the fourth moment. By
choosing

B =
3

A2
−

10A2

3�
+

10A2�4A2
2 − 21A2 + 18�
27�2 , �56�

the second moment of the spring length for the approximate spring force law �Eq. �53��
is

�r̂2�eq �
A2

�
+ O
 1

�4� . �57�

The resulting approximate spring force law is

fsĀ

kBT
= � 3

A2
−

10A2

3�
+

10A2�4A2
2 − 21A2 + 18�
27�2 	r̂ +

�2 − 4/��r̂3

1 − r̂2 . �58�

In the limit �→� this becomes

fsĀ

kBT
=

3

A2
r̂ +

2r̂3

1 − r̂2 . �59�

We can quantify the accuracy of the approximate force-law by comparing the second and
fourth moments of the spring length with the second and fourth moments for the under-
lying freely jointed chain. The fourth moment of the freely jointed chain is �r̂4�eq

= �5A2
2�−2A4� / �3�3�. Even when expressing a unequal rod system in terms of a few

averages over the rods, the parameter space is large. We will quantify the error of the
approximate spring force law for the same system shown in Fig. 5. This system consists
of equal numbers of rods of length A and rods of length 5A, resulting in A2=1.444 and
A4=3.862. With these parameters fixed, we change the number of rods, and examine the
error in the moments of the spring length in Fig. 13.

IV. SUMMARY AND OUTLOOK

We have examined a new method to generate coarse-grained models of polymers as
bead-spring chains using the constant extension ensemble behavior of the polymer. We
applied it to a number of toy problems to illustrate the mechanics of the method and
important aspects of coarse-graining. Applying this method to the FJC polymer showed

why current bead-spring chains are incapable of modeling polymers at high discretiza-
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tion. The analysis was applied to freely jointed chains in which the rods can have differ-
ent lengths showing that as the spread in rod lengths increases, the response of the chain
can change dramatically. This change cannot be accounted for solely by using an effec-
tive Kuhn length. We applied the method to construct a dumbbell model of actin fila-
ments. This illustrated that the method in dumbbell form is applicable to the WLC as well
as showing it can be used directly from experimentally data. These new force laws have
a significant impact on not only the force-extension behavior but also the rheological
behavior.

At the length and time scales that polymer kinetic theory aims to capture, the two
common approaches are to use more detailed models such as the freely jointed chain or
to use bead-spring chains where each bead represents a large segment of polymer. Be-
cause the current bead-spring models, such as the Cohen force law or Marko-Siggia force
law, produce errors if they are pushed to high discretization, there exists a gap where
there is no accurate coarse-grained version of the more detailed model. One method to
reduce the size of this gap is to use an effective Kuhn length or persistence length. The
use of this method has been examined in Underhill and Doyle �2004�. This method has
significant limitations including that there is not a unique, “correct” choice of the effec-
tive Kuhn or persistence length valid for all situations.

The advance of the PET method is that it bridges this gap in a systematic manner,
showing how to calculate the force law at any level of coarse-graining. However, in
practice the force laws calculated from the PET method may be difficult to implement. In
these situations it may be sufficient to use an approximate force law. The approximate
force law can have a simple functional form that is easy to use in calculations and
captures the underlying model to high accuracy. We have shown examples of developing
approximate force laws, including Eq. �52� which is capable of modeling a freely jointed
chain to high discretization �springs representing as few as four Kuhn steps�. Simulations
that have used the Cohen force law can be easily modified to use this new force law, Eq.
�52�, including the semi-implicit predictor-corrector method developed by Somasi et al.
�2002�. Because the new force law is always better than the Cohen force law, Eq. �52�
should always be used instead of the Cohen force law for modeling of freely jointed
chains.

FIG. 13. Relative error in the equilibrium moments of the spring length between an approximate spring force
law compared with an unequal rod freely jointed chain. The solid lines are for the Eq. �59� force law, and the
dashed lines are for the new force law �Eq. �58��. �a� Relative error in the second moment, �r̂2�eq. �b� Relative
error in the fourth moment, �r̂4�eq.
Similar to that development of an approximate force law as an alternative to the RWS
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model, it appears useful to approximate the coupling behavior of worm-like chains using
bending potentials. We hope that bead-spring chain models with bending potentials will
be used in the future to fill the current gap for worm-like chains.
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