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Abstract

We present a study of the coarse-graining of polymers into bead-spring chains using statistical mechanics. The force—extension behavior is
examined at different levels of coarse-graining. A direct result of the springs being decoupled is that the force—extension behavior depends only
on the number of flexibility lengths (e.g. persistence or Kuhn lengths) represented by each spring. This dimensionless parameter is found to
govern the fluctuations around the mean extension, analogous to the conventional role of temperature. The use of an effective flexibility length to
correctthe model behavior is analyzed, and we have calculated bounds on the choices of this correction factor. The analytic nature of the statisti-
cal mechanical framework has also allowed for the calculation of asymptotic and universal behavior. The zero Weissenberg number rheological
behavior is examined using the retarded-motion expansion coefficients of bead-spring chains at different levels of coarse-graining. The results
show the trade-off between using too few or too many springs. The general framework to analyze the force—extension and rheological behavior
is applied to the worm-like chain, FENE, and Fraenkel models. We introduce a new method for coarse-graining a polymer into a bead-spring
chain called the Polymer Ensemble Transformation (PET) method. Application to the freely jointed chain polymer yields a set of spring force-
laws called the Random Walk Spring (RWS) model. This new method illustrates why the previous spring force-laws cannot be used to finely
discretize polymers and also provides new insight into how to rationally proceed in the coarse-graining of polymers into bead-spring chains.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction rotational isomeric state (RIS) modg]. While RIS has
been successful in determining the equilibrium properties of
Polymers are challenging to model due to the wide range of polymers, understanding the dynamics of polymers requires
time and length scales in the system. A recurring theme in thethe use of a coarser model.
development of polymer models and simulations is the idea  One example of a coarser model is a FJC in which the
of coarse-graining. The goal in coarse-graining is to produce length of a step is taken to be larger than a b@Bid In
a model that has reduced complexity such that it is tractablethis model the length of a rod, or Kuhn length, represents
to calculate the properties of the model while simultaneously the length over which the polymer acts as if the steps
capturing molecular properties to sufficient accuracy. were uncorrelated. This model represents a chain that is
Some of the earliest attempts at coarse-graining polymerscoarse-grained to the length of a Kuhn length. One great
consisted of eliminating degrees of freedom for which advantage of this model is that the distribution function of
there are only small fluctuations, such as bond lengths configurations is well-known from the theory of random
and bond angles. This led to models including the freely walks. It should be noted that there is a difference between
jointed chain (FJC) in which each bond is treated as a free the random walk distribution and the bead-rod chain with
joint and the freely rotating chain (FR€}]. A much more rigid constraintg4]. This latter model with rigid constraints
successful model which includes hindered rotation is the will be referred to solely as the Kramers chain in this paper.
The former model, with a distribution function identical
* Corresponding author. to the random walk, will be referred to as either the freely
E-mail addresspdoyle@mit.edu (P.S. Doyle). jointed chain or random walk chain.
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Using this knowledge of the distribution function it has Understanding the behavior of bead-spring chains, in par-
been shown that the FIC has an elastic restoring force thaticular under what conditions they represent accurate coarse-
is linear for small deformations, and is given by the inverse grained models, is becoming increasingly important in the
Langevin function over the entire range of deformatif8js study of polymers. Previous studies have suggested that bead-
Although other polymer models, such as the worm-like chain spring chains only accurately represent polymers when each
(WLC), have a different form for the restoring force, this spring represents a large segment of polymer. The study by
elasticity is one of the main properties of polymers that dis- Larson et al. suggests that springs can only model the WLC if
tinguishes them from small molecules and thus must be cap-each spring represents a large number of persistence lengths.
tured in a coarse-grained model. The restoring force is pri- Similarly, Somasi et a[14] have argued based on the force—
marily due to the entropy of the polymer so it is often re- extension behavior of the Kramers chiif] that springs can
ferred to as the “entropic restoring force”. When develop- only representa Kramers chain if each spring represents more
ing a coarse-grained polymer model, the fine details of the than 10 Kuhn lengths. Thus from force—extension behavior it
polymer configurations must necessarily be lost. These “mi- would seem that a single spring (or dumbbell) model would
crostates” contribute significantly to the entropy, and thus to best represent a polymer.
the elastic restoring force. Something else must be added to However, some rheological considerations require the op-
the system that represents this restoring force without repre-posite extreme, that the polymer is modelled by as many
senting all the “microstates”. This restoring force has often springs as computationally tractable. The behavior of a poly-
been represented by springs, thus modelling the polymer asmer in flow is highly dependent on the drag exerted on
a bead-spring chain. the polymer by the solvent. In a bead-spring chain model,

While much work has been performed using Hookean the drag is exerted on the chain only at the beads. Thus
springs, it is well known that finite-extensibility plays an the drag will only be exerted along a continuous contour
important role in determining the rheological properties of in the limit of a large number of springs. The rheological
polymers[4—7]. For that reason, this paper will focus pri- behavior of a polymer is also dependent on its distribution
marily on springs that have a finite fully extended length. of relaxation times. To capture this distribution, the bead-
However, within this class of springs, there exists a wide va- spring model must have a large number of modes, and thus
riety of forms for the spring force-laf8]. These include the  a large number of sprindgd]. Finally, the large number of
worm-like chain mode]9,10], the finitely extensible nonlin-  springs may be motivated primarily by geometry. If a poly-
ear elastic (FENE) modé¢11], and other approximations to  mer is placed in a confining geometry, its behavior can only
the inverse Langevin functidii2]. Note that in this paperwe  be described correctly if the model represents the polymer
do not consider any of the numerous closure approximationsat a small enough length scd20-22] The task of mod-
that have been proposed in the literatitrd 3]. Furthermore, elling a polymer accurately using bead-spring chains is one
for each of the models there are discrepancies in the litera-of balancing these two opposing considerations. The number
ture as to the “best” parameters that should be chosen for theof springs must beimultaneouslyarge enough and small
spring force-law in order to have an accurate representationenough.
of the polymer behavidil4—-16] The force—extension behavior is of fundamental impor-

Most of these previous studies have used Brownian dy- tance to the understanding of bead-spring chains and the
namics to examine the rheological properties of the chains, choice of force-law. The very idea of replacing the polymer
and then used some procedure to determine the parameterBy springs is motivated by the force—extension behavior of
in the model. In fact only a few studies have looked explic- the polymer. Thus we begin our systematic study of bead-
itly at the force—extension behavior of bead-spring chains. spring chains by analyzing their force—extension behavior.
Larson et al[17,18] showed using Brownian dynamics that While other investigators have used Brownian dynamics to
the force—extension behavior of a bead-spring chain changedook at the force—extension behavior, we use both Brownian
as more and more beads are added to the chain. They foundlynamics and equilibrium statistical mechanics. Although
that a parameter in the force-law (the persistence length forthe methods givelenticalresults, equilibrium statistical me-
the case of the WLC model) could fzetificially changed chanics has major advantages. The statistical mechanical
to obtain better results from the model. However, no guide- analysis avoids the stochastic noise intrinsic in Brownian
lines have been given for the use of such a method. Fur-dynamics simulations so the force—extension behavior can
thermore, the conditions under which the method fails have be calculated quickly and accurately. The analytic nature
not been quantified, and the consequences of the artificialalso allows for the easy identification of the important di-
change have not been evaluated. For these reasons, there hasensionless parameters, as well as the construction of series
been variability between investigators as to the best way to expansions when those parameters become either large or
implement the correction, or evehthe correction should  small.
be used. To answer important questionsluding but not After understanding the force—extension behavior we can
limited tothese, one must analyze in a systematic way the turn to the study of rheological properties, applying what has
ramifications of coarse-graining a polymer into bead-spring been learned. The first step from force—extension behavior to
chains. rheology is examining zero Weissenberg number rheology.
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This is because in zero Weissenberg number flow, a polymer  Given the above definition, the probability density at the

has sufficient time to sample all of phase space. To examineconfiguratiori, p;, is given by

this limit, the retarded-motion expansion coefficients of the

bead-spring chain can be examined. pi= = exp[_HEﬁJ} )
This paper is organized as follows. 8ection 2the two z kT

methods used, equilibrium statistical mechanics and Brown-

ian dynamics, are reviewed brieffection 3contains an ex-

whereZ is the partition function and is equal to

tensive analysis of the force—extension behavior of the bead- —Hest
spring chains. This includes a discussion of the correction- 2 = / EXP[ kel } dv ®3)
factor employed by Larson et dti8], a discussion of the {configuration$

fluctuations about the mean extension, and a discussion of - o )
universal behaviorSection 4examines the rheological be- to ensure that the probability density is properly normalized.
havior of the bead-spring chains in the limit of zero Weis- It should be noted that for the bead-spring chains considered

senberg number by examining the first two coefficients of in this paper we do not need to worry about the kinetic energy
the retarded-motion expansion. Section Sthe analysis in contribution to the effective Hamiltonian and the momentum
the previous sections is shown to be generally valid for any configuration spacpt]. This is because our system has no
choice of force-law by showing explicitly how the analysis rigid constraints that freeze-out degrees of frgedom, and also
would be performed for two other important models. The two W€ Will notcompute the average of any quantity that depends
examples given are the FENE force-law and the infinitely N momentum. _ _

stiff Fraenkel force-law (equivalent to the FJGection 6~ AVerage quantities are computed by integrating that quan-
introduces a new method for choosing the spring force- Uity times the probability density over all the configuration

law called the Polymer Ensemble Transformation (PET) SPace. Thus for a property signified Bythe average is

method. We apply this method to the FJC to calculate a 1 —Hepr
spring force thatexactly matches the force—extension be- (F) = / e / F Z exp[ T }dV (4)
havior of the FJC called the Random Walk Spring (RWS) {configurationg B

model. Not only does this new model perform better than the
previous models, the method illustratglhy the other mod-

els perform in the manner discussed throughout the earlier
sections.

2.2. Brownian dynamics

The technique of Brownian dynamics (BI[®4,25] has
been widely used to study the non-equilibrium and equi-
librium properties of polymer models in flow, in particular
2. Methodology bead-rod and bead-spring modl8,26,27] Most previous

) ) . ) investigations of the behavior of bead-spring chains have used

The behavior of bead-spring chains at different levels of gp Because the systems studied in this paper can all be an-

coarse-graining has been investigated using two methods thagy zeq using equilibrium statistical mechanics also, we find
will be reviewed briefly here, statistical mechanics and Brow- it natural to use that methodology. In order to provide an

nian dynamics. explicit link between the statistical mechanical results and
previous work using BD, we will perform BD simulations of
2.1. Statistical mechanics the force—extension behavior of the bead-spring chains. This

will verify that the two methods givalenticalresults.

In this paper we will only be discussing systems for The method of BD consists of integrating forward in time
which equilibrium statistical mechanics can be applied. the equation of motion for each of the beads in the polymer.
Within this context of equilibrium statistical mechanics the The equation of motion is given by
probability density of a configuration is proportional to

[23] m;t; = Fneti = Fgi + Fdi +Fsi =0 (5)
—Hes where the subscripdenotes beaidm the mass of each bead,
D|: keT :| 1) i the acceleratiorfnhet the net forceFg the Brownian force

due to collisions of the solvent molecules with the beé&ds,
if the configuration is consistent with the macroscopic con- the drag force due to the movement of each bead through the
straints. The quantitfes is the effective Hamiltoniarkg viscous solvent, ans the systematic force on each bead due
is Boltzmann's constant, aril is the absolute temperature. to the springs and any external forces. The drag on each bead
The specific form of the effective Hamiltonian depends on is taken to be the Stokesian drag on a sphere, and we will
the macroscopic constraints, i.e. the ensemble. For the oftemeglect any hydrodynamic interaction between beads. Thus,

used canonical ensemble the effective Hamiltonian is equal . ~
to the energy. Fa; >~ —¢ (fi —u™(ry)) (6)
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wheret is the drag coefficient, anaP(r;) is the undisturbed ~ where f is the externally applied force. Variance reduction

solvent velocity evaluated at the center of beéatihe gov- [24] was also employed to reduce the stochastic noise at small
erning stochastic differential equation then becomes force.

. 1

Fi(f) = u™(ri(r) + E[Fs,i({fj(f)}) + Fg.i(1)] (7

3. Force—extension behavior
The Brownian force is chosen from a random distribution

such that it has the following expectation values: As was mentioned in the introduction, one of the most
important and widely known properties of polymers is elas-
(FB.i() =0 (8) ticity, and in particular the presence of an “entropic restoring
2kg T¢5;j force”. Furthermore, with the advent of optical and magnetic
(Fei(t)Fs,;(1)) = T‘s 9) tweezer technologies, much more attention is being paid to

_ . the relation between force and extensja8]. In particular,
The symbols; is the Kronecker deltaj the unit second-  yhaqe experiments have been used to test polymer models
order tensor, andr the time-step. Thesg (_axpectatlon vaI.- which are then used in other contextéaking quantitative
ues are needed so that the system satisfies the fluctuationz . jations of the force—extension behavior of bead-spring
d|SS|pat|pn theorem. The stochastic differential equation can chains for comparison with the polymers they represent is the
be re-written as goal of this section.

. 1 2kgT
(1) = u®(r; —Fsi({r; \W; 1 N
Fi(r) = u™(ri() + ¢ ° (rjn + ot d (10) 3.1. System definition

whereW; is a Wiener process that satisfies The typical set-up used to calculate the restoring force us-

(dW;) =0 (11) ing statistical mechanics is shownfiig. 1 One end of the
polymer istethered atthe origin, and a constant external force,
(dW;dW ) = §;; 6 (12) f, is applied to the other end of the polymer. The direction of

this constant force defines theadirection of the coordinate
system. Ther andy coordinates are therefore in the plane
perpendicular to the applied force. The expectation value of
rit + 8t) ~ri(t) + 1:() 8t (13) the polymer’s displacementz), can be calculated as a func-
tion of the applied force. This functiofg) vs. f, defines the
It should be noted that when simulating bead-spring chains polymer’s force—extension (F—E) behavior. Note that this is
with finitely extensible springs with the above criteria for different from the behavior found by performing the analysis
the Brownian force and an explicit time-stepping scheme, shown inFig. 2, in which the ends of the polymer are held
there can be a small but finite probability that the Brownian fixed at points that are (or equivalentlyr) distance apart
force will cause a spring to be stretched beyond the fully and the average forcés), to hold them at those positions
extended length. In the simulations presented in this paper,is calculated. Because the former approach is more compu-
the time-stedr was always taken small enough such that no tationally tractable than the latter, it has been the preferred
examples of over-stretching were observed over the courseapproach by previous investigators using bead-spring chains,
of the simulation time. and it will be the approach initially used here. Section 6
In the BD simulation performed of the force—extension for a more detailed comparison of the two approaches.
behavior, the system was equilibrated for

In the work presented here we will use a simple explicit
first-order time-stepping algorithm:

solvent (temperature bath)

2
feq= 4 x 10° (%2“) (14)

where Aye is the true persistence length of the polymer. / E

The z-position of the end of the bead-spring chain was then ¢

averaged for : L

_ CAtzrue i .
tave= 8 x 10° < ol ) (15) o

The time-step used was Fig. 1. lllustration of a polymer and bead-spring model in the constant force

CAtrue ensemble. One end is held fixed, while a constant force is applied to the free
St =4x102 (—) (16) end. The direction of the force defines theirection. Thez-displacement
b of the chain is averaged.
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solvent (temperature bath)

Fig. 2. lllustration of a polymer and bead-spring model in the constant ex-
tension ensemble. Both ends are held fixed at a distamgart. The external
force required to hold one of the ends fixed is averaged.

When developing a bead-spring model for the polymer,
it is crucial to verify that the model accurately describes the
polymer. Because the concept of replacing the polymer by a
bead-spring chain is largely motivated by the F—E behavior, it

seems natural to verify the accuracy of the coarse-graining by

requiring that the F—E behavior of the bead-spring chainis the
same as the polymer it represents. However, it is also critical
that the bead-spring chain is compared to the polymer using
the exact same “experiment”. Since the polymer behavior is
calculated by applying a constant force, as showhi@ 1,

the bead-spring behavior will be calculated in the same way.

3.2. Decoupled springs

Because the bead-spring model is in thg)(fT ensem-
ble (the number of polymerd), is trivially held constant at
one), the effective Hamiltonian is obtained by performing
a Legendre Transform fromto f [23]. Thus the effective
Hamiltonian is
Hett = U — fZiot (17)
whereU is the potential energy of the bead-spring system
(recall that all kinetic energy has been dropped), andhe
z-coordinate of the end of the chain. For all the systems con-
sidered here, the potential energy will have no bending po-
tentials, and the energy for each spring will only depend on
the magnitude of extension. It should then be clear that the

7

where N is the number of springs in the chain, agd is
given by
i| d3r

ZSZ/exp[

This separation of the partition function has two important
consequences. First, the computational effort needed to cal-
culate the F—E behavior is greatly reduced because the prop-
erties of any size chain can be determined by knowing the
properties of aingle spring(a single integral). Second, it il-
lustrates that for this set of conditions the springs are decou-
pled. In particular, it will be shown later that the F—E behavior
of these bead-spring chain models does not depend explicitly
on the number of beads, which act as free hinges, but only
depends on the level of coarse-graining for each spring. This
is counter to other investigators who have argued the impor-
tance of the number of springs in the bead-spring chain model
[18].

—Us(r) + fz

kol (20)

3.3. Dimensionless parameters

Indescribing the behavior of bead-spring chains itis useful
to define a set of dimensionless variables. Many of these vari-
able transformations are motivated by the worm-like chain
(WLC) force-law, which is the force-law that correctly de-
scribes the behavior of dsDNA. Specifically the transforma-
tions are motivated by the interpolation formula approxima-
tion to the WLC by Marko and Siggid0]. However, it must
be noted that the formula remain general, as will be shown
later in Section 5 A summary of these parameters and their
physical interpretations is givenrable 1 These dimension-
less variables are

B = ot P f:fA””e o= L
tot = I ) = ﬂ’ = kBT 5 = Atrue’
A ¢
= et 22 1)
Atrue NS Atrue

whereL is the contour length of the chaih= L/Nsthe fully
extended length of a springdyye the true persistence length
of the polymerg the number of true persistence lengths in the
polymer’s contourAes the effective persistence lengththe

effective Hamiltonian can be separated into a sum over eachratio of the effective persistence length to the true persistence

spring

Het = Y_[Us(rj) — fz]]

J

(18)

where j denotes each spring/s(r;) the potential energy of

each spring as a function of the radial extension of the spring, _

andz; the z-displacement of spring. Because the effective
Hamiltonian can be decomposed into a sum over each spring
the partition function for the whole chait&,,, splits into a
product of the partition functions for single springs,

Zy = (29 (19)

length, andv the number of true persistence lengths repre-
sented by each spring. It is also useful to define two energy
functions. First, we will denote d% () the spring potential,

Us(r), with all additive constants dropped. This is done as a
convenience and changes no results. Second, a dimensionless
energy is defined as

Uet(r) &

22
kgT v (22)

Ueff (;') =
,It will become clear later that this scaling is the one appro-
priate for the spring potential, in which it is scaled kyT
times the number of effective persistence lengths represented
by each spring.
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Table 1
Summary of dimensionless parameters
Parameter Definition Physical interpretation
Ztot % Total z-displacement as fraction of contour length
7 % Radial single spring displacement as fraction of fully extended length
~ A . . . . .

f J;{ tr;e Externally applied force in units afg 7' divided by true persistence length

B

L
o I Number of true persistence lengths in polymer’s contour length

true

A

A I eft Effective persistence length in units of the true persistence length

true

£
v i Number of true persistence lengths represented by each spring

true
A U, A . - . . . . .
Ueti (7) %(Tr) " Potential energy of a spring in units k7 times the number of effective persistence lengths represented by each spring
3.4. Force—extension results is given by[10]

. . ~ “ 1
The F-E behavior is now calculated using a general result f = (Ziot)p — 2 + VT EEY: (26)
based orEgs. (3), (4), and (17) (1= (totlp)
where the p-subscript on the mean fractional extension sig-

(ztot) = kBTi InZ (23) nifies that it is the exact value for the polymer (to separate it

from the behavior of the bead-spring model). It has been con-
ventional for this behavior to directly motivate the following

For bead-spring chains in particular, for whigh— 2, us- choice for the spring force-law:

ing Eq. (19)and non-dimensionalizing witkg. (21)shows

that o= (Yo, Y
19 o) = (o () -3+ aase] @

(Ztot)m = ;a_f In 2, (24) It should be emphasized that thissumptiotas replaced the
mean fractionak-projection of the polymer with the frac-
where the m-subscript on the mean fractional extension is tional radial extension of the spring. The true persistence
used to signify that it is for the bead-spring model. The angu- length appearing in the polymer behavior has also been re-
lar integration for the single spring partition function can be placed by the effective persistence length in the spring force-

performed, resulting in the following formula for the mean law to use as a “correction-factor”. Integrating the spring

fractional extension: force-law gives the effective spring potential
L 1/r\2 1/r 1

. 1|1-1 d o A kel —)1Z(2) == () + ——
(Ztothm = — § —= + —=1In / d7 7 sinh[v f7] Uet (7) B (Aeff) {2 <£) 4 <Z) + 4(1- r/Z)}

v f df 0

(28)
v~
x EXP[T Ueff(r)D} (25) which results in a dimensionless energy of
- 727 1

This shows explicitly that the F—E behavior of the model Ugs(F) = 4 z (29)

5 -5t =
depends parametrically only anand A, but not explicitly 2 4 4Q-7)
on the number of springsys. This means that a polymer Specific examples of F—E behavior, calculated using both
with « = 400 represented by 40 springs hasdenticalF—E Eg. (25)and BD, can be seen Fig. 3as the level of coarse-
behavior as a polymer witth = 10 represented by 1 spring graining,v, is changed. The spring potential used is the Marko
because both hawe= 10. and Siggia interpolation formuld&g. (29), and for all ex-

At this point it is useful to apply these definitions to the amples in the figure the effective persistence length equals
Marko and Siggia interpolation formula. It should be noted the true persistence length £ 1). Most of the Brownian
that within the context of this paper the differences between dynamics simulations were performed using a single spring
the interpolation formula and the exact numerical solution for simplicity. However, we calculate one of the points also
for the WLC are unimportant. Thus the polymer modelled using 20 springs to explicitly show dependence only on the
by our so-called WLC model is not quantitatively the “true” level of coarse-graining..
WLC, butis a hypothetical polymer for which the Marko and The fact that the F—E curve for a bead-spring model
Siggia formula is exact. For this polymer, the F-E behavior changes as more springs are added for a fixed contour length
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Fig. 3. Calculation of the relative error of the mean fractional extension,
({Ztot)m — (Ztot)p)/ (Ztot)p, fOr a bead-spring model as the level of coarse-
graining changes. The Marko and Siggia potential was usedwittl. The
curves correspond to= 400 (dashed), = 20 (dotted), and = 10 (dash-

For the case of a single spring as considered here the effective
Hamiltonian is
fz)

and therefore the important configurations are determined by
~ Uett(?) o Uett(?) o 1
Heff5< erfm-fz) (L(r)—fz> +O<—>

min v

A A

(33)
where we have defined a dimensionless effective Hamilto-
nian, Hef. FromEqg. (33)we see that v plays a similar role
in the F—E behavior as temperature usually does in statis-
tical mechanics, determining the magnitude of fluctuations
in phase space about the minimum. A detailed and quan-
titative description of fluctuations will be performed later
in Section 3.7 Here we will discuss how the portion of
phase space the system samples (fluctuates into) with signif-

f]eff(;’)

Her = Usn() — f = koo (21 @)

dot). The symbols represent Brownian dynamics simulations. The single icant probability determines the mean extension. In the limit

spring simulations correspond to= 400 (©), v = 20 (O0), andv = 10 (A).

The twenty-spring simulation correspondsite= 10 (e). Inset: The mean
fractional extension of the models compared with the “true polymer” (solid
line, Eq. (26).

has been seen befdr8]. However, the conventional expla-
nation for this discrepancy is that the introduction of more
springs directly introduces extra flexibility, which pulls in

the end of chain resulting in a shorter extension for the same

force. FromEq. (25)we see that this cannot be fully cor-

rect because the absolute number of springs never appear

only the level of discretization of each sprifithus the force—

extension curve of a bead-spring chain under any conditions
can be understood by only considering the behavior of a sin-
gle spring, and how its force—extension behavior changes as

the number of persistence lengths it represents changes.

3.5. Phase space visualization

S!

v — 00, the system s “frozen-out” into the state of minimum
Heft. Note that as — oo, the polymer becomes infinitely
long. By calculating théractional extension, we are scaling

all lengths by the contour length. Thus even though the fluc-
tuations may not be getting small if a different length scale
were used (such as the radius of gyration), the fluctuations of
the end-to-end distance do go to zero compared to the con-
tour length. Alternatively in the limiv — 0, the system is
equally likely to be in any state, and thus the mean fractional
extension of the bead-spring chajfxot)m, approaches zero.
Inorder to understand the behavior atintermediafég. 4
shows a contour plot of{ef for the four caseg’ = 0.444,

f =5,1 =1, andr = 1.5, and the Marko and Siggia spring
potential (Eq. (29)) The contour lines correspond to lines
of constantHe within the 7= plane. Note that because all
directions perpendicular todre equivalent, rotating the con-
tour lines about the axis produces surfaces in the three-
dimensional phase space with constéfg;. While Heg,

and therefore the contour plots, are independent, dfiey

To get a better physical understanding of why the F-E can pe used to understand the behavior at different values
behavior deviates from the polymer, let us examine the prob- of |, pecause ofq. (33) The value ofv governs the size

ability density function over the configuration space. In gen-

of the fluctuations around the minimum, and thus the num-

eral for a bead-spring chain the phase space has too manyer of contour lines above the minimum the system samples
dimensions to visualize easily. However as we just saw the ith significant probability. We also see that each ofthe
F-E behavior can be understood by looking at a single spring, contours is not symmetric about the minimun#d, caus-

which has a phase space of only three dimensions.
Recall that the probability density is proportional to

exp[ —Hef }

keT
so that only configurations near the minimum of the effec-
tive Hamiltonian contribute significantly to the average. The
configurations that contribute must havig; less tharkg T
above the minimum:

(30)

Heft = (Heff)min + O(kBT) (31)

ing the mean extension of the bead-spring ch&gi)m, to
deviate from the point of minimuriesr. Fori = 1 the min-
imum of Her corresponds to the mean extension of the true
polymer, (Zot)p. This is because of the way of choosing the
spring potential from the true polymer behavior as illustrated
with Egs. (26)—(29)As A is increased, the position of the
minimum moves to larger While the depth of the minimum
increases. The minimum also moves to largemd deep-
ens when the force is increased. These plots explain why as
v — oo the bead-spring chain behavior only approaches the
true polymer behavior i = 1, why asv — 0the mean frac-
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L0 ' ‘ 1.0 of A such that the F—E curve exactly matches the true curve.
It is unclear what value of to choose to give the “best fit”
oSt 105 between the model curve and the true curve. We will present
& 00 & 00 here an analysis of pos.sible _chqices and place bounds on the
range of choices. The first criterion that might come to mind
05k // o5t is some type of integrated sum of squared error. However,
that quantity becomes very cumbersome to manipulate ana-
-1.0 ) . -1.0 Iytically and it is unclear that it is any better of a criterion than
-0 05 00 05 10 -10 another. The criteria that we will consider looks at matching
Lo , ¢ , Lo exactly one section of the F—E curve. The three sections are at
zero applied force, at infinite applied force, and at the applied
0.5 / ] 05k force for which the true polymer has a mean fractional exten-
sion of O5. Before calculations can be made of the “best-fit”
| 0.0 @ 0.0 Aineachregion, the exact meaning of matching the true poly-
mer behavior must be specified. The half-extension criterion
051 1 05 is straight-forward: we will require that the model and poly-
mer curves are equal at the point where the polymer is at half
'l'f)l 0 05 00 05 10 '1'?1 0 extension. The other two criteria are more subtle because the
N ' model and polymer become equal at zero and infinite force

. for all values ofi. For the low-force criterion we will require
Fig. 4. Visualization of phase space using contours of con$taptfor a that the slopes of the F=E curves be equa| at zero force. It

single spring with the Marko and Siggia potential. The squalegpresents g4 he noted that this is equivalent to requiring that the
the position of the “true polymer” mean fractional extensi@iet)p. The

cross ) represents the position of minimufes. Upper left: f = 0.444, relativ_e error Of the model goes to zero a_t zero force. Again,
A = 1; lower left: f = 0.444, ) = 1.5; upper right:f = 5, = 1; lower a similar criterion cannot be used at infinite force because
right: f =5,A =15. the slope (or relative error) will always be zero at infinity

independent of.. Thus our infinite force criteria will be that

the relative error of the slope of the F—E curve at infinite
tional extension approaches zero, and why for intermediateforce will equal zero. Physically, this means that the frac-
v there may exist a value affor which the mean fractional  tional extension versus force curves approach one at infinite
extension matches the true polymer. force in the same manndfig. 5shows a plot of the “best-

fit" A versus }v for each of the three criteria for the WLC
3.6. Correcting the force—extension behavior force-law.

Now that we understand better the reasons why the F-E N
curve deviates from the true polymer F-E curve, we would 0 10 20° 30 40
like to change the model to get closer agreement. Avery sim- 29[ -
ple method that has been used by previous investiggt8fs L
is to use a different persistence length in the spring force-law 18
(Aef) from the true persistence length of the polymég(e), [0 i e
i.e.A # 1. In particular, ifa is increased, the extension of the < ‘
chain also increases, back to the extension of the true poly- =
mer. The conventional explanation for this is that the free +:
hinges in the bead-spring chain have introduced extra flexi- £
bility. To counter-act the flexibility introduced by the hinges,
the stiffness of the springs must be increased by increasing
the effective persistence length. Let us now analyze the ef- 10
fect of increasing. within the framework presented above.

Looking atEq. (25)shows that increasingacts to decrease O}?_oo T o o o o oo
the spring potential energy. Because the spring gets weaker 1/v

(less stiff), it is not surprising that the extension gets larger.

It should be noted that for infinitely long polymers increas- Fig. 5. Calculation of. for the three different criteria at different levels

ing the persistence length causes a decrease in the restoringf coarse-graining for the Marko and Siggia potential. The criteria shown
force are low-force (dash-dot), half-extension (dashed), and high-force (dotted).

. . . Upper axis: the level of coarse-graining in terms of the number of springs,
Though it is true that by increasirigfrom one the exten- N, for a polymer witho = 400 (approximately-phage DNA stained with

sion increases towards the true extension of the polymer, ityoyo at4 bp:1 dye molecule). Inset: expanded view showing the divergence
does so non-uniformly. This means that there exists no valueof the criteria.
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Itis important to mention that both the low-force and half- Olp— T T ]
extension curves diverge for a finitg\l This means that r T - ) ]
there exists @ small enough such that the low-force or half-  _  F " e 1
extension region cannot be matched simply by adjusting § 0.0 e p——
The position of these divergences can be calculatexttly j E ,/’/ LT 3
in a simple manner as will be shown $ection 3.8For the E . e /_,-/]fo/ ]
WLC the low-force curve diverges at' = 10/3 while the = 01E----"" s _ —j
half-extension curve diverges at = 2.4827. However the = [ T B 7 ]
high-force curve is always = 1 for finite 1/v. B s /§ ' ,,.;;5" ]
To illustrate the difference between the three choices of (g 02k e QM ra E
1, let us look at a specific exampl€ig. 6shows the relative  ~ [ zz 4 ]
error in the mean fractional extension versus force for the . R 0 100 ]
WLC force-law, three different values af andv = 20. The 03F i N L audin 3
three values oh correspond to the three criteria shown in 0.1 1.0 10.0
Fig. 5. By comparing the relative error curves, we can see f

the entire range of effects has on the F—E behavior. The
criteria at low and high force form a bound on the choices Fig. 6. Calculation of the relative error of the mean fractional extension,

“ _gin e : T ({Ztot)m — (Ztot)p)/ (Ztot)p, for a bead-spring model for different best fit crite-
for a "best-fit"A a-S segn IfFig. 6 even if none of the criteria ria. The Marko and Siggia potential was used wit& 20. The curves cor-
presented here is believed best.

respond ta. = 1.41 (low-force, dotted)). = 1.21 (half-extension, dashed),
As a further example we show the parameters that would andx = 1 (high-force, dash-dot). Inset: the mean fractional extension of the

be chosen to model-phage DNA at different levels of  models compared with the “true polymer” (solid lirig. (26).
coarse-graining, as well as some properties of the models.

These parameters could be used in a Brownian dynamics

simulation to capture the non-equilibrium properties of ing properties of the model were calculated from formulae
A-phage DNA.Tables 2—4show what effective persistence in Section 4 The contour length and persistence length for
length to choose for the model for the different “best-fit” cri- unstainedi-phage DNA were taken from Bustamante et al.
teria and for different staining ratios of dye. The parameters [29]. We used that the contour length is increased Bypér

were calculated by repeated applicatiorraf. 5. The result- bis-intercalated YOYO dye molecu[80], and we assumed
Table 2
Table of properties for models of unstaineghhage DNA
Ns v Region 2 Aet (M) Ry (nm) no,p/(np(N¢)) (pm?) b2/(np(N¢)?/ kg T) (wm) ©0/((N¢)/ ke T) (nm?)
10 30.8 Low 1.28 0.068 0.56 0.052 -0.0011 0.021
Mid 1.13 0.060 0.53 0.047 —0.00091 0.019
High 1.0 0.053 0.50 0.042 —0.00074 0.017
20 15.4 Low 1.55 0.082 0.55 0.050 —0.0010 0.020
Mid 1.29 0.068 0.51 0.044 —0.00077 0.018
High 1.0 0.053 0.47 0.036 —0.00052 0.014
40 7.7 Low 2.52 0.133 0.54 0.049 —0.00096 0.019
Mid 1.78 0.094 0.50 0.041 —0.00068 0.016
High 1.0 0.053 0.42 0.029 —0.00034 0.012

Unstainedi-phage DNA has the following properties:= 16.3 um, Agye = 0.053 wm, anda = 307.5. Models with 10, 20, and 40 springs are compared
using three best-fit criteria.

Table 3

Table of properties for models afphage DNA stained with YOYO at 8 bp:1 dye molecule

Ns v Region A Aeft (um) Rg (nm) n0.p/(np(N¢)) (wm?) ba/(np(N¢)?/ ke T) (nm?) 10/((N¢)/ ks T) (nm?)

10 35.3 Low 1.25 0.066 0.60 0.060 —0.0015 0.025
Mid 1.11 0.059 0.57 0.054 —0.0012 0.022
High 1.0 0.053 0.55 0.050 —0.0010 0.020

20 17.6 Low 1.47 0.078 0.59 0.058 —0.0013 0.023
Mid 1.24 0.066 0.55 0.051 —0.0010 0.020
High 1.0 0.053 0.51 0.043 —0.00073 0.017

40 8.8 Low 2.18 0.116 0.58 0.056 —0.0013 0.022
Mid 1.62 0.086 0.54 0.048 —0.00091 0.019
High 1.0 0.053 0.46 0.035 —0.00049 0.014

Models with 10, 20, and 40 springs are compared using three bestfiteria. 8 bp:1 dyer-phage DNA has the following properties: = 187 pm,
Atrye = 0.053 pum, ando = 3528.
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Table 4

Table of properties for models afphage DNA stained with YOYO at 4 bp:1 dye molecule

Ns v Region & Aeit (BM) Ry (um)  nop/(1p(NQ)) (pm?)  ba/(np(N¢)?/keT) (em®)  70/((N)/ksT) (wm?)

10 39.8 Low 1.22 0.065 0.64 0.068 —0.0019 0.028
Mid 1.10 0.058 0.61 0.062 —0.0016 0.025
High 1.0 0.053 0.58 0.057 —0.0013 0.023

20 19.9 Low 1.42 0.075 0.62 0.065 —0.0017 0.026
Mid 1.21 0.064 0.59 0.058 —0.00013 0.023
High 1.0 0.053 0.54 0.049 —0.00097 0.020

40 9.95 Low 1.98 0.105 0.62 0.064 —0.0016 0.025
Mid 1.52 0.081 0.57 0.054 —0.0012 0.022
High 1.0 0.053 0.50 0.041 —0.00067 0.016

Models with 10, 20, and 40 springs are compared using three béstfiteria. 4 bp:1 dye.-phage DNA has the following properties:= 21.1 pm,
Atrye = 0.053pm, ando = 3981.

that the persistence length of the stained molecule is the It is shown inAppendix Athat the fluctuations can be
same as the unstained value. calculated as
In these tables we see examples of the expected general

trends. As the polymer is more finely discretized, the num- (62)? = (ot — (Ziot)m)?)m = —=(Ztot)m

ber of persistence lengths represented by each sprinig- Nsvaf

creases. This causes a larger spread in the possible choices }i(n ) (34)
for the effective persistence length, and thus a larger spread T af “tot/m

in properties. We see the general trend that the magnitude

of the properties decreasesiadecreases. Note that for the 1

low-force criterion,R, and o, are exactly the “Rouse re-  (6%)° = ((to)?)m = (Gro)*)m = = (Ztot) m

sult”. The “Rouse Result” is the value of the Rouse model if Nsv f

the spring constant is taken to be the zero-extension slope of . i& ) (35)
thespringforce-law. The “Rouse result” will be discussed in a af tot/m

more detail inSection 4 The only difference from the “true . .
polymer” is that the mass and drag are localized at the beadswhere we have defined the root-mean-squared fluctuations as

instead of along a continuous contour. This is true until 8z andsx. One important thing to notice about the fluctuations

reaches the point of divergence of the low-force criterion. Is that once the F-E behavioris knoWntst)mversusf ), the_
However,b, and o are only approximately the “Rouse re- fluctuations can be calculated directly without performing
sult” as discussed iBection 4 The properties for the other any further integrgtiops. In fact, both typ.es offluctuations can
best-fit criteria have even smaller magnitude than the low- be calcu!%tgd;)ylzﬁndlnﬁ t?.e slope ofa Imhe or;]thle F_.E ngf’
force criterion. This decrease is due to an error in the zero- 25 S€€N Iirig. 7. From the figure we see that the longitudina

force slope of the force—extension curve, and thus a smallerﬂucw"’Itlons are proportlonal to thg slope of the curve, Wh."e
coil size the lateral fluctuations are proportional to the slope of the line

connecting the point of the F—E curve to the origin. Because
the F—E curve is concavthe lateral fluctuations are always
3.7. Fluctuations greater than or equal to the longitudinal fluctuations
Another important aspect &fqs. (34) and (35 that the
In addition to discussing the F—E behavior of the model, it fluctuations depend explicitly on the number of springs in the
is important to discuss the fluctuations around the mean ex-chain, unlike the F—E curve which just depends on the level of
tension. We have already seen the use of fluctuations thus farcoarse-graining for each spring. In fact we see the expected
In Section 3.5ve saw how examining fluctuations can help us scaling of the root-mean-squared fluctuationsa%2. Since
better understand threeanextension. The fluctuations in the  the persistence length is the length-scale over which the poly-
F—E behavior are also important in trying to extend our un- merbackboneloses correlation, the fluctuation of the polymer
derstanding from the F—E behavior of the bead-spring chainslength should scale like a sum of “independent” random vari-
to the behavior in a flow field. For a bead-spring chain in a ables. The number of these “independent” random variables
flow field, the fluctuations of the chain determine how much is precisely the number of persistence lengths in the polymer
of the flow field the chain can sample. In turn this determines contour,c. We show inFigs. 8 and $lots of the root-mean-
the total force applied to the chain by the flow. This is par- squared fluctuations for the same cases for which we showed
ticularly important in shear flow, in which the fluctuation of the F—E behavior ifFig. 3. We have scaled the fluctuations
the chain in the shear gradient direction plays a central role by «/2 to collapse the fluctuations of different length chains
[8,31]. onto the same curve. The fluctuations after this scaling only
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Fig. 7. Graphical illustration of longitudinal and transverse fluctuations. For Fig. 9. Calculation of the transverse root-mean-sq_uar.ed fluctugtions at dif-
a given forcef, the longitudinal fluctuations are proportional to the slope ferent levels of coarse-graining. The Marko and Siggia potential was used
of the tangent curve (dashed). The transverse fluctuations are proportionalith + = 1. The curves correspondite= 400 (dashed); = 20 (dotted), and

to the slope of the chord (dotted) connecting the origin to the point on the ¥ = 10 (daSh:Sgt)- The solid line corresponds to the high-force asymptotic
force—extension curve. behavior, ¥(f™°).

w
o

Using this result, we can show that

depend on the number of persistence lengths represented by Foroo 1 1
each springy, and the ratio of the effective persistence length «%/2s7 ' ~ 3 +0 ( ) (37)

to the true persistence length, 2).1/4 f 7

Note that it is easy to calculate exactly the high-force scal- Fose 1 1
ings for the fluctuations usinggs. (34) and (35and our  &%25% ' ~ ~1z +0 (—A) (38)
knowledge of the high-force scaling fiot)m. It is easy to S f

show that for bead-spring chains using the Marko and Siggia

! i gt Of particular interest are the fluctuations at “equilibrium”
potential Eq. (29) the high-force scaling is

(zero applied force) because it relates to the size of the poly-
mer coil. In the context of the F—E behavior, that is equivalent

Grothm }?zoo 1 1 40 <i) (36) to calculating the slope pf Fpe F—E curve at zero force, as can
212 2 f be seen by taking the limif — 0 in Egs. (34) or (35)By
taking that limit, and rewriting the average as the average of
the radial coordinate of a single spring, it can be shown that
1.00

. . v Jo &7 7 expl—(v/2) Uer (7)]
hm <—»(Ztot>m> =371 - P
F—o\af 3 [ d7 72 expl—(v/A) Uett ()]

This expression was used previoushSection 3.60 calcu-
late the “best-fit"s at zero force as seen ig. 5, and it will
be used extensively to understand rheological properties in
Section 4

We also note here that Ladoux and Dojaé&] derived an
expression similar t&q. (35)based on scaling arguments
. and a single spring. Based on the scaling argument, they de-
veloped a model which compared favorably to experimental
data and lends support to the results presented here.

39)

001 L. .0 N | R

01 10 100 3.8. Limiting behavior (asymptotic expansions)

f

Fig. 8. Calculation of the longitudinal root-mean-squared fluctuations at chains can be written analvticallv as inteqral formulae for ar-
different levels of coarse-graining. The Marko and Siggia potential was used Yy y g

with A = 1. The curves correspondite= 400 (dashed); = 20 (dotted), and pitrary spr_ing force'law- Thi_S has allowed for the dEtermina'
v = 10 (dash-dot). The solid line corresponds to the high-force asymptotic tion of the important dimensionless groups that determine the
behavior, 2277%). behavior, as well as provide for rapid and accurate calculation

We have seen thus far that the F—E behavior of bead-spring
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through numerical integration. However, another important
advantage to having analytical formulae is that expansions
can be performed. Those expansions can be used to illustrat:
limiting and universal behavior as well as obtain approxi-
mate algebraic formulae that illustrate what aspects of the
force-law are needed to estimate the exact behavior without_& £
performing numerical integration. g 0.03E
We have already seen numerically kig. 3 that the F— ~ E
E behavior of the model only matches the “true” polymer 0.02E
behavior if each spring represents a large number of per- E ’ E
sistence lengths. Thus it seems natural to find asymptotic  0.01f / 040 3
expansions of the integrals in the limit— +oo. We start E 0 y 1003
by expanding directly the force—extension curtzg ((25). 0'001(‘)" — '1(|)o — '1‘(')00
The asymptotic expansion is a straightforward application of v
Laplace’s Methodi32]. The calculation is made significantly
easier by noting that the hyperbolic sine can be replaced byFig. 10._ Comparison of the fra_ctio_nal exter_lsior! with its higsymptotic
only the growing exponential, because it only results in sub- expansion for the Marko and Siggia potential with= 1 and f = 0.1. The

. . . s curves correspond to the exact result (solid line), the expansion including
dominant corrections. Up to first order, the expansion is given (1) (dotted), and the zero-one RaB(1/v) (dashed). Inset: the analo-

0.04

by gous comparison fof =1.25.
e 121 178e\ (@Pc/of)
(Ztothm ~ c+-|—=+-|= |+ = . : . . . .
v f ¢ \af 2(dc/af) if and only if the spring force-law is an odd function of its
argument (the potential is an even function).
1 . I
+0 <_2> (40) Even for the case of an odd spring force-law, it is more
v computationally convenient to obtain the expansion of the
where slope of the F—E curve at zero force directly by expandigg
. (39). Application of Laplace’s Method requires the expansion
¢ = (Ztot)p(A f) (41) of the spring force-law, of the following form:
We thus see again that as> oo with A = 1the F-E behav- oo
ior of the bead-spring model approaches the true polymer. Uett (7) = ¢o + ¢27* +7° Y _ b’ (43)
However, we also have the correction terms written as a func- i=0

tion of thetrue polyme—E curve No assumptioias been
made about the spring force-law other than it is determined
from the “true polymer” F—E behavior as was done for the
WLC model inSection 3.4Provided the value of is “large
enough”,Eq. (40)can be used to estimate the F-E behavior
of a bead-spring model without performing any numerical
integrations for any value of or A within

0< f < oo, O<Xi<oo (42) lim (i(%tot)m> oo (L) x id,- <L>i/2 (44)
f—)O af 2¢2 i—0 VP2

Note that there is no linear term because we require this po-
tential to look Hookean near= 0 and that the value of the
constant termgg, does not affect the final answer. Also note
that¢, > 0.

Proceeding with Laplace’s Method, the complete asymp-
totic series can be calculated to be the following:

To give asense of the applicability of the expansiddn(40)
to smallerv, we show inFig. 10a comparison of the exact  The coefficients of the series can be calculated from a collec-
force—extension result for the Marko and Siggia potential tion of recursion relations that include the coefficients of the
with A = 1 and the asymptotic expansion for forces- 0.1 Taylor series of the spring potential. The recursion relations
and f = 1.25. We see that the expansion is applicable to are given here for completeness:

smallerv when f is larger. The zero-one Pa@pproximant
Pf(l/v) is seen to improve the smallbehavior.

Care must be taken Eq. (40)is expanded for large or
small f because of the order in which limits are taken. If
the F-E curve is expanded to ©O¢), then the asymptotic 1 ( @) izl @

A ; ~a d=—|F —deF._
expansionf — oo can only be obtained to @( ). At low TR\ i m)
force, the quantity of greatest interest is the slope of the F—-E 0 m=0
curve at zero force, given kyq. (39) In general, expanding i-1
Eq. (39)directly for v — oo gives a different result from = F¥ - > duF? ix1 (45)
expandingzqg. (40)for smallf. The expansions are the same m=0

F&

do = — =
F2

17
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) _ F(]+l/2+(n+l)/2)>
i = Z(’)G" f’(«m) < AT+ 1)/2)

(46)
n
mGw =D m-1G@hu—i)-
i=0
n=012..., m=123,...,
0Go =1 ©Ga2.)=0 (47)

We have also examined the ability to use this expansion at

smallerv, as shown inFig. 11 for the Marko and Siggia
potential withA = 1. It should be noted that the zero-one
Pace P)(1/v1/?) performs worse than the first two terms
of the expansion irEq. (44) However, the two-point zero-
two Pa@ P9(1/v%/?) that includes the behavior at small
v does perform better. This low behavior will now be
discussed.

In addition to examining the bead-spring chains in the
limit v — oo, itis interesting to examine the F—E behavior in
the limit v — 0. In this limit the F—E behavior can approach
a curveindependenof the functional form ofef (7). Phys-
ically one can think of this limit as taking a polymer with
fixed contour length, and infinitely discretizing the model.

15

rigorously using asymptotic matching, but the leading-order
behavior is relatively easy to obtdig2]. In fact, the leading
order behavior is obtained by setting

exp[_TU Uest (;)] ~1 (48)
By further expanding the hyperbolic sine, it can be easily
shown that

A ov f
(Ztot)m '3 _f7
5

f fixed (49)
Note that this is consistent withection 3.5n which we saw
that, for f fixed, the mean fractional extension approaches
zero asv — 0. We also see explicitly that the F—E behavior

does noapproach the FJC, which is given by

(Gtothm = L(f) (50)
where
L(x) = coth(x) — % (51)

is the Langevin function. We can also contrast the behavior in
Eq. (49)with a different “experiment” in which free hinges

Therefore each spring is becoming very small. However, it are introduced into a trugontinuousvorm-like chain while
should also be noted that each spring is getting weaker, asthe force is held constant. If one consider® be the ratio

seen inEg. (32) It has been postulated previously that as
the chain is infinitely discretized, the F-E behavior would
approach that of the freely jointed chdii8]. Using the for-

of the contour length of the continuous curve between free
hinges to the persistence length, then it is clear that the aver-
age extension of this discretized worm-like chaiiet)dwic,

malism presented thus far, we can examine explicitly this approaches the limit

limit and test the postulated behavior. To understand the F-E

behavior in this limit, we simply need to expakgd. (25)for
v— 0.

It should first be noted that expanding the prescribed in-

Grotawic ~ L) "< Lwf),  ffixed (52)

It should be noted that holding fixed corresponds to the

tegral is an example of an integral that can only be expandedphysical process of holding the force constant as the model is

0.40 I
100
v

1000

Fig. 11. Comparison of the zero-force slope with its highsymptotic ex-
pansion for the Marko and Siggia potential with= 1. The curves cor-
respond to the exact result (solid line), the expansion including®(3)
(dotted), the zero-one Pa®?(1/v/2) (dashed), and the two-point zero-two
Pack P(1/v'/?) (dash-dot).

infinitely discretized. This is the appropriate limit to examine
processes in which the force applied to the end of the system
is independent of how the system is discretized. However,
another universal result can be obtained by instead of holding
f fixed, holdingvffixed. This corresponds to pulling harder
and harder on the model as it is more finely discretized. One
might expect that the length of a spring should play the role
of the “Kuhn length”, and thus the scale for the force. This
corresponds to a dimensionless forcevgf The expansion

of the bead-spring chain model behavior Wﬂﬁ fixed is
calculated by simply integrating the hyperbolic sine5q.
(25)to obtain

(v f)fixed (53)

We see that even in this limit the systelbes noapproach a
modified “freely jointed chain” result of
L(vf)

(Ztot)m = (54)
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To understand the true limiting shapgq; (53) it can be

shown that

-3 1 X

Py + % ~ L (§> , xlarge (55)
-3 1 3x

— = = I 56
x+£(x) L‘<5), xsma (56)

In addition to being used to understand the limit of infinite
discretizationEq. (53)can be used to understand the diver-
gence of the “best-fitA curves inFig. 5 and discussed in
Section 3.6Recall that previously we considered the limitin
Eq. (53)to be aay — 0 as ¢ f) was held fixed, andl was im-
plicitly being held constant. By examinirteg. (25) we see
that if (vf) is held constant, the only remaining parameter is
v/A. Thus the expression iBg. (53)can be rewritten as the
limit (v/A) — O:

bothv, £ fixed

rotm " =3
Ztot/m \)f E(vf)v

Now suppose that one is choosingsuch that the model
matches the true polymer at an extensionz)p, which
occurs at a force denotgﬂ(%tot)p). The value ofv for which
that “best-fit” curve diverges (denoted) will be the value
for which only asi — oo will the extension of the model
equal that of the polymer. This condition is written as

-3 n 1
v F((Zrop) L% F((Zot)p))

(57)

(Ztot)p = (58)
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in general itcannotbe used for the high force criteria. This
stems from the break-down of the assumptiorEop (48)

if f — oo, in particular because the spring potential for the
WLC model diverges at full extension fast enough. In fact,
we know thatEq. (58)cannot be valid for the WLC model
for the high-force criterion because we know that the high
force criteria does not diverge. It is shown $ection 5.1
that the high force criteria for the FENE model does di-
verge, andeq. (58)canbe used to calculate the position of
divergence.

4. Rheological properties

Thus far we have only considered the force—extension
behavior of the bead-spring chains. In addition to F-E be-
havior we are interested in the rheology of the bead-spring
chains, and how it changes as the level of coarse-graining
changes. In general, this is a much harder problem com-
putationally than the work done thus far. In order to con-
tinue in the spirit of calculating properties near equilibrium
and using equilibrium statistical mechanics, we will investi-
gate the rheology of the bead-spring chains by looking at
potential flow in the limit of small deformation rate. Po-
tential flow has the desirable property that the chain behav-
ior can be calculated using equilibrium statistical mechanics
with an effective energy due to the flow. From this analysis
the retarded-motion expansion coefficients can be calculated.

This can also be used to find the divergence of the low force These coefficients give insight into the rheological proper-

criteria by examining the limit aﬁ — 0. Because of the way
of choosing the force-law from the true polymer behavior, it
can be shown easily that

R f—o f
~ = 59
<Ztot)p 2¢2 ( )
It can also be shown that
-3 1 F0 ¥ N
120V s (60)

— + —
V¥ f((Zot)p)  Lv* f((Ztot)p) 5
Therefore the point of divergence for the low force criteria is

. 5

v 262 (61)
By applying Eq. (61)to the Marko and Siggia force-law
we see that the low force criteria divergesvat= 10/3 as
stated inSection 3.6To calculate the divergence for the half-
extension criteria, we s€fot)p = 1/2 in Eq. (58)and sub-
stitute forf(1/2) fromEq. (26) The divergence is then given
by the solution to

1_ 83 1
2 5v¢/4  L(5v%/4)
which isv* = 2.4827 as stated iBection 3.6

It must be noted that whilé&qg. (58)is valid for any
0 < (Ztot)p < 1, and can be used for the low force criteria,

(62)

ties of the bead-spring chains in slow and slowly varying
flows.

Thus the goal of this section is to examine the retarded-
motion expansion coefficients for bead-spring chains. This
has been done previously for Finitely Extensible Non-linear
Elastic (FENE)5] springs and for Hookean springs. Bird et
al. [4] also present a general framework for the retarded-
motion coefficients for any bead-spring-rod chain. How-
ever, because of the generality, that analysis cannot sim-
plify the integrals over phase space to a convenient and
intuitive form. Here we present the results of a specific
application of that framework to only bead-spring chains
but for arbitrary spring force-law. As assumed previously,
we will assume that there are no bending potentials be-
tween springs and that the spring force only depends on
the magnitude of extension. Furthermore we will neglect
any hydrodynamic interaction and excluded volume between
the beads and assume that the polymer solution is dilute.
With these assumptions, the retarded-motion coefficients
can be written as a function of simple moments of the
force-law probability distribution. These moments are given

by

_ Jo dr 2 expl- U (r) /kB T
L drr2expl-Ue(r) /ks T]

(”” )eq (63)
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Written in terms of the moments, the first two retarded-

motion expansion coefficients equal
b1 —ns=mnop= %”pf(Nz - 1)<7’2>eq (64)
-y
by = 21,0
_ —np§2 <r4>eq _ <”2>gq N4 -1
- \120gT 15 9 N
2\2 2 2
N <<r9>eq> <(N 1)((321\/ + 7))} (65)

where 15 is the viscosity of the Newtonian solvenig p
the polymer contribution to the zero-shear viscosity,q
the zero-shear first normal stress coefficiagtthe number
density of polymers; the drag coefficient of each bead,

17
by — —W1o [ —np(N¢)PL2AGe
2T T T 120 T
([eq V2R ((N2 F 1) + 1))
x 5 9 N3(N — 1)
WPeq)” (N + 1)@N? +7) o
+ 3 < 6N2(N — 1) ) (1)

The advantage of working with the dimensionless moments
is that they only depend on the parameieasid but not on

the absolute number of beads (or springs). Thus all depen-
dence on the absolute number of beads is shown explicitly.
In this way we have separated out in the formulae the con-
tribution from the specific form of the spring force-law and

and N the number of beads in the chain. Because we havethe contribution from the chain having multiple beads. Con-

neglected hydrodynamic interaction, we also know from
Bird et al. [4] that b11 is zero. SeeAppendix B for the

trary to the force—extension behavior, we do see a dependence
on the absolute number of beads. The coefficients are made

derivation of these coefficients. It should be emphasized thatgimensionless as

for Egs. (64) and (65ho assumptioas been made about
the form of the spring force-laWeg (r).
A more common approach to calculating the polymer con-

tribution to the zero-shear viscosity is through the Giesekus

form of the stress tensor, from which it can be shown that

whereR, is the root mean square radius of gyration at equi-

librium. For bead-spring chaing, is related to the single

spring moments as

22 N2 -1
g 6N

From these equations we can velfy. (64) Eqgs. (64), (65),

and (67)were additionally used to calculate the model prop-
erties given inTables 2—4as discussed iBection 3.6A re-

<72>eq

(67)

_ n0,p
- np(N¢)L Atye/12
 —np(NZ)2L2A%,0/(120ksT)

no, (72)

b2 (73)
These were chosen as the scales because they depend only

on properties intrinsic to the true polymer or the system of
study. The polymer solution being modelled has a number
density of polymersy,, and a temperaturg. The true poly-
mer being modelled has a value of the persistence length
Atrue, @ contour lengthl, and a total drag. Because we are
using a freely draining model, the total drag on the chain is
N¢. By comparing dimensionless quantities witlg as the
scale of drag, we are looking at how the property changes if
for bead-spring models with different number of beads, we

laxation time for the bead-spring chain can also be calculatedrecalculate the drag on a single beadsuch that the whole

from the retarded-motion expansion coefficients:
—by
b1 —ns

Recalling from the definitions of the momenEsy, (63) that
they are defined for single springit seems natural to scale
them by the fully extended length of a sprigif it is finite.
For that case let us define dimensionless moments as

(r"eq _ Jo 97" +2 expl=(v/2) Ve ()]
e [ d7 72 expl-v/ATe (P)]

70 = (68)

(7" )eq

(69)

After a number of parameter substitutions the retarded-
motion expansion coefficients can be rewritten as

np(NoLAnue> <N + 1) (72 eq
N 3

12
(70)

bl—ns=770,p=<

chain has a constant drag.

To better understand the behavior of the retarded-motion
coefficients, let us first examine how much the coefficients
depend explicitly on the number of beads (in addition to the
level of coarse-grainingy). In Figs. 12 and 13ve show re-
spectivelyrno,p andb» as a function of the number of beads,
N, while the level of coarse-graining, is held constant. The
710,p curves for different values ofare exactly self-similar as
could be seen frorkq. (70) while theb, curves are approx-
imately self-similar except when bothandN are small. We
attribute the change of the coefficients wNtwhile v is held
fixed to the fact that for finiteV the drag is not distributed
along a continuous contour. Thus for the bead-spring model
to be an accurate coarse-grained model of the true polymer,
the number of beads must be large enough to operate in the
large N region. The deviation for < oo is due to the errors
in the spring force-law as discusseddaction 3with regards
to the F—E behavior. The = oo curve corresponds to the
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1.0

7ﬁlf),p/)‘
770,1)//\

0.1 R ) R N 0.1 . N |

10 100 1 10
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Fig. 12. Polymer contribution to the zero-shear viscosity of Marko and Fig. 14. Polymer contribution to the zero-shear viscosity of Marko and Sig-
Siggia bead-spring chains as the number of effective persistence lengthsgia bead-spring chains as the number of effective persistence lengths in
represented by each spring/, is held constant. The curves correspond the total polymer contoury/A, is held constant. The curves correspond
to v/x = oo (solid line), v/A = 400 (dotted),v/A = 100 (dashed), and to a/x = oo (solid line), «/A = 4000 (dotted)w/A = 400 (dashed), and

v/x = 10 (dash-dot). a/A = 100 (dash-dot).

“Rouse model” result. What we mean by the “Rouse model” fine discretization leads to error predicting the size of the
result will be discussed later. coil and the extension of polymer segments. If the number of
In order to model a given polymer with different numbers persistence lengths in the whole polymeris large enough,
of beads, the value af is not constant. Instead the value of there exists an approximate plateau. This corresponds to the
a (the number of true persistence lengths in the polymer’s situation in which the number of springs is simultaneously
contour) is constant. IRigs. 14 and 1%ve show respectively  large enough to reduce the drag error and small enough to
fo,p andby as a function of the number of beads, while « prevent discretization error. Using the expansions developed
is held constant. This corresponds to discretizing a polymer in Section 3.8ve canpredictthe location of this plateau.
finer and finer. We can see the interplay between drag error  To use these expansions and also explain why the behavior
and discretizing error as discussed in the introduction. When approaches the “Rouse result”, we need to express the spring
the number of beads is small, error is present because the dragnoments in terms of the force—extension behavior. Feam
on the polymer due to the solvent is lumped at the beads,(39) we see that
not exerted along a continuous contour. When the number
i } ~2
of beads is large, error is present because the polymer hasl- (i A ) _ V(r)eq
. . . . 1m =(Ztot)m (74)
been discretized so finely that each spring represents a smallf .o \ 9
number of persistence lengths. As discussed previously this

LOOE
1.OOF L
| =<
('j< \NO.IO_—
~.0.10 D C
N C L
«O - L
0.01 | N
0.01 . A | 1 100

" -, 10
| 10 100 N
N

Fig. 15. Zero-shear first normal stress coefficient of Marko and Siggia bead-
Fig. 13. Zero-shear first normal stress coefficient of Marko and Siggia bead- spring chains as the number of effective persistence lengths in the total
spring chains as the number of effective persistence lengths represented byolymer contourg/, is held constant. The curves correspondrta =
each springy/2, is held constant. The curves correspond/to = oo (solid oo (solid line),a/1 = 4000 (dotted)@/1 = 400 (dashed), and/» = 100
line), v/A = 400 (dotted)p/A = 100 (dashed), and/» = 10 (dash-dot). (dash-dot).
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It can also be shown by taking the third derivative of the the term with the third derivative. Following an analogous

force—extension curve that procedure we find the plateau region for
1 83 U2<;’4>eq v2<;2>gq : 1 Old)z i/2
—lim [ — = - 75 2« N, (N-17P«— (=22 84
3 (af3 <Ztot>m> 15 5 (75) < ( )/* < 20\ n (84)
Making use of these equalities we can write the retarded- Note the factors of two that result from expanding the rational
motion expansion coefficients as function of N for large N and from expanding the square of
the zero-force slope.
. N+1 i a . Let us consider application of these formulae to the WLC
mp=\ "% f'z‘oa_f(ZtOt)m (76) model. For the Marko and Siggia potential with= 1 the
two plateau conditions state that
12 1/2
- 1 . 53 o (N2 + 1)V + 1) 1« N, (N-1)"°« 115l (85)
2= 113, 720572 Ztot/m N3(N — 1) 2« N, (N-1)Y2 «0576%? (86)

5 If we consider that an order of magnitude difference is suf-
0 (N +1)(2N?%2+7) ficient to satisfy thex conditions, then the conditions could
+ 1 im —(Ztot)m (77)

f-00 6N2(N — 1) be approximated as

) . N . 15< N < 0.01x (87)
Letusfirstexamine the plateawgf,. We can easily see from
the pre-factor irEq. (76)that the drag error is negligible if Inwords this says that the number of beads mustbe larger than
approximately 15 while simultaneously each spring mustrep-
N>1 (78)  resent more than approximately 100 persistence lengths. Re-

To predict the upper limit of the plateau, we use the expansion €@l that based on force—extension simulati¢hs] of the
in Eq. (44) Use of this series is justified because we know Kramers chain, Somasi et 4l4] argued than each spring
that if the behavior is within the plateau region themustbe ~ Should represent more than 10 Kuhn lengths but were not

very large. In fact, the leading order term must be dominant. @ble to estimate a lower bound on the number of springs and
For the WLC model this corresponds to had to extrapolate from the Kramers chain result to the WLC

result. Here we have used zero Weissenberg rheology to de-
12 rive bothlower and upper bounds on the number of beads for
1 (@) <1 (79) arbitrary spring force-law. From Brownian dynamics simu-
lations of start-up of steady shear flg®4], there is initial
evidence that our bounds may even retain approximate valid-
ity in unsteady, strong flows. We leave a detailed analysis of
1 [apo\Y? this to future research.
(N-1)Y2« — <—> (80) In addition to allowing for the derivation of the plateau re-
ld1] \ X . o . .
gion, writingb1 andb; in terms of the force—extension curve
Note that this is true for the WLC model because for the allows for a better physical understanding for the deviation of

Written in terms of the parameter/A, which is constant
while discretizing, this condition becomes

Marko and Siggia spring potential the curvesfor < oo and what is meant by the “Rouse result”.
The “Rouse result” is the value that the Rouse model would
3 —4 o : .
P2 = 7 1= 37~ (81) give if the spring constant were equated to the zero-extension
v slope of thespringforce-law. Recalling that thepringforce-
However some models like the FENE model hale= 0. law was taken from theue polymerforce—extension behav-
The appropriate analysis shows that in general ior, one can show that this Rouse model would have coeffi-
. 5 2 cients
; o
(N -1)? « — (—2> (82) . N+1\[. o .
ldil \ A no,p = <T> lim 8—f<Ztot)p (88)
wherei denotes the first coefficien} that is non-zero (ex- -0
cluding dp = 1). Combining the two bounds oN gives a 2
formul%t f(())r the) plateau reggi]on fopo p: ’ by = | [ lim i(ztwp (N + D@V +7) (89)
. 7F—-0df BN2(N — 1)
i/2 1 (ag)\"?
1N, (N-1)7 L i (83) We see that because the force—extension behavior of the

. model approaches that of the true polymewnas oo, the
A similar analysis can be done fép. Becauser has to retarded-motion expansion coefficients of the model ap-
be large for a plateau region to even exist, we will neglect proachthe Rouse result. Note that while the pabbafith the
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third derivative is zero for the Rouse result because its spring “persistence length”. For the FJC the generalized flexibility

is Hookean, that term vanishes for the model as oo be- length is proportional to the Kuhn length.
cause of the v pre-factor. The third derivative of the true To apply the framework presented i8ection 3to
polymer force—extension curven®t zero. the FENE force-law inEq. (92) we will let Agye =

Now we turn to a discussion of how using a bestfit  kg7/(Huuef) = ax.true/3 SO that the “exact” polymer F-E
criteria affects the rheological behavior as the polymer is behavior is

more finely discretized. In particular let us look more closely Gron
tot)p

at the low-force criteria. The low-force criteria is such that £ = T G2 (94)

— \Ztot
d 3 P

lim —(z = lim —(z 90

f>00f etotim fs00f oty (%0) This directly motivates the choice for the spring force-law

If we put this result intoEgs. (76) and (77we see that kgT r/e

the zero-shear viscosity equals the Rouse result exactly. Thefsprindr) = (A_eff) 1_ (r/0)2 (99)

zero-shear first normal stress coefficient will be close to the

Rouse result but will deviate slightly. This is because the WhereAes is defined in the expected way as

third derivative is non-zero and is not infinite. Note that T

the third derivative is also not equal to the third derivative Aoq = —2— — ZK.eff (96)

of the true polymer force—extension curve. The equality and Heif £ 3

approximate equality with the Rouse results holds only upto it s then clear that the dimensionless energy for the FENE
a critical N, at which point the low-force criterion diverges spring becomes

(Eq. (61): L
Nimax = 200 + 1 1)  Uen(?) = — In(L - 7) (97)

and all formulae fromSection 3follow directly. However,
5. Examples of other force-laws while interpreting the previous discussion it must be kept in
mind that the parameters dependentAux and Ayye Can
Thus far whenever a particular spring force-law has been have slightly different physical interpretations depending on
needed the Marko and Siggia interpolation formula has beenthe exact force-law used. What does not change is the con-
used. It has been noted that the general formula will work cept that those parameters consist of generalized flexibility
for other force laws. Here we will explicitly show how the lengths. Thus, for example,still must be large in order for
formulae can be made specific for two important force-laws the bead-spring model to behave like the true polymer.

commonly used in modelling polymer rheology. For the FENE force-law many of the calculations (inte-
grals) can be performed analytically. In particular, the F-E
5.1. FENE force-law behavior is

The first force-law we will consider is the FENE force-  (3,,0m = I"L(Af”) k= S+ /A
law, which is a widely used approximation to the behavior L (fv) 2
of a freely jointed chain (FJC). The FENE force-law can be
written in general as

(98)

wherel;(x) is the modified Bessel function of the first kind,
orderk. The moments can also be calculated analytically in

HE(Ztot)p ©92) terms of the Beta function, or equivalently Gamma functions:

1- {Gton)p o T((n+3)2)  TB/2+v/(20) +1)
In the sense that the FENE force-law is an approximation to (leq = r'3/2) r{((n+3)/2)+v/(20)+ 1)
the true force-law for a FJC, the spring constéhis given
in terms of the length of a rod in the FJC, or Kuhn length
as[4] o n+1nr-21)---3)

Y ¥ lea= (n+3+v/N)n+1+v/2) - (5+v/A)

H= (93)
Lak

f=

(99)

For even values of > 2, they take an even simpler form:

(100)

In order to more easily compare these results with the large
CombiningEgs. (92) and (93)the appropriate scale for the body of literature on FENE springs, we will relate the com-
force iskgT/ak, or for the general cas®¢. The general for- mon FENE notation to the notation used here. Typically the
malism presented earlier scaled the forcé®¥/ Atue Where FENE force-law is written aBl]

Ayrye Was called the true persistence length. Now it is clear

that it would be more appropriate to call e a generalized fiit(Q) = _ HwQ (101)
flexibility length, and only for the WLC is it equal to the 1-(Q/00)?
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Comparingegs. (95) and (10yve see the following equali-
ties in notation:

O—r (102)
0, — ¢ (103)
Hiit — Heff (104)

The other very important parameter in the FENE notation is
b defined by

H; 2
h— lit O (105)
keT
which can be related to our notation as
V
h—> — 106
- = (106)

For comparison with the WLC results presented thus far,
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Fig. 17. Calculation of for the three different criteria at different levels
of coarse-graining for the FENE potential. The criteria shown are low-force

we here present the corresponding results for the FENE (dash-dot), half-extension (dashed), and high-force (dotted). Inset: Expanded

model. InFig. 16we show the F—E behavior of FENE bead-
spring chains as the level of coarse-grainingis changed.
We see that the FENE result is qualitatively similar to the
WLC result inFig. 3.

For the FENE force-lavit can also be taken greater than
one to obtain a better behavior from the moégd. 17shows
the “best-fit"A versus Yv for each of the three criteria intro-
duced inSection 3.6 The most obvious difference from the
WLC resultinFig. 5is that for the FENE chain the high-force
criterion curve deviates frorh = 1. In fact, the high-force
criterion curve diverges similar to the other criteria. We will

view showing the divergence of the criteria.

we compare the force—extension behavior of the three cri-
teria for v = 20. While we see a qualitative match for the
relative error with the Marko and Siggia resutig. 6), the
error is greatly reduced. Thus for the FENE force-law simply
adjusting the effective flexibility length does a much better
job at reproducing the true polymer behavior over the entire
force range. This is due to the form of the high-extension
divergence of the force-law. The trade-off for this improved
performance is that the rangeirthat this correction-factor

see that this high-force divergence is because of the weakeican be used is reduced.

divergence of the FENE force-law approaching full exten-
sion compared to the WLC force-law. This divergence of the
high-force criteria also causes the beskfdurves to form a
relatively narrow strip bounding the choices forin Fig. 18

The high-force and low-force best-fitcurves can be cal-
culated exactly. Recall that the low-force criterion is that the
slope at zero force matches the true polymer slope. Using
Eqg. (39)for the slope, and usingq. (100)for the second

. T T T ] T — T
)] SRR —== 0.02}
o E T E [
o F e ] )
= E e ] 5 T
© 01k e 3 = 0.00
L F /! ] © [ Pid 7 ]
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Fig. 16. Calculation of the relative error of the mean fractional extension,
((ZtotYm — (Ztot)p)/ (Ztot)p, TOr @ bead-spring model as the level of coarse-
graining changes. The FENE potential was used with 1. The curves
correspond ta = 400 (dashed)y = 20 (dotted), and = 10 (dash-dot).

Fig. 18. Calculation of the relative error of the mean fractional exten-
sion, (Ztot)m — (Ztot)p)/ (Zrot)p, fOr @ bead-spring model for different best
fit criteria. The FENE potential was used with= 20. The curves corre-
spond tor = 1.33 (low-force, dotted)r = 1.30 (half-extension, dashed),

Inset: the mean fractional extension of the models compared with the “true andx = 1.25 (high-force, dash-dot). Inset: the mean fractional extension of

polymer” (solid line,Eq. (94).

the models compared with the “true polymer” (solid lify. (94).
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moment, we find that the low-force criteria curve is given by T T T

S 10 | S
A= (]_07) 10 i St N
1-5/v

from which it is easy to see the curve diverges’at= 5.
This could also have been seen from the general low-force (2

divergence formula ieq. (61)sinceg, = 1/2 for the FENE L
. . . — s
force-law. The high-force curve is calculated from the high- & o
force expansion of the fractional extension: 0.1 E
- fo0 v/A+ 1 i ]
(Ztothm "~ 11— — +0|— (108) L S
2vf f - =y
Since the true polymer has a high-force expansion of
R fooo 1 1
Ztotp "~ 1= =+0|— (109) _ . . :
2f f Fig. 19. Calculation of the longitudinal root-mean-squared fluctuations at
’ different levels of coarse-graining. The FENE potential was usedwith
the high-force criteria curve is given by 1. The curves correspond to= 400 (dashed)y = 20 (dotted), and> =
10 (dash-dot). Inset: detailed look at the high-force limit Witp solid lines
3= 1 (110) corresponding to the asymptotic behavior/{(+ 4)/(2v))Y2(1/ f).
T 1—4/y

with a divergence at* = 4. This can also be derived from be calculated exactly. Using the expression for the second
the general divergence criteriakg. (58) By comparing the moment of the FENE force-law,
expansion
A im (5 i ) = 57
A—3 n Al f=o0 1- i (111) o af tot/m 5+ v/x
V¥ f((Zot)p)  Lv* f((Ztot) p) v* f

with the expansion of the true polymer, we can verify that
the high-force criteria diverges gt = 4. The half-extension
divergence is found by solving the equation

1_ 3 1
2 20°/3 ' L(2v*/3)

which has a solutiom™ = 4.6551.

In addition to the F—E behavior of the FENE chains, we
should look at the fluctuations, as done for the WLC in
Section 3.7InFigs. 19 and 2@ve show the plots of the scaled
root-mean-squared fluctuations for different levels of coarse- 1.0
graining, v. From the high-force expansion of the FENE
force—extension behavior iBqg. (108)we can calculate the .
high-force scaling of the fluctuations:

i A+4\2 1 1
a¥2s3 T2 <"/—+) Z+0(5 (113)
2v f f

(115)

We see that the expansion of this slope for largbould just

be the Taylor expansion. Calculating the coefficiedtsys-

ing the FENE force-law shows this explicitly. The parameters
of the FENE force-law are

(112)

NI

¢2 = (116)

X

al’?§

e 1 1
011/25)(? ~ T/z‘i‘o(W) (114) (020 ) N | R |
0.1 1.0 10.0

f

We can also analyze the limiting behavior fr&@action 3.8n f

terms of the FENE force-law. Because the FENE force-law _ _ , ,

is an odd function of its argument the general expansion of Fig. 20. Calculation ofthe?rz.ansverse root-mean-squared fluctuatl.ons at dif-
S S . ferent levels of coarse-graining. The FENE potential was usedwthl.

the F-E behavior in the largeimit can additionally be used  the curves correspond to= 400 (dashed)y, = 20 (dotted), and = 10

at zero force. We can examine in detail the expansion of the (dash-dot). The solid line corresponds to the high-force asymptotic behav-

zero-force slopeHq. (39) because the zero-force slope can ior, 1/(/%).
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0, ieven

hi = 1 117

’ g iodd (1) 3

1 L

which gives coefficients i
0, i odd = |

di=1{/_5\12 (118) <
<7) , ieven 0.1

Since this is the geometric series, the convergence is well-

known. Note also that the zero-one Bdef(l/v) gives the

exact result. L L
Because we have simple formulae for the moments of the 1 10 100

FENE force-law, the retarded-motion expansion coefficients N

reduce to simple formulae. In fact, they correctly reduce to Fig. 22. Zero-shear first normal stress coefficient of FENE bead-spring

the previous result by Wiest and Tanig}: chains as the number of effective persistence lengths represented by each
spring,v/A, is held constant. The curves correspond/to= oo (solid line),
Fon = (N + 1) < v ) (119) v/ = 400 (dotted)y/A = 100 (dashed), ang/ = 10 (dash-dot).
P N v/A+5

discretized too finely. This is due to error in representing the
size of the coil and the extension of polymer segments.

- V(N + 1) [_12(1\72 +1)

_ 2
b2 = ST BRI — N2 | Netn) TN 7]

5.2. Infinitely stiff Fraenkel force-law/FJC
(120)
The other force-law we consider explicitly is the infinitely

We can apply the same methodology used to analyzeiff Fraenkel force-law, which is equivalent to the FJC.
the zero Weissenberg number rheology of the WLC to the Thg force-law differs from the others considered because
FENE bead-spring chairfigs. 21 and 22how the first ¢ spring potentias notobtained by examining the force—
two retarded-motion expansion coefficients when the level of gytension behavior of a true polymer. In fact, this forcedaw
coarse-grainingy, is held constanfigs. 23 and 26howthe 5 model of a “true polymer” (the FIC or random walk model).
coefficients as the polymer is discretized finer and finer. We 1y, the previous discussions of the comparison between the
see the same qualitative trends as with the WLC coefficients. bead-spring model and the true polymer do not apply for this

It the number of beads is small, there is error in the rheology 4rce-jlaw. However, we can still use the formulae developed
due to the drag being exerted only at the beads, instead of; caiculate the F~E and rheological behavior of this true
along a continuous contour. However, if the polymer is being polymer.

more finely discretized, then there is error if the polymer is

= ay
< a
= > KL
= ~.
S . :

il P L PR SR SR T Y

1 10 100
N

1 10 100

Fig. 23. Polymer contribution to the zero-shear viscosity of FENE bead-
Fig. 21. Polymer contribution to the zero-shear viscosity of FENE bead- spring chains as the number of effective persistence lengths in the total
spring chains as the number of effective persistence lengths represented byolymer contourg/, is held constant. The curves correspondrta =
each springy/2, is held constant. The curves correspond/to = oo (solid oo (solid line),a/1 = 4000 (dotted)q/1. = 400 (dashed), and/A = 100
line), v/A = 400 (dotted)p/A = 100 (dashed), and/x = 10 (dash-dot). (dash-dot).
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10 100
JV
Fig. 24. Zero-shear first normal stress coefficient of FENE bead-spring
chains as the number of effective persistence lengths in the total polymer con-

tour,a/A, is held constant. The curves correspondtd = oo (solid line),
a/) = 4000 (dotted)e/A = 400 (dashed), and/A = 100 (dash-dot).

The Fraenkel force-law is a Hookean force-law, but with

a minimum energy at a non-zero extension:

fspring(") = Hp(r — ak)

He is the spring constant of the Fraenkel spring, agdk the
position of minimum energy. We use the symbglbecause
for the infinitely stiff Fraenkel spring this minimum corre-
sponds to the Kuhn length in the FJC. After integrating, the
spring potential becomes

(121)

Uet(r) = 3 He(r — ax)? (122)

For the infinitely stiff modelHr — oo, the Boltzmann factor
becomes a Dirac delta function:

exp[%f;(r)] — §(r — ak)

Furthermore, in this limit the contour length of the model,
L, becomesVsak, so the length of a spring, becomesik .
Since the choice oflye is arbitrary, we will take it to be the
Kuhn lengthak. Thus in dimensionless form

(123)

exp|:_7v z}eﬁ(;)] S 8F—1) (124)

v=1 (125)

Using these expressionsh. (25)for the F—E behavior, we

see that

) -1 9 LA

(Ztot)m = {? + IY; In (/o d7 7 sinh[ f7] 8(F — 1))}
=L(f) (126)

which we already know is the F-E behavior of the FJC. Note
that this is the F—E behavior fanyinteger number of springs
(Kuhn lengths). Even singlerod of a FJC has the Langevin
function for its F—E behavior. Also note that for the Fraenkel

P.T. Underhill, P.S. Doyle / J. Non-Newtonian Fluid Mech. 122 (2004) 3-31

spring force-law, the upper limit of integration shoulddxe
instead of 1. However, for the infinitely stiff case, replacing
theoo by 1 causes no change to the F—E behavior.

To calculate the rheological properties, aSaction 4we
need to calculate the moments, which are

(Vn>eq= 1

The first two retarded-motion expansion coefficients then be-
come

(127)

. N+1

no.p = 3—N (128)

. N+1 —12(N? + 1) 9

by = 2N2+7 129
27 BaN(N — 1) [ sy ot (129)

which are the well-known results for the infinitely stiff
Fraenkel chain (equivalent to the FJ&). By taking the ratio

of the two coefficients, we can calculate a relaxation time for
the chain:

6. Polymer Ensemble Transformation method

—12(N%+ 1)
5N

_ Y10 _ ta
210,p 180kgT

+ 2N2+7} (130)

Recall that previously the spring force-law was chosen by
examining the force—extension behavior of the true polymer
in the constant force ensemble, as show8eations 3.4 and
5.1 The mean fractionat-projection of the polymer was
replaced by the fractional radial coordinate of the spring.
In this section we examine a new method for determining
the spring force-law, which we term the Polymer Ensemble
Transformation (PET) method. This method uses the constant
extension behavior of the true polymer to determine the spring
force-law. The bead-spring model is then able to reproduce
the behavior of the true polymer in both the constant extension
and constant force ensembles. Reproducing the behavior in
the constant force ensemble is critical because we saw in
Section 4hat the retarded-motion coefficients can be written
in terms of the force—extension behavior in the constant force
ensemble.

6.1. Physical interpretation

The method of using the constant extension ensemble be-
havior to obtain a spring force-law is illustratedrig. 25 In
the figure, a polymer is shown in the constant force ensemble.
The goal is to determine a spring force-law that can model
the polymer behavior at a given set of reference points (de-
picted by black circles in the figure), while coarse-graining
out the details of the polymer between the reference points.
To accomplish this, the segment of polymer to be modelled
is placed in the constant extension ensemble, and the average
external force required to keep the polymer at a fixed exten-
sion is calculated. The spring force in the model is taken to
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By interchanging the order of integration, we obtain

L zn=[ [+

fixed {configuration$
—U + f - Ruot
ensemble X exp|:—f 3(r — Riot) dVdr (134)
transformation ksT
The force term can be taken out of the configuration integral
(\/\/? > (f) because of the delta function so that
| |
/ i i \ fr
fixed :% r —>: fixed Z(f) = f £2(r) exp[kB—T] dr (135)
| I
Fig. 25. Physical interpretation of Polymer Ensemble Transformation (PET) where
method. Above: the true polymer in the constant force ensemble. The be- U
havior is to be modelled between reference points (black circles). Below: Q(r) = / .. / exp| — | 8(r — Ri)dV (136)
the portion of true polymer between reference points is transformed to the ) J ksT
constant extension ensemble to calculate the appropriate spring force-law. {configuration$

is the constant extension ensemble partition function. How-

be equal to this average force: ever, we see that this looks similar to the partition function
of a single dumbbell model:
fspring(r) = (f)(r) (131)
—Us(r) for
, Z(f)= [ exp exp| —— | dr (137)
If the reference points on the true polymer correspond to ksT ksT

free hinges (as in the FJC with the reference points taken at ) .
the joints), then the spring model defined in this way repro- Thus a single dumbbell model will have the exact same par-

duces exactly the force—extension behavior of the true poly- tition function as the true polymer (and thus the exact same

mer. However, for other polymers such as the WLC, there is equilibrium behavior) if the spring_potentia_l energy is taken
coupling across the reference points. Therefore this prelim- O™ the constant extension partition function as

inary bead-spring model cannot reproduce the true polymer .

behavior for this class of polymers. We believe that this error Us(r) = —keT In 22(r) (138)

can be approximately accounted for by introducing bending  Here we illustrated how the spring potential can be derived
potentials between springs, however leave this topic for fu- for a single dumbbell. However, a similar procedure can be
ture research. used to derive bead-spring chains. All of the spring coordi-
nates can be introduced into the partition function by using
Dirac delta functions (as ikq. (133). For example, if three

6.2. Mathematical justification - - ) i
springs were desired the transformation would give

To derive that the spring force-lamustbe taken from the
constant extension ensemble in order to reproduce the force-2(f) = /Q(rl, ra, r3) exp[
extension behavior in the constant force ensemble, we start
by writing down the partition function in the constant force x drydradrs (139)
ensemble

f-(ri+r +r3)}
keT

wherer; is the spring connector vector of springThe po-
U ‘R i i
exp[ +f tot} qv (132) tential energy of the spring system would then be

kseT
{configuration} Us(ry, r2, r3) = —kgT In $2(rq, ra, r3) (140)

2(f) =

where the force has not necessarily been taken to lie in theNote that the total potential energy of the spring system is
z-direction. We can introduce a new variabtethrough the in general not separable into contributions from each spring,

use of a Dirac delta function: and thus includes coupling between springs.
We saw inEg. (135)how the constant force and constant
2(f) = o exp[_U +f- Rtot} extension partition_funct_ion are related. Th_is is exact_ly anal-
kgT ogous to the relationship between the microcanonical and
{configuration$ canonical ensembles, as well as between other ensembles

[23,33] If we look at the analytic continuation of the con-

X / 8(r — Rtot) drdV (133) stant force partition function onto the imaginary force axis,
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we find that it is the Fourier transform of the constant exten- 20
sion partition function: 15K

.fspri ng
f v.\pring

w S
T

Z(ikgTk) = / 2(r) explik - r] dr (141)
. . . 0 A
Thus, the constant extension ensemble partition functioncan 00 02 04 06 08 10
be calculated from the constant force ensemble partition func- P P
tion as ’

1 d ;aEC
Q(r) = (—) /Z(ikBTk) exp[—ik - r] dk (142) 5 10F 10¢
2w o=
st st
whered is the dimensionality of the vectors. This means that of.. 0
there is a one-to-one correspondence between the two par 00 02 00 02 04 06 08 10

tition functions. If we produce a bead-spring chain with the " "
same constant force er!se.rnble partition function as the trgeFig. 26. Comparison of the spring force-law chosen from the Random Walk
polymer, then necessarily it has the same constant extensiorspring (RWS) model (dotted) and chosen from the constant force ensemble
ensemble partition function as the true polymer. Though this force—extension behavior of the true polymer (the inverse Langevin function,

is obvious for a single dumbbell model, it is not obvious for Zf’fpd ””te)-l Tthe spring foécte is g'(oned @‘I%r;{i)nf éé?ringAtrue_/khBt)T- Thj
: . . ifferent plots correspond to= 2 (upper left),y = 3 (upper right)y =
a multiple spring chain. (lower left), andv = 10 (lower right).

6.3. Application to FJC/Random Walk Spring model The spring force is calculated as the derivative of the spring
potential:
As an example of this new method, we apply itto the freely
jointed chain model. The result, which we call the Random fsprindr) = —ksT
Walk Spring (RWS) model, is a set of spring forces that allow 3 1 o sin@Auue) 1°
for the modelling of a FIC with a bead-spring chairaay x —1In {—/ usin(ur) [—} du}
level of discretization while still reproducing the entire force— 0
extension behavior. (145)
We have seen in the previous sections that in order to

model the FJC with a bead-spring chain, we must choose theByt coqstrtéct;]on .thlsf{Eo?:ilcrfpr_octtjuceé?:gtlyztge force—
spring potential from the constant extension ensemble parti-ex ensionbehaviorottne orintegem rig. Jowe com-

tion function. This can be calculated fraeg. (136)directly pare this spring force-law with the inverse Langevin function

for the FJC by taking the Fourier transform of both sides, and for dlffe_rent v_alues 0b. quv =2 we see the RWS fo_rce-ls_;lw
theninverting the transform. Alternatively, the partition func- Increasing W'th decreasmg extension, e_md even diverging at
tion can be calculated froiq. (142)since the constant force Zero exten_smn, but also with a d|scqnt|nuous d|vergence at
ensemble partition function is known. The methods obviously full extension to prevent over-extension. By performing the
give the same result, which is that the constant extension en_lntegratlon forv = 2itis easy to show

semble partition function is proportional to the probability kgT

density of a three dimensional random walk, given by the fsping= ——. r<¢ (146)
well-known Rayleigh’s formulg4]. If the generalized flexi- . ) . ]
bility length is taken to be the Kuhn lengthyue = ax, then Ve also show imppendix Chow one can verify that this

v corresponds to the number of Kuhn lengths representedforce—law gives the required F-E behavior of the FIJC. For

by each spring. In our notation the constant force ensemble’ = 3 the RWS model produces another interesting force-
partition function using Rayleigh’s formula is law. Up to one-third extension, the force is zero. At one-third

extension, the force discontinuously jumps to a finite value.

uAtrue

1/ | sin@Ague) 1" q 143 The force-law decreases to a minimum then increases up to a
§2(r) = e sin(ur) 1 A U (143) divergence at full extension. The functional form for the case
ofv=3is

where the integral represents an inverse Fourier transform. 3 TA ¢
We can therefore write the spring potential energy in the Ran- Fopring= &, Zcr <yt (147)
dom Walk Spring model, valid for integer as (BAue—r)r 3

Sin@Auue) 1" Forv > 3the RW$ model spring force-laws are 'continuous.

—} du} However,v = 4 still shows notable characteristics. At half
u Atrue extension this force-law has a discontinuous first derivative,

(144) and the force has a non-zero limit at zero extension. This

Us(r) = —kgT'In {;_L/:O u sin(ur) [
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force-law is given by ergy. At intermediate levels of discretization for models such
T as the WLC, a simple bending potential may also be able
—B, O<r< é to reproduce the true polymer behavior. It should be noted
fspring= BArue — 3r (148)  theseissues of coupling and bending potentials do not occur
P keT(@Awe+1) _ in the single dumbbell model, and the PET method always
(AAyue—r)r 2 =7 reproduces the true polymer behavior.

Recall that the inverse Langevin function is the constant
force ensemble force—extension behavior of the true polymer.; - ~gncjusion
Therefore, the inverse Langevin function would be the spring

force-law used inthe “conventional” method of usingthe con- |, yhis paper we have used statistical mechanics to system-
stant force ensemble to obtain the spring force-law. The dlfj atically analyze the coarse-graining of polymers into bead-
ferences between the RWS model and the inverse Langeving i chains. In this way we could avoid the intrinsic stochas-
function illustrate why the “conventional” method cannot be tic noise of Brownian dynamics, identify the relevant dimen-
used to model short segments of the FJC (smalDnly for  gjonjess groups, and examine limiting and universal behavior.
v — oo are the constant force and constant extension ensem- o began by studying the force—extension behavior of the
bles equivalent, in Which_case the inverse Langevin function bead-spring chains. The analysis was then continued to rheo-
becomes the correct spring force-law. logical behavior by examining the retarded-motion expansion
coefficients, which describe the zero Weissenberg number re-
6.4. Implementation of model sponse. We thenintroduced a new method for coarse-graining
called the Polymer Ensemble Transformation (PET) method
There exist some issues concerning the implementation ofwhich uses the constant extension ensemble to determine the
models derived from the PET method that warrant mention- spring force-law.
ing. First, the PET method can produce spring force-laws that  The analysis of the force—extension behavior revealed that,
are discontinuous. This presents no problem for analytic tech-pecause the springs are decoupled, the response depended
nigues such as statistical mechanics. However, if the springonly on the number of flexibility lengths represented by each
force-laws are implemented in techniques such as Brownianspring,v. This necessarily means that any deviation between
dynamics, very steep force-laws must be used to accuratelythe behavior of the spring model and the true polymer cannot
represent the needed discontinuity. This is the case for thepe due to the number of free hinges introduced. Instead we
RWS model ifv equals one, two, or three. Note however that showed through direct visualization of the phase space that
thev = 1 case is in fact the case of an infinitely stiff Fraenkel , acts analogously to an inverse temperature, controlling the
spring. This case, including the use of a corrective potential magnitude of fluctuations in phase space.
force, has been discussed previoy2l]. We also examined quantitatively the use of an effective
Second, the use of the PET method requires the force—flexibility length to partially correct the force—extension be-
extension curve for the finite-length polymer of interest. This havior. The corrected curve is not uniformly valid over the
was trivial for the FJC case, butis not trivial for models such entire force range leading to multiple possible choices for the
as the WLC. Only recently have calculations been performed effective flexibility length. However, we were able to place
of the force—extension behavior of finite-length worm-like bounds on the choices and examine these choices. Variability
chains[34,35] in behavior within these bounds depends on the form of the
Finally, we consider a little closer the possible coupling spring force-law; the Marko and Siggia potential has larger
across reference pointskig. 25(depicted by black circles).  variability than the FENE potential. This is mainly due to the
While we leave a detailed analysis for future research, we difference in the divergence of the potentials at high exten-
consider two limits here for the case of the worm-like chain. In sjon.
the limit of an infinite number of persistence lengths between  To study the zero Weissenberg number rheology we cal-
each reference point, we know that no bending potential is culated the first two retarded-motion expansion coefficients
needed. In the limit of zero persistence lengths between eactfor bead-spring chains witarbitrary spring force-law. The
reference point, the polymer acts like a rigid rod. In this limit - contribution due to the spring force-law was separated from

a bending potential of the contribution due to the number of springs chained to-
kaTA gether. In contrast to the force—extension behavior the zero
Ubend) = %’92 (149) Weissenberg number rheology illustrates a dependence on

the number of beads even if the number of flexibility lengths
whered is the angle between rods aadhe length of a rod per spring is held constant. We attribute this error to the drag
gives the exact WLC model. Note that this bending energy being exerted only on the beads, instead of along a continuous
could also be used in the limit of an infinite number of persis- contour. A plateau region in which both the drag error and
tence lengths between reference points because in that limitdiscretization error are small was identified, and the position
Atue/t — 0, we recover the needed absence of bending en-and size of that plateau wepeedicted
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Finally, we reexamined how ttferm of the spring poten- The transverse fluctuations are calculated by writing down
tial is chosen. The Polymer Ensemble Transformation (PET) explicitly the prescribed average. We first note that
method was introduced and justified. This new method for 2
coarse-graining polymers into bead-spring chains uses the<xt°t) = Ns(x%) (A-3)
force—extension behavior of the true polymer in the constant wherex is thex-coordinate of a single spring because all the

extension ensemble as the spring force-law. It is shown thatcross-terms between springs vanish. The average over the
this method can give the exact force—extension behavior for single spring is
arbitrary level of discretizatiorf.here is nothing intrinsically
incorrect about using springs to model short segments of a (y2) — 1 /XZ exp[M} d3r (A.4)
polymer The conventional spring force-laws fail at high dis- Zs ksT
cretization because they are taken from the constant force enyye then write the integral explicitly in spherical coordinates:
semble. The two ensembles are only equivalent if the polymer
has an infinite number of flexibility lengths. The PET method (2 — 1. / r cof ¢ sin® 6 exp[ —Us() + fr COS@}
was applied to the freely jointed chain polymer, resulting in Zs ksT
the Random Walk Spring (RWS) model. The RWS model is x dr do dg (A.5)
a set of spring force-laws that can exactly model the force— ] ] ) _
extension behavior of the freely jointed chain at any level of We can rewrite th@-integral using the relation
discretization. 2 1 (20

With this work we have begun along the path towards a rig- coSgpdp =7 = > / do (A.6)
orous understanding of coarse-graining, with particular appli- 0
cation to modelling polymers with bead-spring chains. It has We can rewrite thé-integral by integrating by parts once:
not escaped our notice that the analysis presented here could frcosf

/ sino exp[ } do

be continued to study coarse-graining in transient, strong

flows and to consider excluded volume and hydrodynamic /° B
i ions. 2kgT [T . cosf
Interactions - =B / sind cosH exp fr do (A.7)
frJo ksT

Using these relations we see that
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The resulting integral is simply the averageoordinate of a

single spring:
Appendix A. Fluctuations in force—extension 2y _ ’ﬂ A9
behavior (x%) 7 (2) (A.9)

. - o Thez-coordinate of the whole chain is given by
This Appendix discusses the derivation of the fluctua-

tions in the force—extension behavior for bead-spring chains, (ztot) = Ns(z) (A.10)
Egs. (34) and (35)Recall that the average extension of the

SN which combined witlEq. (A.9)gives the transverse fluctua-
chain is calculated as

tion for the whole chain:

1 U kgT
(ztot) = Zu // Ztot eXp[g—Tthm] dv (A.1) (xfo) = T<Zt0t> (A.11)

(configuration$ Non-dimensionalizing gives the desired result for the trans-

. . L , verse fluctuations.
Using the quotient rule, the derivative with respectto the force

can be calculated:
) Appendix B. Retarded-motion expansion coefficients

1 2
—{ztot) = ——={(Ztot — (2 A.2
of ot kBT<( tot = {z100))") (A-2) This Appendix discusses the derivation of the retarded-

motion coefficients for bead-spring chairsgs. (64) and
Non-dimensionalizing gives the desired result for the longi- (65). This is a specific application of the general bead-spring-
tudinal fluctuations. rod chain framework of Bird et al4]. The analysis is similar
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to the FENE chain result by Wiest and Tanfgr butis much To use this probability density function to calculate the rheo-
more general because it does not assume a form for the sprindogical behavior we use the non-equilibrium part of the stress
force-law. tensor in Giesekus form:

We consider the behavior of the bead-spring chains in

steady, homogenous potential flow for which the velocity T = —2nsk + Tp (B.10)
gradient tensorg, is symmetric and constant. In this case,
the chain probability density function is given by the equi- —npt
librium statistical mechanics result with an effective energy 7, = Tp K- <Z Cijri rj> + <Z Cijri rj> K
due to the flowf4] : ij ij

1 : U (B.11)
v = 7 &XP e T Z Cixke s rjri = kel (B.1) The probability density function ifEq. (B.9)is used to

J perform the prescribed averages and obtain the stress tensor

In this expression, the matrig ; is a symmetric §f — 1) x up to second order il. To write the expression for the stress

(N — 1) matrix called the Kramers matrix and is given by ~ te€nsor in terms of moments of the spring force distribution,
it must be used that

INZR) i < k 14
Cik = k(}\l,v_i) B - (B.2) (rir ;rmrk)eq = 8ij8 jmSmi 75 (rMeq(88 + 1 + 17),
MY J) < j
N ’ f—
—8i78mk (8 jm — 1)5(r?)3,98.
the vectorr; represents the connector vector of sprjing/ 1 oo
is the total potential energy of the springs, and —8im k(8 jm — 1)5(r2)5q T,
—8ik8 m (8 — D5 (r)] (8.12)

¢ Y N-1
J= | exp| m— E Cuk.rirp,———1|d B.3
/ P 2kgT 7 - Ty Tk ksT r B3 wherel andl are fourth-order isotropic tensors defined with

Cartesian componenf4]
Note that sums over roman indices are from 1IN0« 1). We

— T —
can rewrite the probability density in terms of the equilibrium lmnpg = dmqdnp- Lnnpg = Smp dng (B.13)
(k = 0) values: Relations involving the sum over the Kramers matrix must
also be used:
J.
x[/:%q?exp %ZCjklc:rjrk (B.4) ZC _N%2-1 g_N4—l
B jk - i - 6 ’ i 1~ 30N b
1 -U 2 2
= — exp| — B.5 2 (N°—1)(@2N°+7)
Veq Jeq p[kBT} (B.5) Z CZ = 180 (B.14)
ij
Jeq= / exp[k_—l;] drV-1 (B.6) Using these relations and performing the averagesin the stress
B

tensor we find that up to second ordewin

We now expand} in the limit of smallk. In order to expand
T= 2{ s

the ratioJeq/J, We make use of the relation

N2-1
+ —an( 36 )("2>eq} K

(rjrideq = 8k 3(r%)eqd (B.7)

np [ [((Meq  (Faq) (N4 —1
wherer; represents the magnitude of the veatprand we " keT 15 9 30N
have dropped the subscript within the average since the av-

erage does not depend on the value of the subscript. Further- (rz)gq (N? —1)(2N%2 +7)
more, for an incompressible fluid Sl e ( 180 ) (B.15)
k8=t =0 (B.8) However, the retarded-motion expansion can also be used to

calculate the stress tensor in steady, homogeneous potential

Using these relations, the probability density function to first flow up to second order ii, for which

order is
T = —2bik + 4bok - k — 4b11K - K (B.16)

¢ .
¥ =1eqyl+ 2%kaT Z Cjkke 1Ty (B.9) Additionally we know from Bird et al[4] that because we
Jk are considering bead-spring chains which do not have rigid
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constraints and we have neglected hydrodynamic interaction,

b11 is zero. Thus, from matchinggs. (B.15) and (B.16)e

find the desired formulae for the retarded-motion expansion
coefficients in terms of the moments of the spring force dis-
tribution.

Appendix C. Example of the behavior of the Random
Walk Spring model

This Appendix discusses how one can calculate the be-
havior of the Random Walk Spring (RWS) model fo= 2
and verify that it correctly models the freely jointed chain.
Thus, we want to calculate the force—extension behavior in
the constant force ensemble of a bead-spring chain with

ksT
Foprindr) = BT r< v=2 (C.1)
This is done using the methodology presente8éction 3.4
and shown irEq. (25) By integrating the spring force-law,
and choosing a convenient arbitrary additive constant, we find
that

,
Uett(r) = kg T In <Z) (C.2)
This gives a Boltzmann factor of

-V oA . . 1
exp[T Ueff(}’)] =exp[—In(®)] = = (C.3)
and a corresponding mean extension of
Cotm= 212+ 2 /ldA sinh[2/7] (C.4)
Ztot/m = 2 f af 0 r r .

After performing the integration of the hyperbolic sine, the
mean fractional extension becomes

o= 121 2 (eosh@) 1

(Ztot)m = 5 f 3f In Zf 2]? (C.5)
. _1[-2  2sinh2f)

(Ztot)m = > ]? + —COSh(j) — 1 (C.6)

By making use of trigonometric identities, we can simplify
this expression to

-1
f
This example has illustrated how to use a spring force-law
from the RWS model. In particular, we have shown explicitly
that if one wants to model a freely jointed chain with each

spring representing two Kuhn lengths £ 2), one should

choose the spring force-law showrtq. (146)ecause it has
a force—extension behavior equal to the Langevin function.

Zsinh(f) cosh(f)

2sin(f) £

(Ztothm = (C.7)
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