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On the coarse-graining of polymers into bead-spring chains
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Abstract

We present a study of the coarse-graining of polymers into bead-spring chains using statistical mechanics. The force–extension behavior is
examined at different levels of coarse-graining. A direct result of the springs being decoupled is that the force–extension behavior depends only
on the number of flexibility lengths (e.g. persistence or Kuhn lengths) represented by each spring. This dimensionless parameter is found to
govern the fluctuations around the mean extension, analogous to the conventional role of temperature. The use of an effective flexibility length to
correct the model behavior is analyzed, and we have calculated bounds on the choices of this correction factor. The analytic nature of the statisti-
cal mechanical framework has also allowed for the calculation of asymptotic and universal behavior. The zero Weissenberg number rheological
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ehavior is examined using the retarded-motion expansion coefficients of bead-spring chains at different levels of coarse-graining.
how the trade-off between using too few or too many springs. The general framework to analyze the force–extension and rheologic
s applied to the worm-like chain, FENE, and Fraenkel models. We introduce a new method for coarse-graining a polymer into a b
hain called the Polymer Ensemble Transformation (PET) method. Application to the freely jointed chain polymer yields a set of sp
aws called the Random Walk Spring (RWS) model. This new method illustrates why the previous spring force-laws cannot be use
iscretize polymers and also provides new insight into how to rationally proceed in the coarse-graining of polymers into bead-spr
2004 Elsevier B.V. All rights reserved.
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. Introduction

Polymers are challenging to model due to the wide range of
ime and length scales in the system. A recurring theme in the
evelopment of polymer models and simulations is the idea
f coarse-graining. The goal in coarse-graining is to produce
model that has reduced complexity such that it is tractable

o calculate the properties of the model while simultaneously
apturing molecular properties to sufficient accuracy.

Some of the earliest attempts at coarse-graining polymers
onsisted of eliminating degrees of freedom for which
here are only small fluctuations, such as bond lengths
nd bond angles. This led to models including the freely

ointed chain (FJC) in which each bond is treated as a free
oint and the freely rotating chain (FRC)[1]. A much more
uccessful model which includes hindered rotation is the

∗ Corresponding author.
E-mail address:pdoyle@mit.edu (P.S. Doyle).

rotational isomeric state (RIS) model[2]. While RIS has
been successful in determining the equilibrium propertie
polymers, understanding the dynamics of polymers req
the use of a coarser model.

One example of a coarser model is a FJC in which
length of a step is taken to be larger than a bond[3]. In
this model the length of a rod, or Kuhn length, repres
the length over which the polymer acts as if the s
were uncorrelated. This model represents a chain th
coarse-grained to the length of a Kuhn length. One g
advantage of this model is that the distribution function
configurations is well-known from the theory of rand
walks. It should be noted that there is a difference betw
the random walk distribution and the bead-rod chain
rigid constraints[4]. This latter model with rigid constrain
will be referred to solely as the Kramers chain in this pa
The former model, with a distribution function identi
to the random walk, will be referred to as either the fre
jointed chain or random walk chain.

377-0257/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
oi:10.1016/j.jnnfm.2003.10.006
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Using this knowledge of the distribution function it has
been shown that the FJC has an elastic restoring force that
is linear for small deformations, and is given by the inverse
Langevin function over the entire range of deformations[3].
Although other polymer models, such as the worm-like chain
(WLC), have a different form for the restoring force, this
elasticity is one of the main properties of polymers that dis-
tinguishes them from small molecules and thus must be cap-
tured in a coarse-grained model. The restoring force is pri-
marily due to the entropy of the polymer so it is often re-
ferred to as the “entropic restoring force”. When develop-
ing a coarse-grained polymer model, the fine details of the
polymer configurations must necessarily be lost. These “mi-
crostates” contribute significantly to the entropy, and thus to
the elastic restoring force. Something else must be added to
the system that represents this restoring force without repre-
senting all the “microstates”. This restoring force has often
been represented by springs, thus modelling the polymer as
a bead-spring chain.

While much work has been performed using Hookean
springs, it is well known that finite-extensibility plays an
important role in determining the rheological properties of
polymers[4–7]. For that reason, this paper will focus pri-
marily on springs that have a finite fully extended length.
However, within this class of springs, there exists a wide va-
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Understanding the behavior of bead-spring chains, in par-
ticular under what conditions they represent accurate coarse-
grained models, is becoming increasingly important in the
study of polymers. Previous studies have suggested that bead-
spring chains only accurately represent polymers when each
spring represents a large segment of polymer. The study by
Larson et al. suggests that springs can only model the WLC if
each spring represents a large number of persistence lengths.
Similarly, Somasi et al.[14] have argued based on the force–
extension behavior of the Kramers chain[19] that springs can
only represent a Kramers chain if each spring represents more
than 10 Kuhn lengths. Thus from force–extension behavior it
would seem that a single spring (or dumbbell) model would
best represent a polymer.

However, some rheological considerations require the op-
posite extreme, that the polymer is modelled by as many
springs as computationally tractable. The behavior of a poly-
mer in flow is highly dependent on the drag exerted on
the polymer by the solvent. In a bead-spring chain model,
the drag is exerted on the chain only at the beads. Thus
the drag will only be exerted along a continuous contour
in the limit of a large number of springs. The rheological
behavior of a polymer is also dependent on its distribution
of relaxation times. To capture this distribution, the bead-
spring model must have a large number of modes, and thus
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iety of forms for the spring force-law[8]. These include th
orm-like chain model[9,10], the finitely extensible nonlin
ar elastic (FENE) model[11], and other approximations

he inverse Langevin function[12]. Note that in this paper w
o not consider any of the numerous closure approxima

hat have been proposed in the literature[5,13]. Furthermore
or each of the models there are discrepancies in the l
ure as to the “best” parameters that should be chosen f
pring force-law in order to have an accurate represent
f the polymer behavior[14–16].

Most of these previous studies have used Brownian
amics to examine the rheological properties of the ch
nd then used some procedure to determine the param

n the model. In fact only a few studies have looked exp
tly at the force–extension behavior of bead-spring cha
arson et al.[17,18]showed using Brownian dynamics th

he force–extension behavior of a bead-spring chain cha
s more and more beads are added to the chain. They

hat a parameter in the force-law (the persistence lengt
he case of the WLC model) could beartificially changed
o obtain better results from the model. However, no gu
ines have been given for the use of such a method.
hermore, the conditions under which the method fails
ot been quantified, and the consequences of the art
hange have not been evaluated. For these reasons, th
een variability between investigators as to the best w

mplement the correction, or evenif the correction shoul
e used. To answer important questionsincluding but no
imited to these, one must analyze in a systematic way
amifications of coarse-graining a polymer into bead-sp
hains.
s

s

large number of springs[4]. Finally, the large number o
prings may be motivated primarily by geometry. If a po
er is placed in a confining geometry, its behavior can
e described correctly if the model represents the pol
t a small enough length scale[20–22]. The task of mod
lling a polymer accurately using bead-spring chains is
f balancing these two opposing considerations. The nu
f springs must besimultaneouslylarge enough and sma
nough.

The force–extension behavior is of fundamental im
ance to the understanding of bead-spring chains an
hoice of force-law. The very idea of replacing the poly
y springs is motivated by the force–extension behavio

he polymer. Thus we begin our systematic study of b
pring chains by analyzing their force–extension beha
hile other investigators have used Brownian dynamic

ook at the force–extension behavior, we use both Brow
ynamics and equilibrium statistical mechanics. Altho

he methods giveidenticalresults, equilibrium statistical m
hanics has major advantages. The statistical mecha
nalysis avoids the stochastic noise intrinsic in Brow
ynamics simulations so the force–extension behavio
e calculated quickly and accurately. The analytic na
lso allows for the easy identification of the important
ensionless parameters, as well as the construction of

xpansions when those parameters become either la
mall.

After understanding the force–extension behavior we
urn to the study of rheological properties, applying what
een learned. The first step from force–extension behav
heology is examining zero Weissenberg number rheo
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This is because in zero Weissenberg number flow, a polymer
has sufficient time to sample all of phase space. To examine
this limit, the retarded-motion expansion coefficients of the
bead-spring chain can be examined.

This paper is organized as follows. InSection 2the two
methods used, equilibrium statistical mechanics and Brown-
ian dynamics, are reviewed briefly.Section 3contains an ex-
tensive analysis of the force–extension behavior of the bead-
spring chains. This includes a discussion of the correction-
factor employed by Larson et al.[18], a discussion of the
fluctuations about the mean extension, and a discussion of
universal behavior.Section 4examines the rheological be-
havior of the bead-spring chains in the limit of zero Weis-
senberg number by examining the first two coefficients of
the retarded-motion expansion. InSection 5the analysis in
the previous sections is shown to be generally valid for any
choice of force-law by showing explicitly how the analysis
would be performed for two other important models. The two
examples given are the FENE force-law and the infinitely
stiff Fraenkel force-law (equivalent to the FJC).Section 6
introduces a new method for choosing the spring force-
law called the Polymer Ensemble Transformation (PET)
method. We apply this method to the FJC to calculate a
spring force thatexactlymatches the force–extension be-
havior of the FJC called the Random Walk Spring (RWS)
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Given the above definition, the probability density at the
configurationi, pi, is given by

pi = 1

Z
exp

[−Heff,i

kBT

]
(2)

whereZ is the partition function and is equal to

Z =
∫

· · ·
∫

{configurations}
exp

[−Heff

kBT

]
dV (3)

to ensure that the probability density is properly normalized.
It should be noted that for the bead-spring chains considered
in this paper we do not need to worry about the kinetic energy
contribution to the effective Hamiltonian and the momentum
configuration space[4]. This is because our system has no
rigid constraints that freeze-out degrees of freedom, and also
we will not compute the average of any quantity that depends
on momentum.

Average quantities are computed by integrating that quan-
tity times the probability density over all the configuration
space. Thus for a property signified byF the average is

〈F 〉 =
∫

· · ·
∫

{configurations}
F

1

Z
exp

[−Heff

kBT

]
dV (4)
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odel. Not only does this new model perform better than
revious models, the method illustrateswhy the other mod
ls perform in the manner discussed throughout the e
ections.

. Methodology

The behavior of bead-spring chains at different leve
oarse-graining has been investigated using two method
ill be reviewed briefly here, statistical mechanics and Br
ian dynamics.

.1. Statistical mechanics

In this paper we will only be discussing systems
hich equilibrium statistical mechanics can be app
ithin this context of equilibrium statistical mechanics

robability density of a configuration is proportional
23]

xp

[−Heff

kBT

]
(1)

f the configuration is consistent with the macroscopic c
traints. The quantityHeff is the effective Hamiltonian,kB

s Boltzmann’s constant, andT is the absolute temperatu
he specific form of the effective Hamiltonian depends

he macroscopic constraints, i.e. the ensemble. For the
sed canonical ensemble the effective Hamiltonian is e

o the energy.
.2. Brownian dynamics

The technique of Brownian dynamics (BD)[24,25] has
een widely used to study the non-equilibrium and e

ibrium properties of polymer models in flow, in particu
ead-rod and bead-spring models[19,26,27]. Most previous

nvestigations of the behavior of bead-spring chains have
D. Because the systems studied in this paper can all b
lyzed using equilibrium statistical mechanics also, we

t natural to use that methodology. In order to provide
xplicit link between the statistical mechanical results
revious work using BD, we will perform BD simulations

he force–extension behavior of the bead-spring chains.
ill verify that the two methods giveidenticalresults.
The method of BD consists of integrating forward in ti

he equation of motion for each of the beads in the poly
he equation of motion is given by

i r̈ i = Fnet,i = FB,i + Fd,i + Fs,i 
 0 (5)

here the subscripti denotes beadi,m the mass of each bea
¨ the acceleration,Fnet the net force,FB the Brownian force
ue to collisions of the solvent molecules with the beadsFd

he drag force due to the movement of each bead throug
iscous solvent, andFs the systematic force on each bead
o the springs and any external forces. The drag on each
s taken to be the Stokesian drag on a sphere, and w
eglect any hydrodynamic interaction between beads. T

d,i 
 −ζ
(
ṙ i − u∞(r i)

)
(6)
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whereζ is the drag coefficient, andu∞(r i) is the undisturbed
solvent velocity evaluated at the center of beadi. The gov-
erning stochastic differential equation then becomes

ṙ i(t) 
 u∞(r i(t)) + 1

ζ
[Fs,i({r j(t)}) + FB,i(t)] (7)

The Brownian force is chosen from a random distribution
such that it has the following expectation values:

〈FB,i(t) 〉 = 0 (8)

〈FB,i(t)FB,j(t) 〉 = 2kBTζδij

δt
δ (9)

The symbolδij is the Kronecker delta,δ the unit second-
order tensor, andδt the time-step. These expectation val-
ues are needed so that the system satisfies the fluctuation-
dissipation theorem. The stochastic differential equation can
be re-written as

ṙ i(t) 
 u∞(r i(t)) + 1

ζ
Fs,i({r j(t)}) +

√
2kBT

ζ δt
dWi (10)

whereWi is a Wiener process that satisfies

〈dWi〉 = 0 (11)

〈dWi dWj〉 = δij δ (12)
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wheref is the externally applied force. Variance reduction
[24] was also employed to reduce the stochastic noise at small
force.

3. Force–extension behavior

As was mentioned in the introduction, one of the most
important and widely known properties of polymers is elas-
ticity, and in particular the presence of an “entropic restoring
force”. Furthermore, with the advent of optical and magnetic
tweezer technologies, much more attention is being paid to
the relation between force and extension[28]. In particular,
these experiments have been used to test polymer models
which are then used in other contexts.Making quantitative
calculations of the force–extension behavior of bead-spring
chains for comparison with the polymers they represent is the
goal of this section.

3.1. System definition

The typical set-up used to calculate the restoring force us-
ing statistical mechanics is shown inFig. 1. One end of the
polymer is tethered at the origin, and a constant external force,
f , is applied to the other end of the polymer. The direction of
t e
s ne
p e of
t c-
t e
p is is
d ysis
s eld
fi rt
a ns
i mpu-
t rred
a ains,
a
f

F force
e e free
e t
o

In the work presented here we will use a simple exp
rst-order time-stepping algorithm:

i(t + δt) 
 r i(t) + ṙ i(t) δt (13)

t should be noted that when simulating bead-spring ch
ith finitely extensible springs with the above criteria

he Brownian force and an explicit time-stepping sche
here can be a small but finite probability that the Brown
orce will cause a spring to be stretched beyond the
xtended length. In the simulations presented in this p
he time-stepδt was always taken small enough such tha
xamples of over-stretching were observed over the c
f the simulation time.

In the BD simulation performed of the force–extens
ehavior, the system was equilibrated for

eq = 4 × 103

(
ζA2

true

kBT

)
(14)

hereAtrue is the true persistence length of the polym
hez-position of the end of the bead-spring chain was
veraged for

ave = 8 × 103

(
ζA2

true

kBT

)
(15)

he time-step used was

t = 4 × 10−3
(
ζAtrue

f

)
(16)
his constant force defines thez-direction of the coordinat
ystem. Thex andy coordinates are therefore in the pla
erpendicular to the applied force. The expectation valu

he polymer’szdisplacement,〈z〉, can be calculated as a fun
ion of the applied force. This function,〈z〉 vs.f , defines th
olymer’s force–extension (F–E) behavior. Note that th
ifferent from the behavior found by performing the anal
hown inFig. 2, in which the ends of the polymer are h
xed at points that arez (or equivalentlyr) distance apa
nd the average force,〈f 〉, to hold them at those positio

s calculated. Because the former approach is more co
ationally tractable than the latter, it has been the prefe
pproach by previous investigators using bead-spring ch
nd it will be the approach initially used here. SeeSection 6

or a more detailed comparison of the two approaches.

ig. 1. Illustration of a polymer and bead-spring model in the constant
nsemble. One end is held fixed, while a constant force is applied to th
nd. The direction of the force defines thez-direction. Thez-displacemen
f the chain is averaged.
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Fig. 2. Illustration of a polymer and bead-spring model in the constant ex-
tension ensemble. Both ends are held fixed at a distancer apart. The external
force required to hold one of the ends fixed is averaged.

When developing a bead-spring model for the polymer,
it is crucial to verify that the model accurately describes the
polymer. Because the concept of replacing the polymer by a
bead-spring chain is largely motivated by the F–E behavior, it
seems natural to verify the accuracy of the coarse-graining by
requiring that the F–E behavior of the bead-spring chain is the
same as the polymer it represents. However, it is also critical
that the bead-spring chain is compared to the polymer using
the exact same “experiment”. Since the polymer behavior is
calculated by applying a constant force, as shown inFig. 1,
the bead-spring behavior will be calculated in the same way.

3.2. Decoupled springs

Because the bead-spring model is in the (Np)fT ensem-
ble (the number of polymersNp is trivially held constant at
one), the effective Hamiltonian is obtained by performing
a Legendre Transform fromz to f [23]. Thus the effective
Hamiltonian is

Heff = U − fztot (17)

whereU is the potential energy of the bead-spring system
(recall that all kinetic energy has been dropped), andztot the
z-coordinate of the end of the chain. For all the systems con-
s po-
t d on
t t the
e each
s

H

w f
e ring,
a e
H pring,
t
p

Z

whereNs is the number of springs in the chain, andZs is
given by

Zs =
∫

exp

[−Us(r) + fz

kBT

]
d3r (20)

This separation of the partition function has two important
consequences. First, the computational effort needed to cal-
culate the F–E behavior is greatly reduced because the prop-
erties of any size chain can be determined by knowing the
properties of asingle spring(a single integral). Second, it il-
lustrates that for this set of conditions the springs are decou-
pled. In particular, it will be shown later that the F–E behavior
of these bead-spring chain models does not depend explicitly
on the number of beads, which act as free hinges, but only
depends on the level of coarse-graining for each spring. This
is counter to other investigators who have argued the impor-
tance of the number of springs in the bead-spring chain model
[18].

3.3. Dimensionless parameters

In describing the behavior of bead-spring chains it is useful
to define a set of dimensionless variables. Many of these vari-
able transformations are motivated by the worm-like chain
(WLC) force-law, which is the force-law that correctly de-
s ma-
t ma-
t t
b own
l heir
p -
l

z

λ

w
e th
o the
p
r ence
l pre-
s ergy
f l,
U as a
c onless
e

U

I pro-
p
t ented
b

idered here, the potential energy will have no bending
entials, and the energy for each spring will only depen
he magnitude of extension. It should then be clear tha
ffective Hamiltonian can be separated into a sum over
pring

eff =
∑
j

[Us(rj) − fzj] (18)

herej denotes each spring,Us(rj) the potential energy o
ach spring as a function of the radial extension of the sp
ndzj thez-displacement of springj. Because the effectiv
amiltonian can be decomposed into a sum over each s

he partition function for the whole chain,Zw, splits into a
roduct of the partition functions for single springs,Zs,

w = (Zs)
Ns (19)
cribes the behavior of dsDNA. Specifically the transfor
ions are motivated by the interpolation formula approxi
ion to the WLC by Marko and Siggia[10]. However, it mus
e noted that the formula remain general, as will be sh

ater inSection 5. A summary of these parameters and t
hysical interpretations is given inTable 1. These dimension

ess variables are

ˆtot ≡ ztot

L
, r̂ ≡ r

�
, f̂ ≡ fAtrue

kBT
, α ≡ L

Atrue
,

≡ Aeff

Atrue
, ν ≡ α

Ns
= �

Atrue
(21)

hereL is the contour length of the chain,� ≡ L/Ns the fully
xtended length of a spring,Atrue the true persistence leng
f the polymer,α the number of true persistence lengths in
olymer’s contour,Aeff the effective persistence length,λ the
atio of the effective persistence length to the true persist
ength, andν the number of true persistence lengths re
ented by each spring. It is also useful to define two en
unctions. First, we will denote asUeff (r) the spring potentia

s(r), with all additive constants dropped. This is done
onvenience and changes no results. Second, a dimensi
nergy is defined as

ˆ eff (r̂) = Ueff (r)

kBT

λ

ν
(22)

t will become clear later that this scaling is the one ap
riate for the spring potential, in which it is scaled bykBT

imes the number of effective persistence lengths repres
y each spring.
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Table 1
Summary of dimensionless parameters

Parameter Definition Physical interpretation

ẑtot
ztot

L
Total z-displacement as fraction of contour length

r̂
r

�
Radial single spring displacement as fraction of fully extended length

f̂
fAtrue

kBT
Externally applied force in units ofkBT divided by true persistence length

α
L

Atrue
Number of true persistence lengths in polymer’s contour length

λ
Aeff

Atrue
Effective persistence length in units of the true persistence length

ν
�

Atrue
Number of true persistence lengths represented by each spring

Ûeff (r̂)
Ueff (r)

kBT

λ

ν
Potential energy of a spring in units ofkBT times the number of effective persistence lengths represented by each spring

3.4. Force–extension results

The F–E behavior is now calculated using a general result
based onEqs. (3), (4), and (17):

〈ztot〉 = kBT
∂

∂f
lnZ (23)

For bead-spring chains in particular, for whichZ→ Zw, us-
ing Eq. (19)and non-dimensionalizing withEq. (21)shows
that

〈ẑtot〉m = 1

ν

∂

∂f̂
lnZs (24)

where the m-subscript on the mean fractional extension is
used to signify that it is for the bead-spring model. The angu-
lar integration for the single spring partition function can be
performed, resulting in the following formula for the mean
fractional extension:

〈ẑtot〉m = 1

ν

{
−1

f̂
+ ∂

∂f̂
ln

(∫ 1

0
dr̂ r̂ sinh[νf̂ r̂]

× exp

[−ν

λ
Ûeff (r̂)

])}
(25)

T del
d
o er
w
b ng
b

the
M ted
t een
t tion
f lled
b e”
W nd
S vior

is given by[10]

f̂ = 〈ẑtot〉p − 1

4
+ 1

4(1− 〈ẑtot〉p)2
(26)

where the p-subscript on the mean fractional extension sig-
nifies that it is the exact value for the polymer (to separate it
from the behavior of the bead-spring model). It has been con-
ventional for this behavior to directly motivate the following
choice for the spring force-law:

fspring(r) =
(
kBT

Aeff

){( r

�

)
− 1

4
+ 1

4(1− r/�)2

}
(27)

It should be emphasized that thisassumptionhas replaced the
mean fractionalz-projection of the polymer with the frac-
tional radial extension of the spring. The true persistence
length appearing in the polymer behavior has also been re-
placed by the effective persistence length in the spring force-
law to use as a “correction-factor”. Integrating the spring
force-law gives the effective spring potential

Ueff (r) = kBT

(
�

Aeff

){
1

2

( r

�

)2 − 1

4

( r

�

)
+ 1

4(1− r/�)

}
(28)

which results in a dimensionless energy of

U

both
E e-
g arko
a -
a quals
t n
d ring
f lso
u the
l

odel
c ength
his shows explicitly that the F–E behavior of the mo
epends parametrically only onν andλ, but not explicitly
n the number of springs,Ns. This means that a polym
ith α = 400 represented by 40 springs has anidenticalF–E
ehavior as a polymer withα = 10 represented by 1 spri
ecause both haveν = 10.

At this point it is useful to apply these definitions to
arko and Siggia interpolation formula. It should be no

hat within the context of this paper the differences betw
he interpolation formula and the exact numerical solu
or the WLC are unimportant. Thus the polymer mode
y our so-called WLC model is not quantitatively the “tru
LC, but is a hypothetical polymer for which the Marko a
iggia formula is exact. For this polymer, the F–E beha
ˆ eff (r̂) = r̂2

2
− r̂

4
+ 1

4(1− r̂)
(29)

Specific examples of F–E behavior, calculated using
q. (25)and BD, can be seen inFig. 3as the level of coars
raining,ν, is changed. The spring potential used is the M
nd Siggia interpolation formula (Eq. (29)), and for all ex
mples in the figure the effective persistence length e

he true persistence length (λ = 1). Most of the Brownia
ynamics simulations were performed using a single sp

or simplicity. However, we calculate one of the points a
sing 20 springs to explicitly show dependence only on

evel of coarse-graining,ν.
The fact that the F–E curve for a bead-spring m

hanges as more springs are added for a fixed contour l
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Fig. 3. Calculation of the relative error of the mean fractional extension,
(〈ẑtot〉m − 〈ẑtot〉p)/〈ẑtot〉p, for a bead-spring model as the level of coarse-
graining changes. The Marko and Siggia potential was used withλ = 1. The
curves correspond toν = 400 (dashed),ν = 20 (dotted), andν = 10 (dash-
dot). The symbols represent Brownian dynamics simulations. The single
spring simulations correspond toν = 400 (�), ν = 20 (�), andν = 10 (�).
The twenty-spring simulation corresponds toν = 10 (•). Inset: The mean
fractional extension of the models compared with the “true polymer” (solid
line, Eq. (26)).

has been seen before[18]. However, the conventional expla-
nation for this discrepancy is that the introduction of more
springs directly introduces extra flexibility, which pulls in
the end of chain resulting in a shorter extension for the same
force. FromEq. (25)we see that this cannot be fully cor-
rect because the absolute number of springs never appears
only the level of discretization of each spring.Thus the force–
extension curve of a bead-spring chain under any conditions
can be understood by only considering the behavior of a sin-
gle spring, and how its force–extension behavior changes as
the number of persistence lengths it represents changes.

3.5. Phase space visualization

To get a better physical understanding of why the F–E
behavior deviates from the polymer, let us examine the prob-
ability density function over the configuration space. In gen-
eral for a bead-spring chain the phase space has too many
dimensions to visualize easily. However as we just saw the
F–E behavior can be understood by looking at a single spring,
which has a phase space of only three dimensions.

Recall that the probability density is proportional to

exp

[−Heff

kBT

]
(30)

s fec-
t The
c
a

H

For the case of a single spring as considered here the effective
Hamiltonian is

Heff = Ueff (r) − fz = kBTν

(
Ûeff (r̂)

λ
− f̂ ẑ

)
(32)

and therefore the important configurations are determined by

Ĥeff ≡
(
Ûeff (r̂)

λ
− f̂ ẑ

)
=

(
Ûeff (r̂)

λ
− f̂ ẑ

)
min

+ O

(
1

ν

)

(33)

where we have defined a dimensionless effective Hamilto-
nian,Ĥeff . FromEq. (33)we see that 1/ν plays a similar role
in the F–E behavior as temperature usually does in statis-
tical mechanics, determining the magnitude of fluctuations
in phase space about the minimum. A detailed and quan-
titative description of fluctuations will be performed later
in Section 3.7. Here we will discuss how the portion of
phase space the system samples (fluctuates into) with signif-
icant probability determines the mean extension. In the limit
ν → ∞, the system is “frozen-out” into the state of minimum
Ĥeff . Note that asν → ∞, the polymer becomes infinitely
long. By calculating thefractionalextension, we are scaling
all lengths by the contour length. Thus even though the fluc-
tuations may not be getting small if a different length scale
w ns of
t con-
t s
e onal
e o.

s
f ng
p es
o all
d n-
t ee-
d
a
c alues
o e
o um-
b ples
w
c -
i
d
i true
p the
s ted
w he
m
i -
e hy as
ν s the
t -
o that only configurations near the minimum of the ef
ive Hamiltonian contribute significantly to the average.
onfigurations that contribute must have aHeff less thankBT

bove the minimum:

eff = (Heff )min + O(kBT ) (31)
,

ere used (such as the radius of gyration), the fluctuatio
he end-to-end distance do go to zero compared to the
our length. Alternatively in the limitν → 0, the system i
qually likely to be in any state, and thus the mean fracti
xtension of the bead-spring chain,〈ẑtot〉m, approaches zer

In order to understand the behavior at intermediateν,Fig. 4
hows a contour plot of̂Heff for the four casesf̂ = 0.444,
ˆ = 5,λ = 1, andλ = 1.5, and the Marko and Siggia spri
otential(Eq. (29)). The contour lines correspond to lin
f constantĤeff within the x̂–ẑ plane. Note that because
irections perpendicular to ˆz are equivalent, rotating the co

our lines about the ˆz axis produces surfaces in the thr
imensional phase space with constantĤeff . While Ĥeff ,
nd therefore the contour plots, are independent ofν, they
an be used to understand the behavior at different v
f ν because ofEq. (33). The value ofν governs the siz
f the fluctuations around the minimum, and thus the n
er of contour lines above the minimum the system sam
ith significant probability. We also see that each of theĤeff
ontours is not symmetric about the minimum ofĤeff , caus
ng the mean extension of the bead-spring chain,〈ẑtot〉m, to
eviate from the point of minimum̂Heff . Forλ = 1 the min-

mum of Ĥeff corresponds to the mean extension of the
olymer,〈ẑtot〉p. This is because of the way of choosing
pring potential from the true polymer behavior as illustra
ith Eqs. (26)–(29). As λ is increased, the position of t
inimum moves to larger ˆz while the depth of the minimum

ncreases. The minimum also moves to larger ˆz and deep
ns when the force is increased. These plots explain w
→ ∞ the bead-spring chain behavior only approache

rue polymer behavior ifλ = 1, why asν → 0 the mean frac
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Fig. 4. Visualization of phase space using contours of constantĤeff for a
single spring with the Marko and Siggia potential. The square (�) represents
the position of the “true polymer” mean fractional extension,〈ẑtot〉p. The
cross (×) represents the position of minimum̂Heff . Upper left:f̂ = 0.444,
λ = 1; lower left: f̂ = 0.444, λ = 1.5; upper right:f̂ = 5, λ = 1; lower
right: f̂ = 5, λ = 1.5.

tional extension approaches zero, and why for intermediate
ν there may exist a value ofλ for which the mean fractional
extension matches the true polymer.

3.6. Correcting the force–extension behavior

Now that we understand better the reasons why the F–E
curve deviates from the true polymer F–E curve, we would
like to change the model to get closer agreement. A very sim
ple method that has been used by previous investigators[18]
is to use a different persistence length in the spring force-law
(Aeff ) from the true persistence length of the polymer (Atrue),
i.e.λ �= 1. In particular, ifλ is increased, the extension of the
chain also increases, back to the extension of the true poly
mer. The conventional explanation for this is that the free
hinges in the bead-spring chain have introduced extra flexi-
bility. To counter-act the flexibility introduced by the hinges,
the stiffness of the springs must be increased by increasin
the effective persistence length. Let us now analyze the ef
fect of increasingλ within the framework presented above.
Looking atEq. (25)shows that increasingλ acts to decrease
the spring potential energy. Because the spring gets weake
(less stiff), it is not surprising that the extension gets larger.
It should be noted that for infinitely long polymers increas-
ing the persistence length causes a decrease in the restorin
f

-
s er, i
d alue

of λ such that the F–E curve exactly matches the true curve.
It is unclear what value ofλ to choose to give the “best fit”
between the model curve and the true curve. We will present
here an analysis of possible choices and place bounds on the
range of choices. The first criterion that might come to mind
is some type of integrated sum of squared error. However,
that quantity becomes very cumbersome to manipulate ana-
lytically and it is unclear that it is any better of a criterion than
another. The criteria that we will consider looks at matching
exactly one section of the F–E curve. The three sections are at
zero applied force, at infinite applied force, and at the applied
force for which the true polymer has a mean fractional exten-
sion of 0.5. Before calculations can be made of the “best-fit”
λ in each region, the exact meaning of matching the true poly-
mer behavior must be specified. The half-extension criterion
is straight-forward: we will require that the model and poly-
mer curves are equal at the point where the polymer is at half
extension. The other two criteria are more subtle because the
model and polymer become equal at zero and infinite force
for all values ofλ. For the low-force criterion we will require
that the slopes of the F–E curves be equal at zero force. It
should be noted that this is equivalent to requiring that the
relative error of the model goes to zero at zero force. Again,
a similar criterion cannot be used at infinite force because
the slope (or relative error) will always be zero at infinity

at
nite
rac-
finite
t-
C

ls
own
tted).
ings,
h
ence
orce.
Though it is true that by increasingλ from one the exten

ion increases towards the true extension of the polym
oes so non-uniformly. This means that there exists no v
-

-

g
-

r

g

t

independent ofλ. Thus our infinite force criteria will be th
the relative error of the slope of the F–E curve at infi
force will equal zero. Physically, this means that the f
tional extension versus force curves approach one at in
force in the same manner.Fig. 5 shows a plot of the “bes
fit” λ versus 1/ν for each of the three criteria for the WL
force-law.

Fig. 5. Calculation ofλ for the three different criteria at different leve
of coarse-graining for the Marko and Siggia potential. The criteria sh
are low-force (dash-dot), half-extension (dashed), and high-force (do
Upper axis: the level of coarse-graining in terms of the number of spr
Ns, for a polymer withα = 400 (approximatelyλ-phage DNA stained wit
YOYO at 4 bp:1 dye molecule). Inset: expanded view showing the diverg
of the criteria.
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It is important to mention that both the low-force and half-
extension curves diverge for a finite 1/ν. This means that
there exists aν small enough such that the low-force or half-
extension region cannot be matched simply by adjustingλ.
The position of these divergences can be calculatedexactly
in a simple manner as will be shown inSection 3.8. For the
WLC the low-force curve diverges atν∗ = 10/3 while the
half-extension curve diverges atν∗ = 2.4827. However the
high-force curve is alwaysλ = 1 for finite 1/ν.

To illustrate the difference between the three choices of
λ, let us look at a specific example.Fig. 6shows the relative
error in the mean fractional extension versus force for the
WLC force-law, three different values ofλ, andν = 20. The
three values ofλ correspond to the three criteria shown in
Fig. 5. By comparing the relative error curves, we can see
the entire range of effectsλ has on the F–E behavior. The
criteria at low and high force form a bound on the choices
for a “best-fit”λ as seen inFig. 6, even if none of the criteria
presented here is believed best.

As a further example we show the parameters that would
be chosen to modelλ-phage DNA at different levels of
coarse-graining, as well as some properties of the models.
These parameters could be used in a Brownian dynamics
simulation to capture the non-equilibrium properties of
λ-phage DNA.Tables 2–4show what effective persistence

ri-
ters

η0,p/(np(Nζ)) (�m2) b2/(np(Nζ)2/kBT ) (�m4) τ0/((Nζ)/kBT ) (�m2)

0.052 −0.0011 0.021
0.047 −0.00091 0.019
0.042 −0.00074 0.017
0.050 −0.0010 0.020

0.044 −0.00077 0.018
0.036 −0.00052 0.014
0.049 −0.00096 0.019

0.041 −0.00068 0.016
0.029 −0.00034 0.012

= 0.053 �m, andα = 307.5. Models with 10, 20, and 40 springs are compared

p:1 dye molecule

0,p/(np(Nζ)) (�m2) b2/(np(Nζ)2/kBT ) (�m4) τ0/((Nζ)/kBT ) (�m2)

0.060 −0.0015 0.025
0.054 −0.0012 0.022
0.050
0.05

0.051
0.043
0.05

0.048
High 1.0 0.053 0.46 0.035

Models with 10, 20, and 40 springs are compared using three best-fitλ criteria
Atrue = 0.053 �m, andα = 352.8.

Fig. 6. Calculation of the relative error of the mean fractional extension,
(〈ẑtot〉m − 〈ẑtot〉p)/〈ẑtot〉p, for a bead-spring model for different best fit crite-
ria. The Marko and Siggia potential was used withν = 20. The curves cor-
respond toλ = 1.41 (low-force, dotted),λ = 1.21 (half-extension, dashed),
andλ = 1 (high-force, dash-dot). Inset: the mean fractional extension of the
models compared with the “true polymer” (solid line,Eq. (26)).

ing properties of the model were calculated from formulae
in Section 4. The contour length and persistence length for
unstainedλ-phage DNA were taken from Bustamante et al.
[29]. We used that the contour length is increased by 4Å per
bis-intercalated YOYO dye molecule[30], and we assumed
−0.0010 0.020
8 −0.0013 0.023

−0.0010 0.020
−0.00073 0.017

6 −0.0013 0.022
−0.00091 0.019
length to choose for the model for the different “best-fit” c
teria and for different staining ratios of dye. The parame
were calculated by repeated application ofFig. 5. The result-

Table 2
Table of properties for models of unstainedλ-phage DNA

Ns ν Region λ Aeff (�m) Rg (�m)

10 30.8 Low 1.28 0.068 0.56
Mid 1.13 0.060 0.53
High 1.0 0.053 0.50

20 15.4 Low 1.55 0.082 0.55
Mid 1.29 0.068 0.51
High 1.0 0.053 0.47

40 7.7 Low 2.52 0.133 0.54
Mid 1.78 0.094 0.50
High 1.0 0.053 0.42

Unstainedλ-phage DNA has the following properties:L = 16.3 �m, Atrue

using three best-fitλ criteria.

Table 3
Table of properties for models ofλ-phage DNA stained with YOYO at 8 b

Ns ν Region λ Aeff (�m) Rg (�m) η

10 35.3 Low 1.25 0.066 0.60
Mid 1.11 0.059 0.57
High 1.0 0.053 0.55

20 17.6 Low 1.47 0.078 0.59
Mid 1.24 0.066 0.55
High 1.0 0.053 0.51

40 8.8 Low 2.18 0.116 0.58
Mid 1.62 0.086 0.54
−0.00049 0.014

. 8 bp:1 dyeλ-phage DNA has the following properties:L = 18.7 �m,
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Table 4
Table of properties for models ofλ-phage DNA stained with YOYO at 4 bp:1 dye molecule

Ns ν Region λ Aeff (�m) Rg (�m) η0,p/(np(Nζ)) (�m2) b2/(np(Nζ)2/kBT ) (�m4) τ0/((Nζ)/kBT ) (�m2)

10 39.8 Low 1.22 0.065 0.64 0.068 −0.0019 0.028
Mid 1.10 0.058 0.61 0.062 −0.0016 0.025
High 1.0 0.053 0.58 0.057 −0.0013 0.023

20 19.9 Low 1.42 0.075 0.62 0.065 −0.0017 0.026
Mid 1.21 0.064 0.59 0.058 −0.00013 0.023
High 1.0 0.053 0.54 0.049 −0.00097 0.020

40 9.95 Low 1.98 0.105 0.62 0.064 −0.0016 0.025
Mid 1.52 0.081 0.57 0.054 −0.0012 0.022
High 1.0 0.053 0.50 0.041 −0.00067 0.016

Models with 10, 20, and 40 springs are compared using three best-fitλ criteria. 4 bp:1 dyeλ-phage DNA has the following properties:L = 21.1 �m,
Atrue = 0.053�m, andα = 398.1.

that the persistence length of the stained molecule is the
same as the unstained value.

In these tables we see examples of the expected general
trends. As the polymer is more finely discretized, the num-
ber of persistence lengths represented by each spring,ν, de-
creases. This causes a larger spread in the possible choices
for the effective persistence length, and thus a larger spread
in properties. We see the general trend that the magnitude
of the properties decreases asν decreases. Note that for the
low-force criterion,Rg andη0,p are exactly the “Rouse re-
sult”. The “Rouse Result” is the value of the Rouse model if
the spring constant is taken to be the zero-extension slope of
thespringforce-law. The “Rouse result” will be discussed in
more detail inSection 4. The only difference from the “true
polymer” is that the mass and drag are localized at the beads
instead of along a continuous contour. This is true untilν

reaches the point of divergence of the low-force criterion.
However,b2 andτ0 are only approximately the “Rouse re-
sult” as discussed inSection 4. The properties for the other
best-fit criteria have even smaller magnitude than the low-
force criterion. This decrease is due to an error in the zero-
force slope of the force–extension curve, and thus a smaller
coil size.

3.7. Fluctuations

el, it
i n ex-
t s far.
I us
b he
F un-
d ains
t in a
fl uch
o ines
t ar-
t of
t l role
[

It is shown inAppendix A that the fluctuations can be
calculated as

(δẑ)2 = 〈(ẑtot − 〈ẑtot〉m)2〉m = 1

Nsν

∂

∂f̂
〈ẑtot〉m

= 1

α

∂

∂f̂
〈ẑtot〉m (34)

(δx̂)2 = 〈(x̂tot)
2〉m = 〈(ŷtot)

2〉m = 1

Nsν f̂
〈ẑtot〉m

= 1

α f̂
〈ẑtot〉m (35)

where we have defined the root-mean-squared fluctuations as
δẑandδx̂. One important thing to notice about the fluctuations
is that once the F–E behavior is known (〈ẑtot〉m versusf̂ ), the
fluctuations can be calculated directly without performing
any further integrations. In fact, both types of fluctuations can
be calculated by finding the slope of a line on the F–E curve,
as seen inFig. 7. From the figure we see that the longitudinal
fluctuations are proportional to the slope of the curve, while
the lateral fluctuations are proportional to the slope of the line
connecting the point of the F–E curve to the origin. Because
the F–E curve is concave,the lateral fluctuations are always
greater than or equal to the longitudinal fluctuations.

fl the
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In addition to discussing the F–E behavior of the mod
s important to discuss the fluctuations around the mea
ension. We have already seen the use of fluctuations thu
n Section 3.5we saw how examining fluctuations can help
etter understand themeanextension. The fluctuations in t
–E behavior are also important in trying to extend our
erstanding from the F–E behavior of the bead-spring ch

o the behavior in a flow field. For a bead-spring chain
ow field, the fluctuations of the chain determine how m
f the flow field the chain can sample. In turn this determ

he total force applied to the chain by the flow. This is p
icularly important in shear flow, in which the fluctuation
he chain in the shear gradient direction plays a centra
8,31].
Another important aspect ofEqs. (34) and (35)is that the
uctuations depend explicitly on the number of springs in
hain, unlike the F–E curve which just depends on the lev
oarse-graining for each spring. In fact we see the exp
caling of the root-mean-squared fluctuations asα−1/2. Since
he persistence length is the length-scale over which the
er backbone loses correlation, the fluctuation of the poly

ength should scale like a sum of “independent” random
bles. The number of these “independent” random varia

s precisely the number of persistence lengths in the pol
ontour,α. We show inFigs. 8 and 9plots of the root-mean
quared fluctuations for the same cases for which we sh
he F–E behavior inFig. 3. We have scaled the fluctuatio
yα1/2 to collapse the fluctuations of different length cha
nto the same curve. The fluctuations after this scaling
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Fig. 7. Graphical illustration of longitudinal and transverse fluctuations. For
a given forcef̂ , the longitudinal fluctuations are proportional to the slope
of the tangent curve (dashed). The transverse fluctuations are proportional
to the slope of the chord (dotted) connecting the origin to the point on the
force–extension curve.

depend on the number of persistence lengths represented by
each spring,ν, and the ratio of the effective persistence length
to the true persistence length,λ.

Note that it is easy to calculate exactly the high-force scal-
ings for the fluctuations usingEqs. (34) and (35)and our
knowledge of the high-force scaling for〈ẑtot〉m. It is easy to
show that for bead-spring chains using the Marko and Siggia
potential (Eq. (29)) the high-force scaling is

〈ẑtot〉m
f̂→∞∼ 1 − 1

2λ1/2f̂
1/2

+ O

(
1

f̂

)
(36)

F ns at
d used
w d
ν ptotic

b

Fig. 9. Calculation of the transverse root-mean-squared fluctuations at dif-
ferent levels of coarse-graining. The Marko and Siggia potential was used
withλ = 1. The curves correspond toν = 400 (dashed),ν = 20 (dotted), and
ν = 10 (dash-dot). The solid line corresponds to the high-force asymptotic

behavior, 1/(f̂
1/2

).

Using this result, we can show that

α1/2 δẑ
f̂→∞∼ 1

2λ1/4f̂
3/4

+ O

(
1

f̂
5/4

)
(37)

α1/2 δx̂
f̂→∞∼ 1

f̂
1/2

+ O

(
1

f̂

)
(38)

Of particular interest are the fluctuations at “equilibrium”
(zero applied force) because it relates to the size of the poly-
mer coil. In the context of the F–E behavior, that is equivalent
to calculating the slope of the F–E curve at zero force, as can
be seen by taking the limit̂f → 0 in Eqs. (34) or (35). By
taking that limit, and rewriting the average as the average of
the radial coordinate of a single spring, it can be shown that

lim
f̂→0

(
∂

∂f̂
〈ẑtot〉m

)
= ν

3

∫ 1
0 dr̂ r̂4 exp[−(ν/λ) Ûeff (r̂)]∫ 1
0 dr̂ r̂2 exp[−(ν/λ) Ûeff (r̂)]

(39)

This expression was used previously inSection 3.6to calcu-
late the “best-fit”λ at zero force as seen inFig. 5, and it will
be used extensively to understand rheological properties in
Section 4.

We also note here that Ladoux and Doyle[31] derived an
expression similar toEq. (35)based on scaling arguments
and a single spring. Based on the scaling argument, they de-
v ntal
d

3

pring
c r ar-
b ina-
t e the
b ation
ig. 8. Calculation of the longitudinal root-mean-squared fluctuatio
ifferent levels of coarse-graining. The Marko and Siggia potential was
ithλ = 1. The curves correspond toν = 400 (dashed),ν = 20 (dotted), an
= 10 (dash-dot). The solid line corresponds to the high-force asym

ehavior, 1/(2f̂
3/4

).
eloped a model which compared favorably to experime
ata and lends support to the results presented here.

.8. Limiting behavior (asymptotic expansions)

We have seen thus far that the F–E behavior of bead-s
hains can be written analytically as integral formulae fo
itrary spring force-law. This has allowed for the determ

ion of the important dimensionless groups that determin
ehavior, as well as provide for rapid and accurate calcul
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through numerical integration. However, another important
advantage to having analytical formulae is that expansions
can be performed. Those expansions can be used to illustrate
limiting and universal behavior as well as obtain approxi-
mate algebraic formulae that illustrate what aspects of the
force-law are needed to estimate the exact behavior without
performing numerical integration.

We have already seen numerically inFig. 3 that the F–
E behavior of the model only matches the “true” polymer
behavior if each spring represents a large number of per-
sistence lengths. Thus it seems natural to find asymptotic
expansions of the integrals in the limitν → +∞. We start
by expanding directly the force–extension curve (Eq. (25)).
The asymptotic expansion is a straightforward application of
Laplace’s Method[32]. The calculation is made significantly
easier by noting that the hyperbolic sine can be replaced by
only the growing exponential, because it only results in sub-
dominant corrections. Up to first order, the expansion is given
by

〈ẑtot〉m
ν→∞∼ c + 1

ν

[
−1

f̂
+ 1

c

(
∂c

∂f̂

)
+ (∂2c/∂f̂

2
)

2(∂c/∂f̂ )

]

+ O

(
1

ν2

)
(40)
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Fig. 10. Comparison of the fractional extension with its highν asymptotic
expansion for the Marko and Siggia potential withλ = 1 andf̂ = 0.1. The
curves correspond to the exact result (solid line), the expansion including
O(1/ν) (dotted), and the zero-one PadéP0

1 (1/ν) (dashed). Inset: the analo-
gous comparison for̂f = 1.25.

if and only if the spring force-law is an odd function of its
argument (the potential is an even function).

Even for the case of an odd spring force-law, it is more
computationally convenient to obtain the expansion of the
slope of the F–E curve at zero force directly by expandingEq.
(39). Application of Laplace’s Method requires the expansion
of the spring force-law, of the following form:

Ûeff (r̂) = φ0 + φ2r̂
2 + r̂3

∞∑
i=0

hir̂
i (43)

Note that there is no linear term because we require this po-
tential to look Hookean near ˆr = 0 and that the value of the
constant term,φ0, does not affect the final answer. Also note
thatφ2 > 0.

Proceeding with Laplace’s Method, the complete asymp-
totic series can be calculated to be the following:

lim
f̂→0

(
∂

∂f̂
〈ẑtot〉m

)
ν→+∞∼

(
λ

2φ2

)
×

∞∑
i=0

di

(
λ

ν φ2

)i/2

(44)

The coefficients of the series can be calculated from a collec-
tion of recursion relations that include the coefficients of the
Taylor series of the spring potential. The recursion relations
are given here for completeness:

d

d

here

≡ 〈ẑtot〉p(λf̂ ) (41)

e thus see again that asν → ∞ with λ = 1 the F–E behav
or of the bead-spring model approaches the true poly
owever, we also have the correction terms written as a

ion of thetrue polymerF–E curve.No assumptionhas bee
ade about the spring force-law other than it is determ

rom the “true polymer” F–E behavior as was done for
LC model inSection 3.4. Provided the value ofν is “large

nough”,Eq. (40)can be used to estimate the F–E beha
f a bead-spring model without performing any numer

ntegrations for any value of̂f or λ within

< f̂ < ∞, 0 < λ < ∞ (42)

o give a sense of the applicability of the expansion inEq. (40)
o smallerν, we show inFig. 10a comparison of the exa
orce–extension result for the Marko and Siggia pote
ith λ = 1 and the asymptotic expansion for forcesf̂ = 0.1
nd f̂ = 1.25. We see that the expansion is applicabl
mallerν whenf̂ is larger. The zero-one Padé approximan
0
1(1/ν) is seen to improve the smallν behavior.

Care must be taken ifEq. (40)is expanded for large o
mall f̂ because of the order in which limits are taken
he F–E curve is expanded to O(ν−a), then the asymptot
xpansionf̂ → ∞ can only be obtained to O(̂f

−a
). At low

orce, the quantity of greatest interest is the slope of the
urve at zero force, given byEq. (39). In general, expandin
q. (39)directly for ν → ∞ gives a different result from
xpandingEq. (40)for smallf̂ . The expansions are the sa
0 = F
(4)
0

F
(2)
0

= 1,

i = 1

F
(2)
0

(
F

(4)
i −

i−1∑
m=0

dmF
(2)
i−m

)

= F
(4)
i −

i−1∑
m=0

dmF
(2)
i−m, i ≥ 1 (45)



P.T. Underhill, P.S. Doyle / J. Non-Newtonian Fluid Mech. 122 (2004) 3–31 15

F
(n)
i =


 i∑

j=0

(j)G(i−j)

(−1

φ2

)j (
Γ (j + i/2 + (n + 1)/2)

j! Γ ((n + 1)/2)

)


(46)

(m)G(n) =
n∑

i=0

(m−1)G(i)h(n−i),

n = 0,1,2, . . . , m = 1,2,3, . . . ,

(0)G(0) = 1, (0)G(1,2,...) = 0 (47)

We have also examined the ability to use this expansion at
smallerν, as shown inFig. 11 for the Marko and Siggia
potential withλ = 1. It should be noted that the zero-one
Pad́e P0

1(1/ν1/2) performs worse than the first two terms
of the expansion inEq. (44). However, the two-point zero-
two Pad́e P0

2(1/ν1/2) that includes the behavior at small
ν does perform better. This lowν behavior will now be
discussed.

In addition to examining the bead-spring chains in the
limit ν → ∞, it is interesting to examine the F–E behavior in
the limit ν → 0. In this limit the F–E behavior can approach
a curveindependentof the functional form ofÛeff (r̂). Phys-
ically one can think of this limit as taking a polymer with
fixed contour length, and infinitely discretizing the model.
Therefore each spring is becoming very small. However, it
should also be noted that each spring is getting weaker, as
seen inEq. (32). It has been postulated previously that as
the chain is infinitely discretized, the F–E behavior would
approach that of the freely jointed chain[18]. Using the for-
malism presented thus far, we can examine explicitly this
limit and test the postulated behavior. To understand the F–E
behavior in this limit, we simply need to expandEq. (25)for
ν → 0.

It should first be noted that expanding the prescribed in-
tegral is an example of an integral that can only be expanded

Fig. 11. Comparison of the zero-force slope with its highν asymptotic ex-
pansion for the Marko and Siggia potential withλ = 1. The curves cor-
respond to the exact result (solid line), the expansion including O(1/ν1/2)
(dotted), the zero-one PadéP0

1 (1/ν1/2) (dashed), and the two-point zero-two
Pad́eP0

2 (1/ν1/2) (dash-dot).

rigorously using asymptotic matching, but the leading-order
behavior is relatively easy to obtain[32]. In fact, the leading
order behavior is obtained by setting

exp

[−ν

λ
Ûeff (r̂)

]

 1 (48)

By further expanding the hyperbolic sine, it can be easily
shown that

〈ẑtot〉m
ν→0∼ νf̂

5
, f̂ fixed (49)

Note that this is consistent withSection 3.5in which we saw
that, for f̂ fixed, the mean fractional extension approaches
zero asν → 0. We also see explicitly that the F–E behavior
does notapproach the FJC, which is given by

〈ẑtot〉m = L(f̂ ) (50)

where

L(x) = coth(x) − 1

x
(51)

is the Langevin function. We can also contrast the behavior in
Eq. (49)with a different “experiment” in which free hinges
a
t
o free
h aver-
a
a

〈

e
p del is
i ine
p stem
i ever,
a lding
f er
a One
m role
o his
c n
o
c
(

〈

W a
m

〈

re introduced into a truecontinuousworm-like chain while
he force is held constant. If one considersν to be the ratio
f the contour length of the continuous curve between
inges to the persistence length, then it is clear that the
ge extension of this discretized worm-like chain,〈ẑtot〉dwlc,
pproaches the limit

ẑtot〉dwlc
ν→0∼ L(νf̂ )

ν→0∼ 1
3(νf̂ ), f̂ fixed (52)

It should be noted that holdinĝf fixed corresponds to th
hysical process of holding the force constant as the mo

nfinitely discretized. This is the appropriate limit to exam
rocesses in which the force applied to the end of the sy

s independent of how the system is discretized. How
nother universal result can be obtained by instead of ho
ˆ fixed, holdingνf̂ fixed. This corresponds to pulling hard
nd harder on the model as it is more finely discretized.
ight expect that the length of a spring should play the
f the “Kuhn length”, and thus the scale for the force. T
orresponds to a dimensionless force ofνf̂ . The expansio
f the bead-spring chain model behavior withνf̂ fixed is
alculated by simply integrating the hyperbolic sine inEq.
25) to obtain

ẑtot〉m
ν→0∼ −3

νf̂
+ 1

L(νf̂ )
, (νf̂ ) fixed (53)

e see that even in this limit the systemdoes notapproach
odified “freely jointed chain” result of

ẑtot〉m = L(νf̂ ) (54)
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To understand the true limiting shape (Eq. (53)) it can be
shown that

−3

x
+ 1

L(x)
≈ L

(x

2

)
, x large (55)

−3

x
+ 1

L(x)
≈ L

(
3x

5

)
, x small (56)

In addition to being used to understand the limit of infinite
discretization,Eq. (53)can be used to understand the diver-
gence of the “best-fit”λ curves inFig. 5 and discussed in
Section 3.6. Recall that previously we considered the limit in
Eq. (53)to be asν → 0 as (νf̂ ) was held fixed, andλ was im-
plicitly being held constant. By examiningEq. (25), we see
that if (νf̂ ) is held constant, the only remaining parameter is
ν/λ. Thus the expression inEq. (53)can be rewritten as the
limit (ν/λ) → 0:

〈ẑtot〉m
λ→∞∼ −3

νf̂
+ 1

L(νf̂ )
, bothν, f̂ fixed (57)

Now suppose that one is choosingλ such that the model
matches the true polymer at an extension of〈ẑtot〉p, which
occurs at a force denoted̂f (〈ẑtot〉p). The value ofν for which
that “best-fit” curve diverges (denotedν∗) will be the value
for which only asλ → ∞ will the extension of the model
equal that of the polymer. This condition is written as

〈

T orce
c y
o r, it
c

〈

I

T ia is

ν

B w
w
s lf-
e -
s en
b

w

0 ria,

in general itcannotbe used for the high force criteria. This
stems from the break-down of the assumption inEq. (48)
if f̂ → ∞, in particular because the spring potential for the
WLC model diverges at full extension fast enough. In fact,
we know thatEq. (58)cannot be valid for the WLC model
for the high-force criterion because we know that the high
force criteria does not diverge. It is shown inSection 5.1
that the high force criteria for the FENE model does di-
verge, andEq. (58)canbe used to calculate the position of
divergence.

4. Rheological properties

Thus far we have only considered the force–extension
behavior of the bead-spring chains. In addition to F–E be-
havior we are interested in the rheology of the bead-spring
chains, and how it changes as the level of coarse-graining
changes. In general, this is a much harder problem com-
putationally than the work done thus far. In order to con-
tinue in the spirit of calculating properties near equilibrium
and using equilibrium statistical mechanics, we will investi-
gate the rheology of the bead-spring chains by looking at
potential flow in the limit of small deformation rate. Po-
tential flow has the desirable property that the chain behav-
i nics
w ysis
t lated.
T per-
t ing
fl

ded-
m This
h ear
E et
a ded-
m ow-
e sim-
p and
i cific
a ins
b sly,
w be-
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W ients
c the
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b

〈

ẑtot〉p = −3

ν∗f̂ (〈ẑtot〉p)
+ 1

L(ν∗f̂ (〈ẑtot〉p))
(58)

his can also be used to find the divergence of the low f
riteria by examining the limit aŝf → 0. Because of the wa
f choosing the force-law from the true polymer behavio
an be shown easily that

ẑtot〉p
f̂→0∼ f̂

2φ2
(59)

t can also be shown that

−3

ν∗f̂ (〈ẑtot〉p)
+ 1

L(ν∗f̂ (〈ẑtot〉p))

f̂→0∼ ν∗f̂
5

(60)

herefore the point of divergence for the low force criter

∗ = 5

2φ2
(61)

y applying Eq. (61) to the Marko and Siggia force-la
e see that the low force criteria diverges atν∗ = 10/3 as
tated inSection 3.6. To calculate the divergence for the ha
xtension criteria, we set〈ẑtot〉p = 1/2 in Eq. (58)and sub
titute forf̂ (1/2) fromEq. (26). The divergence is then giv
y the solution to

1

2
= −3

5ν∗/4
+ 1

L(5ν∗/4)
(62)

hich isν∗ = 2.4827 as stated inSection 3.6.
It must be noted that whileEq. (58) is valid for any
< 〈ẑtot〉p < 1, and can be used for the low force crite
or can be calculated using equilibrium statistical mecha
ith an effective energy due to the flow. From this anal

he retarded-motion expansion coefficients can be calcu
hese coefficients give insight into the rheological pro

ies of the bead-spring chains in slow and slowly vary
ows.

Thus the goal of this section is to examine the retar
otion expansion coefficients for bead-spring chains.
as been done previously for Finitely Extensible Non-lin
lastic (FENE)[5] springs and for Hookean springs. Bird
l. [4] also present a general framework for the retar
otion coefficients for any bead-spring-rod chain. H

ver, because of the generality, that analysis cannot
lify the integrals over phase space to a convenient

ntuitive form. Here we present the results of a spe
pplication of that framework to only bead-spring cha
ut for arbitrary spring force-law. As assumed previou
e will assume that there are no bending potentials

ween springs and that the spring force only depend
he magnitude of extension. Furthermore we will neg
ny hydrodynamic interaction and excluded volume betw

he beads and assume that the polymer solution is d
ith these assumptions, the retarded-motion coeffic

an be written as a function of simple moments of
orce-law probability distribution. These moments are g
y

rn〉eq =
∫ �

0 dr rn+2 exp[−Ueff (r)/kBT ]∫ �

0 dr r2 exp[−Ueff (r)/kBT ]
(63)



P.T. Underhill, P.S. Doyle / J. Non-Newtonian Fluid Mech. 122 (2004) 3–31 17

Written in terms of the moments, the first two retarded-
motion expansion coefficients equal

b1 − ηs = η0,p = 1
36npζ(N2 − 1)〈r2〉eq (64)

b2 = −Ψ1,0

2

=
(

−npζ
2

120kBT

)[(
〈r4〉eq

15
− 〈r2〉2

eq

9

)(
N4 − 1

N

)

+
( 〈r2〉2

eq

9

)(
(N2 − 1)(2N2 + 7)

6

)]
(65)

where ηs is the viscosity of the Newtonian solvent,η0,p
the polymer contribution to the zero-shear viscosity,Ψ1,0
the zero-shear first normal stress coefficient,np the number
density of polymers,ζ the drag coefficient of each bead,
andN the number of beads in the chain. Because we have
neglected hydrodynamic interaction, we also know from
Bird et al. [4] that b11 is zero. SeeAppendix B for the
derivation of these coefficients. It should be emphasized that
for Eqs. (64) and (65)no assumptionhas been made about
the form of the spring force-lawUeff (r).

A more common approach to calculating the polymer con-
tribution to the zero-shear viscosity is through the Giesekus
form of the stress tensor, from which it can be shown that

η

w qui-
l le
s

R

F ,
a op-
e
l lated
f

τ

R
t le
t
F

〈

A ded-
m

b

b2 = −Ψ1,0

2
=

(
−np(Nζ)2L2A2

true

120kBT

)

×

(

ν2〈r̂4〉eq

15
− ν2〈r̂2〉2

eq

9

)(
(N2 + 1)(N + 1)

N3(N − 1)

)

+
(
ν〈r̂2〉eq

3

)2 (
(N + 1)(2N2 + 7)

6N2(N − 1)

)
 (71)

The advantage of working with the dimensionless moments
is that they only depend on the parametersν andλ but not on
the absolute number of beads (or springs). Thus all depen-
dence on the absolute number of beads is shown explicitly.
In this way we have separated out in the formulae the con-
tribution from the specific form of the spring force-law and
the contribution from the chain having multiple beads. Con-
trary to the force–extension behavior, we do see a dependence
on the absolute number of beads. The coefficients are made
dimensionless as

η̂0,p = η0,p

np(Nζ)LAtrue/12
(72)

b̂2 = b2 (73)

nd only
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d -
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otion
c ents
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N e
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l s
i
t e
0,p = 1
6npζNR2

g (66)

hereRg is the root mean square radius of gyration at e
ibrium. For bead-spring chainsRg is related to the sing
pring moments as

2
g = N2 − 1

6N
〈r2〉eq (67)

rom these equations we can verifyEq. (64). Eqs. (64), (65)
nd (67)were additionally used to calculate the model pr
rties given inTables 2–4as discussed inSection 3.6. A re-

axation time for the bead-spring chain can also be calcu
rom the retarded-motion expansion coefficients:

0 = −b2

b1 − ηs
(68)

ecalling from the definitions of the moments (Eq. (63)) that
hey are defined for asingle spring, it seems natural to sca
hem by the fully extended length of a spring,�, if it is finite.
or that case let us define dimensionless moments as

r̂n〉eq = 〈rn〉eq

�n
=

∫ 1
0 dr̂ r̂n+2 exp[−(ν/λ)Ûeff (r̂)]∫ 1

0 dr̂ r̂2 exp[−ν/λÛeff (r̂)]
(69)

fter a number of parameter substitutions the retar
otion expansion coefficients can be rewritten as

1 − ηs = η0,p =
(
np(Nζ)LAtrue

12

)(
N + 1

N

)(
ν〈r̂2〉eq

3

)

(70)
−np(Nζ)2L2A2
true/(120kBT )

These were chosen as the scales because they depe
n properties intrinsic to the true polymer or the system
tudy. The polymer solution being modelled has a num
ensity of polymers,np, and a temperatureT . The true poly
er being modelled has a value of the persistence le
true, a contour lengthL, and a total drag. Because we
sing a freely draining model, the total drag on the cha
ζ. By comparing dimensionless quantities withNζ as the
cale of drag, we are looking at how the property chang
or bead-spring models with different number of beads
ecalculate the drag on a single bead,ζ, such that the who
hain has a constant drag.

To better understand the behavior of the retarded-m
oefficients, let us first examine how much the coeffici
epend explicitly on the number of beads (in addition to

evel of coarse-graining,ν). In Figs. 12 and 13we show re
pectivelyη̂0,p andb̂2 as a function of the number of bea
, while the level of coarse-graining,ν, is held constant. Th

ˆ0,p curves for different values ofν are exactly self-similar a
ould be seen fromEq. (70), while theb̂2 curves are approx
mately self-similar except when bothν andN are small. We
ttribute the change of the coefficients withN while ν is held
xed to the fact that for finiteN the drag is not distribute
long a continuous contour. Thus for the bead-spring m

o be an accurate coarse-grained model of the true pol
he number of beads must be large enough to operate
argeN region. The deviation forν < ∞ is due to the error
n the spring force-law as discussed inSection 3with regards
o the F–E behavior. Theν = ∞ curve corresponds to th



18 P.T. Underhill, P.S. Doyle / J. Non-Newtonian Fluid Mech. 122 (2004) 3–31

Fig. 12. Polymer contribution to the zero-shear viscosity of Marko and
Siggia bead-spring chains as the number of effective persistence lengths
represented by each spring,ν/λ, is held constant. The curves correspond
to ν/λ = ∞ (solid line), ν/λ = 400 (dotted),ν/λ = 100 (dashed), and
ν/λ = 10 (dash-dot).

“Rouse model” result. What we mean by the “Rouse model”
result will be discussed later.

In order to model a given polymer with different numbers
of beads, the value ofν is not constant. Instead the value of
α (the number of true persistence lengths in the polymer’s
contour) is constant. InFigs. 14 and 15we show respectively
η̂0,p andb̂2 as a function of the number of beads,N, whileα

is held constant. This corresponds to discretizing a polymer
finer and finer. We can see the interplay between drag error
and discretizing error as discussed in the introduction. When
the number of beads is small, error is present because the drag
on the polymer due to the solvent is lumped at the beads,
not exerted along a continuous contour. When the number
of beads is large, error is present because the polymer has
been discretized so finely that each spring represents a small
number of persistence lengths. As discussed previously this

F bead-
s nted by
e
l

Fig. 14. Polymer contribution to the zero-shear viscosity of Marko and Sig-
gia bead-spring chains as the number of effective persistence lengths in
the total polymer contour,α/λ, is held constant. The curves correspond
to α/λ = ∞ (solid line), α/λ = 4000 (dotted),α/λ = 400 (dashed), and
α/λ = 100 (dash-dot).

fine discretization leads to error predicting the size of the
coil and the extension of polymer segments. If the number of
persistence lengths in the whole polymer,α, is large enough,
there exists an approximate plateau. This corresponds to the
situation in which the number of springs is simultaneously
large enough to reduce the drag error and small enough to
prevent discretization error. Using the expansions developed
in Section 3.8we canpredictthe location of this plateau.

To use these expansions and also explain why the behavior
approaches the “Rouse result”, we need to express the spring
moments in terms of the force–extension behavior. FromEq.
(39)we see that

lim
f̂→0

(
∂

∂f̂
〈ẑtot〉m

)
= ν〈r̂2〉eq

3
(74)

F bead-
s total
p
∞
(

ig. 13. Zero-shear first normal stress coefficient of Marko and Siggia
pring chains as the number of effective persistence lengths represe
ach spring,ν/λ, is held constant. The curves correspond toν/λ = ∞ (solid

ine), ν/λ = 400 (dotted),ν/λ = 100 (dashed), andν/λ = 10 (dash-dot).
ig. 15. Zero-shear first normal stress coefficient of Marko and Siggia
pring chains as the number of effective persistence lengths in the
olymer contour,α/λ, is held constant. The curves correspond toα/λ =

(solid line),α/λ = 4000 (dotted),α/λ = 400 (dashed), andα/λ = 100
dash-dot).
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It can also be shown by taking the third derivative of the
force–extension curve that

1

3ν
lim
f̂→0

(
∂3

∂f̂
3
〈ẑtot〉m

)
= ν2〈r̂4〉eq

15
− ν2〈r̂2〉2

eq

9
(75)

Making use of these equalities we can write the retarded-
motion expansion coefficients as

η̂0,p =
(
N + 1

N

)(
lim
f̂→0

∂

∂f̂
〈ẑtot〉m

)
(76)

b̂2 =



 1

3ν
lim
f̂→0

∂3

∂f̂
3
〈ẑtot〉m


(

(N2 + 1)(N + 1)

N3(N − 1)

)

+
(

lim
f̂→0

∂

∂f̂
〈ẑtot〉m

)2 (
(N + 1)(2N2 + 7)

6N2(N − 1)

)
 (77)

Let us first examine the plateau of ˆη0,p. We can easily see from
the pre-factor inEq. (76)that the drag error is negligible if

N � 1 (78)

To predict the upper limit of the plateau, we use the expansion
in Eq. (44). Use of this series is justified because we know
t
v ant.
F

|

W t
w

(

N the
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φ

H
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(

w -
c
f

1

b lect

the term with the third derivative. Following an analogous
procedure we find the plateau region forb̂2:

2 � N, (N − 1)i/2 � 1

|2di|
(
αφ2

λ

)i/2

(84)

Note the factors of two that result from expanding the rational
function ofN for largeN and from expanding the square of
the zero-force slope.

Let us consider application of these formulae to the WLC
model. For the Marko and Siggia potential withλ = 1 the
two plateau conditions state that

1 � N, (N − 1)1/2 � 1.151α1/2 (85)

2 � N, (N − 1)1/2 � 0.576α1/2 (86)

If we consider that an order of magnitude difference is suf-
ficient to satisfy the� conditions, then the conditions could
be approximated as

15 � N � 0.01α (87)

In words this says that the number of beads must be larger than
approximately 15 while simultaneously each spring must rep-
resent more than approximately 100 persistence lengths. Re-
call that based on force–extension simulations[19] of the
Kramers chain, Somasi et al.[14] argued than each spring
s not
a and
h LC
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hat if the behavior is within the plateau region thenν must be
ery large. In fact, the leading order term must be domin
or the WLC model this corresponds to

d1|
(

λ

νφ2

)1/2

� 1 (79)

ritten in terms of the parameterα/λ, which is constan
hile discretizing, this condition becomes

N − 1)1/2 � 1

|d1|
(
αφ2

λ

)1/2

(80)

ote that this is true for the WLC model because for
arko and Siggia spring potential

2 = 3

4
, d1 = −4

3
√
π

(81)

owever some models like the FENE model haved1 = 0.
he appropriate analysis shows that in general

N − 1)i/2 � 1

|di|
(
αφ2

λ

)i/2

(82)

herei denotes the first coefficientdi that is non-zero (ex
luding d0 = 1). Combining the two bounds onN gives a
ormula for the plateau region for ˆη0,p:

� N, (N − 1)i/2 � 1

|di|
(
αφ2

λ

)i/2

(83)

A similar analysis can be done forb̂2. Becauseα has to
e large for a plateau region to even exist, we will neg
hould represent more than 10 Kuhn lengths but were
ble to estimate a lower bound on the number of springs
ad to extrapolate from the Kramers chain result to the W
esult. Here we have used zero Weissenberg rheology
ivebothlower and upper bounds on the number of bead
rbitrary spring force-law. From Brownian dynamics sim

ations of start-up of steady shear flow[14], there is initia
vidence that our bounds may even retain approximate v

ty in unsteady, strong flows. We leave a detailed analys
his to future research.

In addition to allowing for the derivation of the plateau
ion, writingb1 andb2 in terms of the force–extension cur
llows for a better physical understanding for the deviatio

he curves forν < ∞and what is meant by the “Rouse resu
he “Rouse result” is the value that the Rouse model w
ive if the spring constant were equated to the zero-exte
lope of thespringforce-law. Recalling that thespringforce-
aw was taken from thetrue polymerforce–extension beha
or, one can show that this Rouse model would have co
ients

ˆ0,p =
(
N + 1

N

)(
lim
f̂→0

∂

∂f̂
〈ẑtot〉p

)
(88)

ˆ2 =

(

lim
f̂→0

∂

∂f̂
〈ẑtot〉p

)2 (
(N + 1)(2N2 + 7)

6N2(N − 1)

)
 (89)

e see that because the force–extension behavior o
odel approaches that of the true polymer asν → ∞, the

etarded-motion expansion coefficients of the model
roach the Rouse result. Note that while the part ofb2 with the
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third derivative is zero for the Rouse result because its spring
is Hookean, that term vanishes for the model asν → ∞ be-
cause of the 1/ν pre-factor. The third derivative of the true
polymer force–extension curve isnotzero.

Now we turn to a discussion of how using a best-fitλ

criteria affects the rheological behavior as the polymer is
more finely discretized. In particular let us look more closely
at the low-force criteria. The low-force criteria is such that

lim
f̂→0

∂

∂f̂
〈ẑtot〉m = lim

f̂→0

∂

∂f̂
〈ẑtot〉p (90)

If we put this result intoEqs. (76) and (77)we see that
the zero-shear viscosity equals the Rouse result exactly. The
zero-shear first normal stress coefficient will be close to the
Rouse result but will deviate slightly. This is because the
third derivative is non-zero andν is not infinite. Note that
the third derivative is also not equal to the third derivative
of the true polymer force–extension curve. The equality and
approximate equality with the Rouse results holds only up to
a criticalN, at which point the low-force criterion diverges
(Eq. (61)):

Nmax = 2
5φ2α + 1 (91)

5. Examples of other force-laws
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“persistence length”. For the FJC the generalized flexibility
length is proportional to the Kuhn length.

To apply the framework presented inSection 3 to
the FENE force-law inEq. (92), we will let Atrue =
kBT/(Htrue�) = aK,true/3 so that the “exact” polymer F–E
behavior is

f̂ = 〈ẑtot〉p

1 − 〈ẑtot〉2
p

(94)

This directly motivates the choice for the spring force-law

fspring(r) =
(
kBT

Aeff

)
r/�

1 − (r/�)2
(95)

whereAeff is defined in the expected way as

Aeff = kBT

Heff �
= aK,eff

3
(96)

It is then clear that the dimensionless energy for the FENE
spring becomes

Ûeff (r̂) = −1

2
ln(1 − r̂2) (97)

and all formulae fromSection 3follow directly. However,
while interpreting the previous discussion it must be kept in
m
h g on
t con-
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Thus far whenever a particular spring force-law has b
eeded the Marko and Siggia interpolation formula has
sed. It has been noted that the general formula will w

or other force laws. Here we will explicitly show how t
ormulae can be made specific for two important force-l
ommonly used in modelling polymer rheology.

.1. FENE force-law

The first force-law we will consider is the FENE forc
aw, which is a widely used approximation to the beha
f a freely jointed chain (FJC). The FENE force-law can
ritten in general as

= H�〈ẑtot〉p

1 − 〈ẑtot〉2
p

(92)

n the sense that the FENE force-law is an approximatio
he true force-law for a FJC, the spring constantH is given
n terms of the length of a rod in the FJC, or Kuhn lengthaK,
s[4]

= 3kBT

�aK
(93)

ombiningEqs. (92) and (93), the appropriate scale for t
orce iskBT/aK, or for the general caseH�. The general for
alism presented earlier scaled the force bykBT/Atruewhere
true was called the true persistence length. Now it is c

hat it would be more appropriate to callAtrue a generalize
exibility length, and only for the WLC is it equal to th
ind that the parameters dependent onAeff andAtrue can
ave slightly different physical interpretations dependin

he exact force-law used. What does not change is the
ept that those parameters consist of generalized flexi
engths. Thus, for example,ν still must be large in order fo
he bead-spring model to behave like the true polymer.

For the FENE force-law many of the calculations (in
rals) can be performed analytically. In particular, the
ehavior is

ẑtot〉m = Ik+1(f̂ ν)

Ik(f̂ ν)
, k = 3 + ν/λ

2
(98)

hereIk(x) is the modified Bessel function of the first kin
rderk. The moments can also be calculated analytical

erms of the Beta function, or equivalently Gamma functi

r̂n〉eq = Γ ((n + 3)/2)

Γ (3/2)

Γ (3/2 + ν/(2λ) + 1)

Γ (((n + 3)/2) + ν/(2λ) + 1)
(99)

or even values ofn ≥ 2, they take an even simpler form:

r̂n〉eq = (n + 1)(n − 1) · · · (3)

(n + 3 + ν/λ)(n + 1 + ν/λ) · · · (5 + ν/λ)
(100)

n order to more easily compare these results with the
ody of literature on FENE springs, we will relate the co
on FENE notation to the notation used here. Typically
ENE force-law is written as[4]

lit (Q) = HlitQ

1 − (Q/Qo)2
(101)
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ComparingEqs. (95) and (101)we see the following equali-
ties in notation:

Q → r (102)

Qo → � (103)

Hlit → Heff (104)

The other very important parameter in the FENE notation is
b defined by

b = HlitQ
2
o

kBT
(105)

which can be related to our notation as

b → ν

λ
(106)

For comparison with the WLC results presented thus far,
we here present the corresponding results for the FENE
model. InFig. 16we show the F–E behavior of FENE bead-
spring chains as the level of coarse-graining,ν, is changed.
We see that the FENE result is qualitatively similar to the
WLC result inFig. 3.

For the FENE force-lawλ can also be taken greater than
one to obtain a better behavior from the model.Fig. 17shows
the “best-fit”λ versus 1/ν for each of the three criteria intro-
duced inSection 3.6. The most obvious difference from the
WLC result inFig. 5is that for the FENE chain the high-force
criterion curve deviates fromλ = 1. In fact, the high-force
criterion curve diverges similar to the other criteria. We will
see that this high-force divergence is because of the weaker
divergence of the FENE force-law approaching full exten-
sion compared to the WLC force-law. This divergence of the
high-force criteria also causes the best fitλ curves to form a
relatively narrow strip bounding the choices forλ. In Fig. 18

Fig. 16. Calculation of the relative error of the mean fractional extension,
(〈ẑtot〉m − 〈ẑtot〉p)/〈ẑtot〉p, for a bead-spring model as the level of coarse-
graining changes. The FENE potential was used withλ = 1. The curves
correspond toν = 400 (dashed),ν = 20 (dotted), andν = 10 (dash-dot).
Inset: the mean fractional extension of the models compared with the “true
polymer” (solid line,Eq. (94)).

Fig. 17. Calculation ofλ for the three different criteria at different levels
of coarse-graining for the FENE potential. The criteria shown are low-force
(dash-dot), half-extension (dashed), and high-force (dotted). Inset: Expanded
view showing the divergence of the criteria.

we compare the force–extension behavior of the three cri-
teria for ν = 20. While we see a qualitative match for the
relative error with the Marko and Siggia result (Fig. 6), the
error is greatly reduced. Thus for the FENE force-law simply
adjusting the effective flexibility length does a much better
job at reproducing the true polymer behavior over the entire
force range. This is due to the form of the high-extension
divergence of the force-law. The trade-off for this improved
performance is that the range inν that this correction-factor
can be used is reduced.

The high-force and low-force best-fitλ curves can be cal-
culated exactly. Recall that the low-force criterion is that the
slope at zero force matches the true polymer slope. Using
Eq. (39)for the slope, and usingEq. (100)for the second

F ten-
s est
fi -
s ),
a on of
t

ig. 18. Calculation of the relative error of the mean fractional ex
ion, (〈ẑtot〉m − 〈ẑtot〉p)/〈ẑtot〉p, for a bead-spring model for different b
t criteria. The FENE potential was used withν = 20. The curves corre
pond toλ = 1.33 (low-force, dotted),λ = 1.30 (half-extension, dashed
ndλ = 1.25 (high-force, dash-dot). Inset: the mean fractional extensi

he models compared with the “true polymer” (solid line,Eq. (94)).
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moment, we find that the low-force criteria curve is given by

λ = 1

1 − 5/ν
(107)

from which it is easy to see the curve diverges atν∗ = 5.
This could also have been seen from the general low-force
divergence formula inEq. (61)sinceφ2 = 1/2 for the FENE
force-law. The high-force curve is calculated from the high-
force expansion of the fractional extension:

〈ẑtot〉m
f̂→∞∼ 1 − ν/λ + 4

2νf̂
+ O

(
1

f̂
2

)
(108)

Since the true polymer has a high-force expansion of

〈ẑtot〉p
f̂→∞∼ 1 − 1

2f̂
+ O

(
1

f̂
2

)
(109)

the high-force criteria curve is given by

λ = 1

1 − 4/ν
(110)

with a divergence atν∗ = 4. This can also be derived from
the general divergence criteria inEq. (58). By comparing the
expansion
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Fig. 19. Calculation of the longitudinal root-mean-squared fluctuations at
different levels of coarse-graining. The FENE potential was used withλ =
1. The curves correspond toν = 400 (dashed),ν = 20 (dotted), andν =
10 (dash-dot). Inset: detailed look at the high-force limit with solid lines
corresponding to the asymptotic behavior, ((ν/λ + 4)/(2ν))1/2(1/f̂ ).

be calculated exactly. Using the expression for the second
moment of the FENE force-law,

lim
f̂→0

(
∂

∂f̂
〈ẑtot〉m

)
= ν

5 + ν/λ
(115)

We see that the expansion of this slope for largeν should just
be the Taylor expansion. Calculating the coefficients,di, us-
ing the FENE force-law shows this explicitly. The parameters
of the FENE force-law are

φ2 = 1
2 (116)

F at dif-
f
T
( ehav-

i

−3

ν∗f̂ (〈ẑtot〉p)
+ 1

L(ν∗f̂ (〈ẑtot〉p)

f̂→∞∼ 1 − 2

ν∗f̂
(111)

ith the expansion of the true polymer, we can verify
he high-force criteria diverges atν∗ = 4. The half-extensio
ivergence is found by solving the equation

1

2
= −3

2ν∗/3
+ 1

L(2ν∗/3)
(112)

hich has a solutionν∗ = 4.6551.
In addition to the F–E behavior of the FENE chains,

hould look at the fluctuations, as done for the WLC
ection 3.7. In Figs. 19 and 20we show the plots of the scal

oot-mean-squared fluctuations for different levels of coa
raining, ν. From the high-force expansion of the FE

orce–extension behavior inEq. (108)we can calculate th
igh-force scaling of the fluctuations:

1/2 δẑ
f̂→∞∼

(
ν/λ + 4

2ν

)1/2 1

f̂
+ O

(
1

f̂
2

)
(113)

1/2 δx̂
f̂→∞∼ 1

f̂
1/2

+ O

(
1

f̂
3/2

)
(114)

e can also analyze the limiting behavior fromSection 3.8in
erms of the FENE force-law. Because the FENE force
s an odd function of its argument, the general expansio
he F–E behavior in the largeν limit can additionally be use
t zero force. We can examine in detail the expansion o
ero-force slope (Eq. (39)) because the zero-force slope
ig. 20. Calculation of the transverse root-mean-squared fluctuations
erent levels of coarse-graining. The FENE potential was used withλ = 1.
he curves correspond toν = 400 (dashed),ν = 20 (dotted), andν = 10
dash-dot). The solid line corresponds to the high-force asymptotic b

or, 1/(f̂
1/2

).
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hi =



0, ieven
1

i + 3
, iodd

(117)

which gives coefficients

di =




0, iodd(−5

2

)i/2

, ieven
(118)

Since this is the geometric series, the convergence is well-
known. Note also that the zero-one Padé P0

1(1/ν) gives the
exact result.

Because we have simple formulae for the moments of the
FENE force-law, the retarded-motion expansion coefficients
reduce to simple formulae. In fact, they correctly reduce to
the previous result by Wiest and Tanner[5]:

η̂0,p =
(
N + 1

N

)(
ν

ν/λ + 5

)
(119)

b̂2 = ν2(N + 1)

6(ν/λ + 5)2(N − 1)N2

[−12(N2 + 1)

N(ν/λ + 7)
+ 2N2 + 7

]
(120)

We can apply the same methodology used to analyze
the zero Weissenberg number rheology of the WLC to the
FENE bead-spring chain.Figs. 21 and 22show the first
two retarded-motion expansion coefficients when the level of
coarse-graining,ν, is held constant.Figs. 23 and 24show the
coefficients as the polymer is discretized finer and finer. We
see the same qualitative trends as with the WLC coefficients.
If the number of beads is small, there is error in the rheology
due to the drag being exerted only at the beads, instead of
along a continuous contour. However, if the polymer is being
more finely discretized, then there is error if the polymer is

Fig. 21. Polymer contribution to the zero-shear viscosity of FENE bead-
spring chains as the number of effective persistence lengths represented by
each spring,ν/λ, is held constant. The curves correspond toν/λ = ∞ (solid
line), ν/λ = 400 (dotted),ν/λ = 100 (dashed), andν/λ = 10 (dash-dot).

Fig. 22. Zero-shear first normal stress coefficient of FENE bead-spring
chains as the number of effective persistence lengths represented by each
spring,ν/λ, is held constant. The curves correspond toν/λ = ∞ (solid line),
ν/λ = 400 (dotted),ν/λ = 100 (dashed), andν/λ = 10 (dash-dot).

discretized too finely. This is due to error in representing the
size of the coil and the extension of polymer segments.

5.2. Infinitely stiff Fraenkel force-law/FJC

The other force-law we consider explicitly is the infinitely
stiff Fraenkel force-law, which is equivalent to the FJC.
This force-law differs from the others considered because
the spring potentialis notobtained by examining the force–
extension behavior of a true polymer. In fact, this force-lawis
a model of a “true polymer” (the FJC or random walk model).
Thus the previous discussions of the comparison between the
bead-spring model and the true polymer do not apply for this
force-law. However, we can still use the formulae developed
to calculate the F–E and rheological behavior of this true
polymer.

F ead-
s total
p
∞
(

ig. 23. Polymer contribution to the zero-shear viscosity of FENE b
pring chains as the number of effective persistence lengths in the
olymer contour,α/λ, is held constant. The curves correspond toα/λ =

(solid line),α/λ = 4000 (dotted),α/λ = 400 (dashed), andα/λ = 100
dash-dot).
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Fig. 24. Zero-shear first normal stress coefficient of FENE bead-spring
chains as the number of effective persistence lengths in the total polymer con-
tour,α/λ, is held constant. The curves correspond toα/λ = ∞ (solid line),
α/λ = 4000 (dotted),α/λ = 400 (dashed), andα/λ = 100 (dash-dot).

The Fraenkel force-law is a Hookean force-law, but with
a minimum energy at a non-zero extension:

fspring(r) = HF(r − aK) (121)

HF is the spring constant of the Fraenkel spring, andaK is the
position of minimum energy. We use the symbolaK because
for the infinitely stiff Fraenkel spring this minimum corre-
sponds to the Kuhn length in the FJC. After integrating, the
spring potential becomes

Ueff (r) = 1
2HF(r − aK)2 (122)

For the infinitely stiff model,HF → ∞, the Boltzmann factor
becomes a Dirac delta function:

exp

[−Ueff (r)

kBT

]
→ δ(r − aK) (123)

Furthermore, in this limit the contour length of the model,
L, becomesNsaK, so the length of a spring,�, becomesaK.
Since the choice ofAtrue is arbitrary, we will take it to be the
Kuhn length,aK. Thus in dimensionless form

exp

[−ν

λ
Ûeff (r̂)

]
→ δ(r̂ − 1) (124)

ν = 1 (125)

Using these expressions inEq. (25)for the F–E behavior, we
s

〈

w ote
t s
( in
f kel

spring force-law, the upper limit of integration should be∞
instead of 1. However, for the infinitely stiff case, replacing
the∞ by 1 causes no change to the F–E behavior.

To calculate the rheological properties, as inSection 4, we
need to calculate the moments, which are

〈r̂n〉eq = 1 (127)

The first two retarded-motion expansion coefficients then be-
come

η̂0,p = N + 1

3N
(128)

b̂2 = N + 1

54N2(N − 1)

[−12(N2 + 1)

5N
+ 2N2 + 7

]
(129)

which are the well-known results for the infinitely stiff
Fraenkel chain (equivalent to the FJC)[4]. By taking the ratio
of the two coefficients, we can calculate a relaxation time for
the chain:

τ0 = Ψ1,0

2η0,p
= ζa2

K

180kBT

[−12(N2 + 1)

5N
+ 2N2+7

]
(130)

6. Polymer Ensemble Transformation method
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ẑtot〉m =
{

−1

f̂
+ ∂

∂f̂
ln

(∫ 1

0
dr̂ r̂ sinh

[
f̂ r̂

]
δ(r̂ − 1)

)}

= L (
f̂

)
(126)

hich we already know is the F–E behavior of the FJC. N
hat this is the F–E behavior foranyinteger number of spring
Kuhn lengths). Even asinglerod of a FJC has the Langev
unction for its F–E behavior. Also note that for the Fraen
Recall that previously the spring force-law was chose
xamining the force–extension behavior of the true poly

n the constant force ensemble, as shown inSections 3.4 an
.1. The mean fractionalz-projection of the polymer wa
eplaced by the fractional radial coordinate of the spr
n this section we examine a new method for determi
he spring force-law, which we term the Polymer Ensem
ransformation (PET) method. This method uses the con
xtension behavior of the true polymer to determine the s
orce-law. The bead-spring model is then able to repro
he behavior of the true polymer in both the constant exten
nd constant force ensembles. Reproducing the behav

he constant force ensemble is critical because we sa
ection 4that the retarded-motion coefficients can be wri

n terms of the force–extension behavior in the constant
nsemble.

.1. Physical interpretation

The method of using the constant extension ensemb
avior to obtain a spring force-law is illustrated inFig. 25. In

he figure, a polymer is shown in the constant force ensem
he goal is to determine a spring force-law that can m

he polymer behavior at a given set of reference points
icted by black circles in the figure), while coarse-grain
ut the details of the polymer between the reference po
o accomplish this, the segment of polymer to be mode

s placed in the constant extension ensemble, and the av
xternal force required to keep the polymer at a fixed ex
ion is calculated. The spring force in the model is take



P.T. Underhill, P.S. Doyle / J. Non-Newtonian Fluid Mech. 122 (2004) 3–31 25

Fig. 25. Physical interpretation of Polymer Ensemble Transformation (PET)
method. Above: the true polymer in the constant force ensemble. The be-
havior is to be modelled between reference points (black circles). Below:
the portion of true polymer between reference points is transformed to the
constant extension ensemble to calculate the appropriate spring force-law.

be equal to this average force:

fspring(r) = 〈f 〉(r) (131)

If the reference points on the true polymer correspond to
free hinges (as in the FJC with the reference points taken at
the joints), then the spring model defined in this way repro-
duces exactly the force–extension behavior of the true poly-
mer. However, for other polymers such as the WLC, there is
coupling across the reference points. Therefore this prelim-
inary bead-spring model cannot reproduce the true polymer
behavior for this class of polymers. We believe that this error
can be approximately accounted for by introducing bending
potentials between springs, however leave this topic for fu-
ture research.

6.2. Mathematical justification

To derive that the spring force-lawmustbe taken from the
constant extension ensemble in order to reproduce the force–
extension behavior in the constant force ensemble, we start
by writing down the partition function in the constant force
ensemble

Z(f ) =
∫

· · ·
∫

exp

[−U + f · Rtot
]

dV (132)

w n the
z

u

Z

By interchanging the order of integration, we obtain

Z(f ) =
∫ ∫

· · ·
∫

{configurations}

× exp

[−U + f · Rtot

kBT

]
δ(r − Rtot) dVdr (134)

The force term can be taken out of the configuration integral
because of the delta function so that

Z(f ) =
∫

Ω(r) exp

[
f · r

kBT

]
dr (135)

where

Ω(r) =
∫

· · ·
∫

{configurations}
exp

[ −U

kBT

]
δ(r − Rtot)dV (136)

is the constant extension ensemble partition function. How-
ever, we see that this looks similar to the partition function
of a single dumbbell model:

Z(f ) =
∫

exp

[−Us(r)

kBT

]
exp

[
f · r

kBT

]
dr (137)

Thus a single dumbbell model will have the exact same par-
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here the force has not necessarily been taken to lie i
-direction. We can introduce a new variable,r, through the
se of a Dirac delta function:

(f ) =
∫

· · ·
∫

{configurations}
exp

[−U + f · Rtot

kBT

]

×
∫

δ(r − Rtot) dr dV (133)
ition function as the true polymer (and thus the exact s
quilibrium behavior) if the spring potential energy is ta

rom the constant extension partition function as

s(r) = −kBT ln Ω(r) (138)

Here we illustrated how the spring potential can be der
or a single dumbbell. However, a similar procedure ca
sed to derive bead-spring chains. All of the spring coo
ates can be introduced into the partition function by u
irac delta functions (as inEq. (133)). For example, if thre
prings were desired the transformation would give

(f ) =
∫

Ω(r1, r2, r3) exp

[
f · (r1 + r2 + r3)

kBT

]
× dr1dr2dr3 (139)

hereri is the spring connector vector of springi. The po-
ential energy of the spring system would then be

s(r1, r2, r3) = −kBT ln Ω(r1, r2, r3) (140)

ote that the total potential energy of the spring syste
n general not separable into contributions from each sp
nd thus includes coupling between springs.

We saw inEq. (135)how the constant force and const
xtension partition function are related. This is exactly a
gous to the relationship between the microcanonical
anonical ensembles, as well as between other ense
23,33]. If we look at the analytic continuation of the co
tant force partition function onto the imaginary force a
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we find that it is the Fourier transform of the constant exten-
sion partition function:

Z(ikBTk) =
∫

Ω(r) exp[ik · r] dr (141)

Thus, the constant extension ensemble partition function can
be calculated from the constant force ensemble partition func-
tion as

Ω(r) =
(

1

2π

)d ∫
Z(ikBTk) exp[−ik · r] dk (142)

whered is the dimensionality of the vectors. This means that
there is a one-to-one correspondence between the two par-
tition functions. If we produce a bead-spring chain with the
same constant force ensemble partition function as the true
polymer, then necessarily it has the same constant extension
ensemble partition function as the true polymer. Though this
is obvious for a single dumbbell model, it is not obvious for
a multiple spring chain.

6.3. Application to FJC/Random Walk Spring model

As an example of this new method, we apply it to the freely
jointed chain model. The result, which we call the Random
W llow
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Fig. 26. Comparison of the spring force-law chosen from the Random Walk
Spring (RWS) model (dotted) and chosen from the constant force ensemble
force–extension behavior of the true polymer (the inverse Langevin function,
solid line). The spring force is plotted aŝf spring = fspringAtrue/kBT . The
different plots correspond toν = 2 (upper left),ν = 3 (upper right),ν = 4
(lower left), andν = 10 (lower right).

The spring force is calculated as the derivative of the spring
potential:

fspring(r) = −kBT

× ∂

∂r
ln

{
1

r

∫ ∞

0
u sin(ur)

[
sin(uAtrue)

uAtrue

]ν

du

}
(145)

By construction this model reproducesexactly the force–
extension behavior of the FJC for integerν. InFig. 26we com-
pare this spring force-law with the inverse Langevin function
for different values ofν. Forν = 2 we see the RWS force-law
increasing with decreasing extension, and even diverging at
zero extension, but also with a discontinuous divergence at
full extension to prevent over-extension. By performing the
integration forν = 2 it is easy to show

fspring = kBT

r
, r < � (146)

We also show inAppendix Chow one can verify that this
force-law gives the required F–E behavior of the FJC. For
ν = 3 the RWS model produces another interesting force-
law. Up to one-third extension, the force is zero. At one-third
extension, the force discontinuously jumps to a finite value.
The force-law decreases to a minimum then increases up to a
d ase
o

f

F us.
H alf
e tive,
a This
alk Spring (RWS) model, is a set of spring forces that a
or the modelling of a FJC with a bead-spring chain atany
evel of discretization while still reproducing the entire for
xtension behavior.

We have seen in the previous sections that in ord
odel the FJC with a bead-spring chain, we must choos

pring potential from the constant extension ensemble
ion function. This can be calculated fromEq. (136)directly
or the FJC by taking the Fourier transform of both sides,
hen inverting the transform. Alternatively, the partition fu
ion can be calculated fromEq. (142)since the constant forc
nsemble partition function is known. The methods obvio
ive the same result, which is that the constant extensio
emble partition function is proportional to the probab
ensity of a three dimensional random walk, given by
ell-known Rayleigh’s formula[4]. If the generalized flex
ility length is taken to be the Kuhn length,Atrue = aK, then
corresponds to the number of Kuhn lengths represe

y each spring. In our notation the constant force ense
artition function using Rayleigh’s formula is

(r) = 1

r

∫ ∞

0
u sin(ur)

[
sin(uAtrue)

uAtrue

]ν

du (143)

here the integral represents an inverse Fourier trans
e can therefore write the spring potential energy in the

om Walk Spring model, valid for integerν, as

s(r) = −kBT ln

{
1

r

∫ ∞

0
u sin(ur)

[
sin(uAtrue)

uAtrue

]ν

du

}
(144)
ivergence at full extension. The functional form for the c
f ν = 3 is

spring = 3kBTAtrue

(3Atrue − r)r
,

�

3
< r < � (147)

orν > 3 the RWS model spring force-laws are continuo
owever,ν = 4 still shows notable characteristics. At h
xtension this force-law has a discontinuous first deriva
nd the force has a non-zero limit at zero extension.
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force-law is given by

fspring =




3kBT

8Atrue − 3r
, 0 < r < �

2

kBT (4Atrue + r)

(4Atrue − r)r
, �

2 < r < �

(148)

Recall that the inverse Langevin function is the constant
force ensemble force–extension behavior of the true polymer.
Therefore, the inverse Langevin function would be the spring
force-law used in the “conventional” method of using the con-
stant force ensemble to obtain the spring force-law. The dif-
ferences between the RWS model and the inverse Langevin
function illustrate why the “conventional” method cannot be
used to model short segments of the FJC (smallν). Only for
ν → ∞ are the constant force and constant extension ensem-
bles equivalent, in which case the inverse Langevin function
becomes the correct spring force-law.

6.4. Implementation of model

There exist some issues concerning the implementation of
models derived from the PET method that warrant mention-
ing. First, the PET method can produce spring force-laws that
are discontinuous. This presents no problem for analytic tech-
n pring
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ergy. At intermediate levels of discretization for models such
as the WLC, a simple bending potential may also be able
to reproduce the true polymer behavior. It should be noted
these issues of coupling and bending potentials do not occur
in the single dumbbell model, and the PET method always
reproduces the true polymer behavior.

7. Conclusion

In this paper we have used statistical mechanics to system-
atically analyze the coarse-graining of polymers into bead-
spring chains. In this way we could avoid the intrinsic stochas-
tic noise of Brownian dynamics, identify the relevant dimen-
sionless groups, and examine limiting and universal behavior.
We began by studying the force–extension behavior of the
bead-spring chains. The analysis was then continued to rheo-
logical behavior by examining the retarded-motion expansion
coefficients, which describe the zero Weissenberg number re-
sponse. We then introduced a new method for coarse-graining
called the Polymer Ensemble Transformation (PET) method
which uses the constant extension ensemble to determine the
spring force-law.

The analysis of the force–extension behavior revealed that,
because the springs are decoupled, the response depended
o ach
s een
t nnot
b d we
s that
ν g the
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tive
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b bility
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W ce on
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c and
d ition
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iques such as statistical mechanics. However, if the s
orce-laws are implemented in techniques such as Brow
ynamics, very steep force-laws must be used to accu
epresent the needed discontinuity. This is the case fo
WS model ifν equals one, two, or three. Note however

heν = 1 case is in fact the case of an infinitely stiff Fraen
pring. This case, including the use of a corrective pote
orce, has been discussed previously[25].

Second, the use of the PET method requires the fo
xtension curve for the finite-length polymer of interest. T
as trivial for the FJC case, but is not trivial for models s
s the WLC. Only recently have calculations been perfor
f the force–extension behavior of finite-length worm-
hains[34,35].

Finally, we consider a little closer the possible coup
cross reference points inFig. 25(depicted by black circles
hile we leave a detailed analysis for future research

onsider two limits here for the case of the worm-like chain
he limit of an infinite number of persistence lengths betw
ach reference point, we know that no bending potent
eeded. In the limit of zero persistence lengths between
eference point, the polymer acts like a rigid rod. In this li
bending potential of

bend(θ) = kBTAtrue

2�
θ2 (149)

hereθ is the angle between rods and� the length of a ro
ives the exact WLC model. Note that this bending en
ould also be used in the limit of an infinite number of per
ence lengths between reference points because in that

true/� → 0, we recover the needed absence of bendin
nly on the number of flexibility lengths represented by e
pring,ν. This necessarily means that any deviation betw
he behavior of the spring model and the true polymer ca
e due to the number of free hinges introduced. Instea
howed through direct visualization of the phase space
acts analogously to an inverse temperature, controllin
agnitude of fluctuations in phase space.
We also examined quantitatively the use of an effec

exibility length to partially correct the force–extension
avior. The corrected curve is not uniformly valid over
ntire force range leading to multiple possible choices fo
ffective flexibility length. However, we were able to pla
ounds on the choices and examine these choices. Varia

n behavior within these bounds depends on the form o
pring force-law; the Marko and Siggia potential has la
ariability than the FENE potential. This is mainly due to
ifference in the divergence of the potentials at high ex
ion.

To study the zero Weissenberg number rheology we
ulated the first two retarded-motion expansion coeffici
or bead-spring chains witharbitrary spring force-law. Th
ontribution due to the spring force-law was separated
he contribution due to the number of springs chained
ether. In contrast to the force–extension behavior the
eissenberg number rheology illustrates a dependen

he number of beads even if the number of flexibility leng
er spring is held constant. We attribute this error to the
eing exerted only on the beads, instead of along a contin
ontour. A plateau region in which both the drag error
iscretization error are small was identified, and the pos
nd size of that plateau werepredicted.
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Finally, we reexamined how theformof the spring poten-
tial is chosen. The Polymer Ensemble Transformation (PET)
method was introduced and justified. This new method for
coarse-graining polymers into bead-spring chains uses the
force–extension behavior of the true polymer in the constant
extension ensemble as the spring force-law. It is shown that
this method can give the exact force–extension behavior for
arbitrary level of discretization.There is nothing intrinsically
incorrect about using springs to model short segments of a
polymer. The conventional spring force-laws fail at high dis-
cretization because they are taken from the constant force en-
semble. The two ensembles are only equivalent if the polymer
has an infinite number of flexibility lengths. The PET method
was applied to the freely jointed chain polymer, resulting in
the Random Walk Spring (RWS) model. The RWS model is
a set of spring force-laws that can exactly model the force–
extension behavior of the freely jointed chain at any level of
discretization.

With this work we have begun along the path towards a rig-
orous understanding of coarse-graining, with particular appli-
cation to modelling polymers with bead-spring chains. It has
not escaped our notice that the analysis presented here could
be continued to study coarse-graining in transient, strong
flows and to consider excluded volume and hydrodynamic
interactions.
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The transverse fluctuations are calculated by writing down
explicitly the prescribed average. We first note that

〈x2
tot〉 = Ns〈x2〉 (A.3)

wherex is thex-coordinate of a single spring because all the
cross-terms between springs vanish. The average over the
single spring is

〈x2〉 = 1

Zs

∫
x2 exp

[−Us(r) + fz

kBT

]
d3r (A.4)

We then write the integral explicitly in spherical coordinates:

〈x2〉 = 1

Zs

∫
r4 cos2 φ sin3 θ exp

[−Us(r) + fr cosθ

kBT

]
× dr dθ dφ (A.5)

We can rewrite theφ-integral using the relation∫ 2π

0
cos2 φ dφ = π = 1

2

∫ 2π

0
dφ (A.6)

We can rewrite theθ-integral by integrating by parts once:∫ π

0
sin3 θ exp

[
fr cosθ

kBT

]
dθ

= 2kBT
∫ π

sinθ cosθ exp

[
fr cosθ

]
dθ (A.7)
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ppendix A. Fluctuations in force–extension
ehavior

This Appendix discusses the derivation of the fluc
ions in the force–extension behavior for bead-spring ch
qs. (34) and (35). Recall that the average extension of
hain is calculated as

ztot〉 = 1

Zw

∫
· · ·

∫
{configurations}

ztot exp

[−U + fztot

kBT

]
dV (A.1)

sing the quotient rule, the derivative with respect to the f
an be calculated:

∂

∂f
〈ztot〉 = 1

kBT
〈(ztot − 〈ztot〉)2〉 (A.2)

on-dimensionalizing gives the desired result for the lo
udinal fluctuations.
fr 0 kBT

sing these relations we see that

x2〉 = kBT

fZs

∫
r3 cosθ sinθ

× exp

[−Us(r) + fr cosθ

kBT

]
dr dθ dφ (A.8)

he resulting integral is simply the averagez-coordinate of a
ingle spring:

x2〉 = kBT

f
〈z〉 (A.9)

hez-coordinate of the whole chain is given by

ztot〉 = Ns〈z〉 (A.10)

hich combined withEq. (A.9)gives the transverse fluctu
ion for the whole chain:

x2
tot〉 = kBT

f
〈ztot〉 (A.11)

on-dimensionalizing gives the desired result for the tr
erse fluctuations.

ppendix B. Retarded-motion expansion coefficients

This Appendix discusses the derivation of the retar
otion coefficients for bead-spring chains,Eqs. (64) an

65). This is a specific application of the general bead-sp
od chain framework of Bird et al.[4]. The analysis is simila
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to the FENE chain result by Wiest and Tanner[5], but is much
more general because it does not assume a form for the spring
force-law.

We consider the behavior of the bead-spring chains in
steady, homogenous potential flow for which the velocity
gradient tensor,κ, is symmetric and constant. In this case,
the chain probability density function is given by the equi-
librium statistical mechanics result with an effective energy
due to the flow[4] :

ψ = 1

J
exp


 ζ

2kBT

∑
jk

Cjkκ : rj rk − U

kBT


 (B.1)

In this expression, the matrixCjk is a symmetric (N − 1) ×
(N − 1) matrix called the Kramers matrix and is given by

Cjk =
{

j(N−k)
N

, j ≤ k

k(N−j)
N

, k ≤ j
(B.2)

the vectorrj represents the connector vector of springj, U
is the total potential energy of the springs, and

J =
∫

exp


 ζ

2kBT

∑
jk

Cjkκ : rj rk − U

kBT


drN−1 (B.3)

N
c um
(

ψ

ψ

J

W d
t

〈
w
h e av-
e rther-
m

κ

U first
o

ψ

To use this probability density function to calculate the rheo-
logical behavior we use the non-equilibrium part of the stress
tensor in Giesekus form:

τ = −2ηsκ + τp (B.10)

τp = −npζ

2


κ ·

〈∑
ij

Cij ri rj

〉
+

〈∑
ij

Cij ri rj

〉
· κ



(B.11)

The probability density function inEq. (B.9) is used to
perform the prescribed averages and obtain the stress tensor
up to second order inκ. To write the expression for the stress
tensor in terms of moments of the spring force distribution,
it must be used that

〈rirjrmrk〉eq = δijδjmδmk
1
15〈r4〉eq(δδ + I + I †),

−δijδmk(δjm − 1)1
9〈r2〉2

eqδδ,

−δimδjk(δjm − 1)1
9〈r2〉2

eqI
†,

−δikδjm(δji − 1)1
9〈r2〉2

eqI (B.12)

whereI andI † are fourth-order isotropic tensors defined with
Cartesian components[4]
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ote that sums over roman indices are from 1 to (N − 1). We
an rewrite the probability density in terms of the equilibri
κ = 0) values:

= ψeq
Jeq

J
exp


 ζ

2kBT

∑
jk

Cjkκ : rj rk


 (B.4)

eq = 1

Jeq
exp

[ −U

kBT

]
(B.5)

eq =
∫

exp

[ −U

kBT

]
drN−1 (B.6)

e now expandψ in the limit of smallκ. In order to expan
he ratioJeq/J , we make use of the relation

rj rk〉eq = δjk
1
3〈r2〉eqδ (B.7)

hererj represents the magnitude of the vectorrj and we
ave dropped the subscript within the average since th
rage does not depend on the value of the subscript. Fu
ore, for an incompressible fluid

: δ = trκ = 0 (B.8)

sing these relations, the probability density function to
rder is

= ψeq


1 + ζ

2kBT

∑
jk

Cjkκ : rj rk


 (B.9)
mnpq = δmqδnp, I†mnpq = δmp δnq (B.13)

elations involving the sum over the Kramers matrix m
lso be used:

i

Cii = N2 − 1

6
,

∑
i

C2
ii = N4 − 1

30N
,

ij

C2
ij = (N2 − 1)(2N2 + 7)

180
(B.14)

sing these relations and performing the averages in the
ensor we find that up to second order inκ

= −2

{
ηs + npζ(N2 − 1)

36
〈r2〉eq

}
κ

− npζ
2

kBT

[(
〈r4〉eq

15
− 〈r2〉2

eq

9

)(
N4 − 1

30N

)

+
( 〈r2〉2

eq

9

)(
(N2 − 1)(2N2 + 7)

180

)]
κ · κ (B.15)

owever, the retarded-motion expansion can also be us
alculate the stress tensor in steady, homogeneous po
ow up to second order inκ, for which

= −2b1κ + 4b2κ · κ − 4b11κ · κ (B.16)

dditionally we know from Bird et al.[4] that because w
re considering bead-spring chains which do not have
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constraints and we have neglected hydrodynamic interaction,
b11 is zero. Thus, from matchingEqs. (B.15) and (B.16)we
find the desired formulae for the retarded-motion expansion
coefficients in terms of the moments of the spring force dis-
tribution.

Appendix C. Example of the behavior of the Random
Walk Spring model

This Appendix discusses how one can calculate the be-
havior of the Random Walk Spring (RWS) model forν = 2
and verify that it correctly models the freely jointed chain.
Thus, we want to calculate the force–extension behavior in
the constant force ensemble of a bead-spring chain with

fspring(r) = kBT

r
, r < �, ν = 2 (C.1)

This is done using the methodology presented inSection 3.4
and shown inEq. (25). By integrating the spring force-law,
and choosing a convenient arbitrary additive constant, we find
that

Ueff (r) = kBT ln
( r

�

)
(C.2)
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