PHYSICAL REVIEW E 76, 021501 (2007)

Statistical and sampling issues when using multiple particle tracking
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Video microscopy can be used to simultaneously track several microparticles embedded in a complex
material. The trajectories are used to extract a sample of displacements at random locations in the material.
From this sample, averaged quantities characterizing the dynamics of the probes are calculated to evaluate
structural and/or mechanical properties of the assessed material. However, the sampling of measured displace-
ments in heterogeneous systems is singular because the volume of observation with video microscopy is finite.
By carefully characterizing the sampling design in the experimental output of the multiple particle tracking
technique, we derive estimators for the mean and variance of the probes’ dynamics that are independent of the
peculiar statistical characteristics. We expose stringent tests of these estimators using simulated and experi-
mental complex systems with a known heterogeneous structure. Up to a certain fundamental limitation, which
we characterize through a material degree of sampling by the embedded probe tracking, these estimators can be
applied to quantify the heterogeneity of a material, providing an original and intelligible kind of information on
complex fluid properties. More generally, we show that the precise assessment of the statistics in the multiple
particle tracking output sample of observations is essential in order to provide accurate unbiased

measurements.
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INTRODUCTION

Soft matter scientists have expressed an increasing inter-
est in resolving the structure of complex fluids at a micron-
size length scale. This interest is justified by the implication
of the spatial micro-organization of the components of a
complex material in its transport, rheological, and optical
properties at equilibrium (see Ref. [1] and references
therein), as well as in its eventual kinetics of formation [2,3].
This microscale characterization has also been shown to be
particularly important in biological applications. From inter-
and intracellular transport phenomena to molecular motor
activity, the driving (or resisting) forces occur on micron and
submicron length scales, and cannot be inferred from bulk
measurements [4,5]. Also, in the biology framework, it has
been reported that the fate and behavior of single cells de-
pend on their local level of confinement [6] or the stiffness of
their microenvironment [7]. More strikingly, it has been re-
cently pointed out that, in general, systems with heteroge-
neous features can lead to apparently peculiar measurements,
themselves leading to incorrect interpretations [8]. Thus, ac-
cess to some measure of the spatial distribution of a given
material property (pore size, viscoelasticity, charge density,
etc.) provides fundamental information for the understanding
of a plethora of phenomena involved in complex fluid sci-
ence.

Consequently, the range of techniques available to
achieve these goals has been broadened over recent decades.
Direct observations of the structural elements and their orga-
nization are made possible thanks to a wide range of micros-
copy techniques. Light, fluorescence, electron, and atomic
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force microscopy are able to report a spatial mapping of the
complex fluid structure at various length scales. Microscopy
techniques provide us with two-dimensional pictures, and
high-order measurements of the spatial distribution of struc-
tures can eventually be made from the micrographs by using
image postprocessing techniques [9,10]. Three-dimensional
information can be obtained from modified versions of the
previous techniques (confocal and differential interference
contrast for optical microscopy, quick-freeze deep-etch
sample preparation for electron microscopy, etc.). Scattering
techniques such as neutron, x-ray, and light scattering, how-
ever, spatially average the structural features in the sample
and thus lose some information on the eventual heterogene-
1ty.

Rheology of a complex fluid is intimately related to its
network microstructure [11]. Compared to the morphological
measurements described above, inferring structural informa-
tion from rheological data is, however, a complicated inverse
problem (see, for example, [12] for an application of rheom-
etry to extract information on network heterogeneity). Direct
microrheological mapping of a material is possible by scan-
ning its surface with an atomic force microscope (see Ref.
[13] and references therein), and has been addressed recently
using a passive microrheology technique [14,15]. Passive
microrheology measures the response of a material to the
thermal motions of micron-sized probes. Under certain con-
ditions, it reports either the local mechanical properties or
the microstructure of the material in which the probes are
embedded. Video multiple particle tracking is a simple and
inexpensive microrheology technique that, to date, provides
the highest throughput of spatial microrheological sampling
of a material. It is a passive technique, where the thermal
fluctuations of about a hundred particles dispersed in the
material can be tracked simultaneously (see Ref. [16] for a
detailed description of the technique). Measurements are
usually fast, and the statistical errors are typically considered
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small because of the large amount of data collected. Its sim-
plicity and availability have made it very popular, and in the
last few years, investigation of microenvironments using
video multiple particle tracking has been performed on vari-
ous materials, such as actin systems, agarose gels, cells, and
DNA solutions [17-20]. In recent studies, it has been used to
extract the pore size distribution in cross-linked actin net-
works [21] and to characterize anisotropic gels of aligned
DNA [22]. We also recall at this point that the material het-
erogeneity can be a problem for microrheologists trying to
calculate bulk properties [23]. A method called two-point
microrheology that tentatively overcomes this problem has
recently been introduced using the cross correlation of the
paired motions of the probes [24,25]. However, local one-
point microrheology from video multiple particle tracking, as
used in this paper, remains the only available method that
can assess heterogeneity of a sample.

In this regard, the complex materials investigated with
microrheology are often known to be heterogeneous, such
that, depending on where the probe is located in the sample,
its motion will exhibit different dynamics [26]. In parallel,
due to the finite imaging volume, the amount of data col-
lected from a given particle is limited by the duration of its
residence in the volume of observation. The complexity
comes from the fact that the duration of the measured par-
ticle trajectory depends also on the local material properties.
For example, a model heterogeneous system can let some
particles travel throughout its porous structure, but will
tightly trap a subpopulation of particles in its smaller pores
(such dynamically bimodal behavior has been observed in
actin gels [27]). The trapped particles will be tracked for the
whole acquisition time, whereas free particles will leave the
volume of observation and/or enter—possibly several
times—during the same acquisition time. As a result, numer-
ous short trajectories will be extracted in regions of loose
meshing where particles are free to move, whereas only a
few long trajectories will be extracted from the signal of
trapped particles, even if the material hypothetically exhibits
the same amount of small and large pores. This toy model
example gives an immediate sense of the peculiar statistical
sampling of a heterogeneous material using this technique.
The sampling depends on both the size of the imaging vol-
ume and the probed material’s structure.

Ultimately, the distribution of material properties needs to
be characterized independently of the measurement tech-
nique. The distribution of a given property can be quantified
by its mean, variance, skewness, kurtosis, and other higher-
order moments or functions of moments, such as the non-
Gaussian parameters [28]. The latter have already been used
to quantify dynamical heterogeneity in colloidal systems
[29,30]. Through the dynamics of the probes, the material
heterogeneity is indirectly, but almost uniquely, quantified
(see subsequent sections). For example, the mean of the
probes’ individual mean-squared displacements, that is, the
ensemble-averaged mean-squared displacement, is usually
calculated by dividing in time individual trajectories into dis-
placements and accounting for all displacements in the same
way, disregarding the trajectory they were extracted from (a
simultaneous time and ensemble average is thus performed).
But the ensemble-averaged mean-squared displacement has
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also been calculated as the center of the individual mean-
squared displacement distribution obtained from prior time-
averaging calculations on the individual trajectories [31].
Similar calculations based on time-averaged estimations
from each probes’ trajectory were used in Refs. [14,32] to
perform qualitative analyses that circumvent, to a certain ex-
tent, the statistical limitations described in the previous para-
graph.

In the current literature, we found only two methods to
assess a material’s heterogeneity using multiple particle
tracking. In the first kind of heterogeneity study, bin partition
analysis based on percentile calculations is used to improve
statistical accuracy. This analysis was successful in assessing
a number of mechanical mechanisms in the cellular machin-
ery [2,3,19,20,33]. Nevertheless, it remains overall a qualita-
tive perspective, since it compares results in complex sys-
tems with measurements in homogeneous glycerol solutions.
It has, however, the advantage of being able to provide a
somewhat surveyable degree of heterogeneity, allowing, for
instance, the ordering of materials from the most heteroge-
neous to the least. In a second attempt, hypothesis testing
based on the F ratio of paired mean-squared displacements
was performed to classify particles’ dynamics into statisti-
cally distinguishable groups [15]. Although it is not the more
convenient way to quantify the heterogeneity (i.e., with a
single number), this classification allowed the authors to map
the locations of given microenvironments in an agarose gel
sample. Following this idea, it is actually possible to test
homogeneity of multiple dynamics at once using a single
statistical test (see [34] for a review of available statistical
methods).

In this paper, we develop a way to rigorously calculate the
first two moments of the probe particle dynamics in a het-
erogeneous system. Using a mathematical formulation for
the peculiar statistical sampling obtained from multiple par-
ticle tracking output, we derive estimators of these two mo-
ments (mean and variance) that are independent of the sam-
pling design, up to a certain fundamental limitation of the
technique that we call the material’s detectability. In the first
part, the theoretical approach is discussed and we introduce
an important factor, called the degree of sampling, that quan-
tifies the level of detectability of certain probe dynamics by
the technique. From this approach, estimators for the two
first moments of individual mean-squared displacements are
derived. Section III provides stringent testing of these esti-
mators on simulated and experimental systems of increasing
complexity that cover a wide range of actual scenarios.

I. THEORY

A. Sampling design of multiple particle tracking

Let v(w,x) be the value of a material property v at the
location x=(x,y,z) € V in the material, evaluated at the fre-
quency w. We write as P, (v)=V"'[ydv-1(w, x)]dx the
probability density function of this material property in a
volume V of medium, where & designates the Dirac delta
function. A schematic of such a heterogeneous fluid is pic-
tured in Fig. 1. An indicator of heterogeneity of the material
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in this volume is then given by the moments about the mean
E[W(@)] of Py mn(@)]=El{n(@)-E[r()]V]. where
[5[- - -] designates the expectation value.

In a passive microrheology experiment such as the mul-
tiple particle tracking technique used in this paper, a measure
of the local material property is made through the thermal
motion of a micron-sized particle embedded in the material.
A thermally fluctuating particle following the trajectory x(z)
exhibits dynamics that, at a time scale 7= ™!, can be quan-
tified by the distribution of the displacement d,(7)=x(+7)
—x(t), given the position x(¢) from which the step displace-
ment is taken. Usually, a measure of the local material prop-
erty is made by calculating the mean-squared displacement
m (7, X)=E[d/(7)*[x(1) = x]= [ 6°Pq ()x()( 8| X)d &, where the
integral runs over all possible displacements. This material
property is defined at a location x(f), within a minimum
length scale given by the extent d,(7) of the trajectory (i.e.,
the amplitude of the deformation applied to the material),
and over which the material is assumed homogeneous. From
the stationary assumption, this property is independent of ¢,
and we will write it m(7, x). Hence the distribution that is
accessible with the technique is P, (m|x)=dm
—m(7,x)] and the central moments (or moments about the
mean) of P, (m)= V‘lfVPm(T)‘X(m | x)dx, obtained with uni-
form spatial distribution of positions in the volume V
[P.(x)=V"'], can be used to quantify the heterogeneity of
the material through the probes’ heterogeneous dynamics
(we will expose some limitations to this idea in the next
sections). Such moments can be written in terms of the raw
moments,

]E[m(r)’]:f m'P, ., (m)dm
0

\4

We note at this point that, since the quantity to estimate
involves two integrations, there will be two levels of sam-
pling when performing the experiments. A first level of sam-
pling is obtained in the spatial integration [outer integral in
Eq. (1)] since, in practice, only a finite number of locations
will be investigated. A second level of sampling needs to be
characterized, as the number of sample displacements ob-
tained per given sample location will be eventually small,
and will thus require a binning of the volume of observation.
It is then possible to gather observed displacements by
grouping their corresponding locations into spatial bins, and
then calculate the inner integral of Eq. (1) in each bin.

In the multiple particle tracking technique, trajectories of
the probes’ Brownian motion are obtained by processing
movies acquired with video microscopy. The sampling of the
material is limited in space by the volume of observation
V, C V (the camera field of view in the plane and the tracking
depth in the direction perpendicular to the plane) which con-
tains N, (z) probe particles at a given time r (see Fig. 1). A
limitation in time is naturally given by the duration of acqui-
sition T,=n,At, where Az is the time interval between two
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side view
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FIG. 1. (Color online) Schematic of a heterogeneous system as
seen through a microscope. Different colors in the material corre-
spond to different values of a certain material property v. The ma-
terial is held in a chamber of observation (side view) and randomly
dispersed particles (represented by the dots) are visible only when
moving in a certain imaging volume Vy=x, Xy, Xz, (dashed
frame) whose smallest dimension z; in the z direction determines
the limitations in sampling. The bottom view pictures a typical
snapshot at a given time ¢.

successive movie frames, and ny,+ 1 is the number of frames.
The output of the tracking is a set of N probe trajectories
{x;(1)};<i<n» €ach trajectory being sampled every Ar. We will
write as X={{x; ;=x;(jAt+1;) € Vi}o<j<p }1<i=y the sample
of observed positions, where T;=n;At is the duration of the
trajectory i, and t; is the time of first observation. Several
trajectories can eventually correspond to a single particle that
leaves and comes back in the volume of observation, such
that in general N(f) <N and T;<T,. For a lag time 7=nAt
and for trajectories such that 7;= 7 (i.e., n;=n), we can ex-
tract ¢;(n)=n;+ 1 —n overlapping (hence a priori nonindepen-
dent; see the next section) displacements from the trajectory
i, and we obtain the sample D(n)={{d,;(n)=X;
—xi,j_l}lgjsqi(n)}ie 1my Of observed displacements, where
I(n)={i:n,=n} is the set of indices corresponding to
trajectories longer than 7. The corresponding set of
positions associated with D(n) will be written X(n)
:{{Xi,j—l}lijéqi(n)}iel(n) [45].

As noted earlier, in order to estimate Eq. (1) the volume
V, must be subdivided into M cells (or bins) of volume
{Vih=e=m»> with V, =3 V,. To each bin corresponds a con-
stant (assuming homogeneity on the bin size scale) value of
the inner integral, which we will call my(7)=E[m(r,x)|x
€ Vil=m(7, x;), where x; € V, is a hypothetical location of
V,. Suppose that it is possible to determine my(7) using an
estimator with arbitrary certainty, g(D)(n)), such that
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E[g(D}(n))]=m(7) from any subset D}(n) of D(n) contain-
ing only displacements {d, ;(n)} for which the corresponding
positions {x,-!j_l} are in V;. By making such an assumption,
we aim at characterizing the first level of sampling only,
discarding the second level, which will be discussed later in
the text. The estimators of the spatial moments of m(7) are
then

M
E[m(n]= 2 mgd}(n),
k=1

2

M M
S m| éDm) - S mEDin)
fialm(n)] =" — G

E m(1 = )

k=1

where m,=V,/V,, as obtained from the usual sample estima-
tors of the weighted mean and variance with uncorrelated
samples [35]. The difficulty is to build the set {V,};<i<um
such that, on the one hand the statistical accuracy within
each cell is high enough (obtained by increasing V,, which in
turn will decrease M); on the other hand, the number of bins
is large enough such that moments are accurately estimated
and such that the assumption of uniformity within each clus-
ter is valid by sampling the space at a fine enough scale
(large M). In other words, there is a compromise between
gaining accuracy in estimating the inner integral in Eq. (1)
and accuracy in the outer integral calculation. For generality,
it is convenient to have a formula independent of the choice
of {Vi},<x<p. This can be achieved under some reasonable
assumptions. We first assume that each trajectory is entirely
contained in one of the bins {V},<t<s. We can then write

4(D}(n) = (E ni)‘l S, ng(D(n)),
ielk ie]k

where D;(n) is the subset of D(n) corresponding to trajectory
i, and I, is the set of indices corresponding to trajectories
contained in V. Next we assume that (2;c;n)/Vi=Cyny, is
independent of k, where C,, is the uniform density of particle
in the material (recall that X,_ L is the total number of
observed positions in V). We get

N
@[m(T)] = E pi8(Di(n)),
i=1

N N 2

2 pi| 4(Di(n)) - Ep,g(n,-(n»]
falm(7)] = = SNE)
> m(l-m)

k=1

where p;=n;/=Y n;. The denominator of f,[m(7)] is a cor-
recting factor for the bias, and approaches 1 for M>1. As
mentioned earlier, the use of Eq. (3) for the sample variance
assumes that the probes’ motions are mutually independent
(or at least, uncorrelated). This is an acceptable approxima-
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tion, since the residual correlation, measured for example in
two-point microrheology techniques, is a higher-order hydro-
dynamic effect that vanishes with increasing interparticle
distance. At this point, it is also possible to characterize the
uncertainty of these estimators solely due to the first level of
finite spatial sampling. Using again a common formula for
the variance of the sample mean and of the sample variance
[35], we have

M
pol Elm(D]] = ol m(D] 2 2,
k=1

pal ol m(n) 11 = { palm(7)] - Mz[m(T)]z}g e+ O(E wﬁ) :
4)

The calculation of the quantity ) 7} requires knowl-
edge of the individual volumes V, for all 1 <k<M. How-
ever, at an instant ¢t of the measurement, the number of
sample locations observed in the volume V,, is Ny (). We can
then argue for this calculation that the uncertainty in the first
level of spatial sampling is proportional to E[N,()]™'=N;".
Thus we will write S}7, 77~ N,' when estimating the above
quantities.

As pointed out earlier in the text, only trajectories for
which 7;= 7 will be counted in the displacements’ sample.
For a trajectory shorter than 7, the corresponding D;(n) is
empty and no estimator g(D;(n)) can be computed. The du-
ration of a trajectory 7; is in fact an observation of another
random variable whose distribution depends, among other
factors, on the dynamics of the corresponding particle.
Hence, a particle that is likely to travel across the volume of
observation (say its smallest dimension z; see Fig. 1) over a
lag time 7 will not be tracked for a sufficient time to perform
any computation from its trajectory. The corresponding ma-
terial in which probes undergo such dynamics will not be
detectable by the technique. A proposed quantitative indica-
tor of this effect is the degree of sampling, which we define
as

2 n;
iel(n)

N (5)

E n;
i=1

0(n) =

It is the ratio of the number of positions for which a displace-
ment at lag n has been measured to the total number of
observed positions [over which the sum runs in the estima-
tors Eq. (3), where this effect has been discarded by the
initial assumptions]. Limiting behaviors of this indicator are
reached when all positions are associated with a displace-
ment [#(n)=1 and the sampling is at its best], and when no
sample displacement could be calculated [#(n)=0 and the
material is totally transparent to the technique]. Furthermore,
we will show in the following sections that this degree of
sampling 6 is a good measure to characterize the effect of the
volume of observation on the quality of the estimators sub-
sequently derived.
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To conclude this section, we notice that this choice of bins
{Vi}1<r<p 18 not unique. For example, bins of identical shape
and size could be chosen to divide V} independently of the
sample X. Their size and number would then need to be
adjusted for each lag time to reach the best statistical accu-
racy. The latter might be challenging to evaluate on the fly.
The bins could also be constructed randomly by Voronoi
tessellation from a subset of X. The choice made here, rely-
ing on the assumption that a particle probes a unique mate-
rial property along its path, is a more natural procedure in the
particle tracking framework (the case where a single, freely
diffusing particle encounters liquids of different viscosities
along its trajectory has been recently discussed [36]).

In the next two sections, we investigate the second level
of statistics involved in the evaluation of g(D;(n)).

B. Characterization of the sample of displacements

For simplicity, we will consider only one-dimensional
random walks in the x direction. The output of a multiple
particle tracking experiment is a list of one-dimensional
overlapping displacements as defined earlier, D(n)
={{d; j(n)=x; j1n1=Xi j-1h1=j=g,m }ic1n)- Here we look at the
characteristics of this sample. If all processes x;; are as-
sumed stationary with respect to the time j, as well as inde-
pendent of one another (see discussion in the previous sec-
tion), then we can immediately write the following second-
order characterization:

E[d; (n)]=0,
E[d; (n)]=m;(n),

E[di,j(n)di’,j’(n)]/E[diz,j(n)] (Stl’pnz(] -Jj's

where J;;; designates the Kronecker delta and where the cor-
relation coefficient pfllg(h) can be expressed in terms of the
mean-squared displacement m;(n) by

[m(h +n) —myh)] + [m;(h—n) - m(h)]
2m,(n)

prut(h) =

Under the assumption that all displacements are Gaussian
distributed, this second-order characterization is sufficient to
know all other moments of the displacement samples. For
example, an interesting characteristic when calculating the
mean-squared displacement to some power is the correlation
coefficient of the squared displacements,

E[dlz’j(n)dlzr ’jr(n)] - E[dlz,](n)]E[dlz’ >j’(n)]
E[d} (n)] - E[d2 ()]

where it can be shown that p(z)(h) [p(l)(h)]2 We show typi-
cal values of p (h) in Fig. 2 for various dynamics m(n). We
observe that in general the overlapping displacements are
correlated up to a nonuniversal lag 4. More interestingly, we
see on this figure that even if the displacements are not over-
lapping (h=n), anticorrelations can be observed. In this re-
gard, only the Newtonian dynamics [pure diffusion, m o |n| in

u'Pg,zl)(/ .] )
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FIG. 2. (Color online) Autocorrelation coefficients of the dis-
placements and the block-averaged displacements. Different dy-
namics m(n) are investigated: (a) is a purely Newtonian fluid
m(n) law dynamics, m(n)
oc|n|%7 and m(n) =|n|*3, respectively, and (d) is a Voigt fluid model
with relaxation time of 10, m(n) o 1—¢71"/10_ The plots on the sec-
ond column give the displacements’ autocorrelation coefficient
pil)(h) as a function of (n, ) for the corresponding dynamics shown
in the first column. The third column of plots shows the autocorre-
lation coefficient of two successive boxed averaged displacements
ﬂn(l) as a function of (n,s) (see text for notations).

|OA3

Fig. 2(a)] exhibit uncorrelated successive displacements. We
can conclude then that the observations of the squared dis-
placement will also exhibit correlations in a nonuniversal
way.

This will present a problem when applying usual estima-
tor formulas involving squared sums of observations. A com-
mon way to decorrelate observations is to perform a block-
average transformation [37]. We define the s-sized block
average of the rth power displacement in the following way:

d, (m=" E d; i ().

The characteristic of these new observations can also be cal-
culated:

Eld,, (m]=Eld;;(n)]

and
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Bld,, (0, (0]~ Eld,, (0]Eld,, ()]
Bld,2 ()] Fld,, ()P

= Csii'&n!i(i _j,)7

where we compute the block-averaged transform of the dis-
placement autocorrelation coefficient,

s—1
> (1= [ks)p (s + k)
k=—(s—1)

s—1

> (1= [kl/s)pl k)

k=—(s—1)

&n,i(h) =

We plot in Fig. 2 the correlation p; i(l) of successive block-

averaged displacements as a function of s, and we see that
the choice s=n decorrelates successive block-averaged dis-
placements. This apparent decorrelation is effectively a
smoothing of the raw displacements correlation, that can be
observed for higher order correlation coefficient [p_,n(h) is

also almost zero for r>1 and for 2= 1, even though it is not
the case for the corresponding p}(:)(h); data not shown]. A

more general definition of the block-averaged rth power dis-
placement is given by

si(n)-1

1
L0 ) &

where s;(n)=n if q;(n)=n, s(n)=q,(n) otherwise. For
each trajectory, we obtain gi(n) block-averaged displace-

is(n)j~1

ments with c_]i(n) equal to the biggest integer smaller
than  g;(n)/s(n). It forms a sample D,(n)
={{@ij(n)}lgjsq_(n)},»E 1(»y of mutually uncorrelated observa-

tions. Note that this choice of s;(n) does not lead to a signifi-
cant loss of statistics as compared to calculations made with
nonoverlapping displacements. In the latter, approximately
n;/n displacements can be extracted from trajectory i, com-
parable to c_]i(n).

C. The estimators

We define the weighted sample mean

I

iel(n) 1<j<g;(n)

ﬁ(n) = Wi(”l)df,j(”) )

with wi(n)=[n;/ q,(n)1/Z;n; over the sample D(n). Simi-
larly, we will write

I

iel(n) ISjS(_J.(n)

d(n) = w,(d? (),

with w(n) [ni/q. (n)]/ElE,(n)n over the sample D,(n). I

general, d p(n) #d”’(n) unless p=1, in which case the two
terms differ only by the number of sample displacements lost
when taking the integer part of g;(n)/s;(n). However, we
have E[d,(n)]=E[d"(n)].

We define the estimator ﬁl (n) of M(n)=E[m(n)] by

PHYSICAL REVIEW E 76, 021501 (2007)

M) =d*(n)= 2 win) X dn). (6)

iel(n) 1<j=<qn)

With p/=n;/Z;_,n;, the second-level expectation is

E[ﬁl(”)HthsksM]:( E ”i>_l 2 nm,(n)

iel(n) iel(n)
= 2 pim(n),
iel(n)

and is unbiased in the first level for #(n)=1 [see Eq. (3) with

p;=p;]. If the system is homogeneous, however, M, (n) is
unbiased for any value of #(n), as will be shown in the next
section.

To calculate the variance of M 1(n), we note that there are
two independent contributions in the uncertainty of the esti-
mator, each contribution coming from the two different lev-
els of sampling mentioned earlier in the text. To see this, let
us briefly derive a simplified result. We consider a set of N
unbiased estimators {d;};<;<y of a corresponding set of val-
ues {a;};<;<y- the latter forming a sample of independent
observations of a random variable «. Similar to the current
study, we have here two levels of statistical uncertainty when
estimating some moments of «: one level is affecting the
accuracy of estimating each «; with @;, and the other is com-
ing from the limited number of observations «;. In the first
level, we have [[d;]| @;]= a; and we define the variance of the
estimator @; by uold;| a;]=E[d?| a,]-ELd;| a;]>=B;/n; where
n; is the size of the sample used to calculate g;. It can be
shown that 8;=0(n?) in most cases [38]. We can calculate
the mean and variance of the quantity d=N"'3,_,-\d; that is
an estimator of K[ «]. We use the iterated expectation to write

E[a] = E[E[al{es} < zy]] = [N S o« ] E[a].

1<isN

which shows that the estimator is unbiased. The same way,
we find

E[E[éﬂ{a,-}lsiszv]]ﬂ[zv-z > Bi/nﬁN_Z( > a,ﬂ
1sisN

1<i<N
= E[B/n]IN + uy[a]/N + E[a]?,

such that finally the variance of the estimator 4,

mal@l = pol @/N + E[ B/n]/N,

is the sum of two terms. The first term comes from the level
of sampling of the random variable a with the N observa-
tions «; and is proportional to N~!, and the second term in-
cludes the uncertainties from the estimation of each «; by 4;
and is of order (Nn)~!, where Nn is the total number of initial
observations. In the current study, the first term corresponds
to the expression given by Eq. (4) for the first level of spatial
sampling. The second term can be calculated by assuming
the system homogeneous (that is, taking w,[a]=0 in the
demonstration presented above), which means that all initial
observations are taken from the same distribution. Note also
that from intermediate calculations in the above demonstra-
tion, we get
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Mz[d|{ai}1si<1\1] = E[ézHai}lsiéN] - E[dHai}léisN]z

=NZ2 > Bin (7)
I1<isN
of order (Nn)~!. This result will be useful in the following
derivations.

We follow this idea to calculate the variance of M (n). We
use the approximation d*(n) =~ d,(n), the mean of the sample
&(n) of uncorrelated observations. In that case, it is possible
to show that the variance w.[M,(n)], obtained when all ob-
servations in &(n) are identically distributed (assumption of
homogeneity) is equal to Mz[@i j]E,-E ,(,,)o_]i(n)v_vi(n)z, which is
estimated by
[d’(n) - ()] 2 g (m)w (n)?

iel(n)

> g mwmll-wm]

iel(n)

ol My ()], =

so that the total expression is [see Eq. (4)]

M, (n)

ol My (n)] = + o[ M ()], (8)

b
where we have used Eq. (4) with M,(n) an estimator of
My(n)=po[m(n)].

To calculate A/l\z(n), we assume that all displacements are
Gaussian distributed. In that case, we find that

M (n) = d*(n)/3 = M,(n)? (9)

is almost unbiased. Indeed, for the first term in ﬁz(n), we
have

2 ”imi(n)2

iel(n)

E”i

iel(n)

E[d* () [{Vih1<rep] =3

since E[d*]=3E[d?]* for a zero-mean Gaussian random vari-
able d. The expectation of the second term can be written

E[ﬁl(n)zHVk}lskéM] = E[M\l (”)|{Vk}1<ksM]2

+ Mz[l‘/’il (MR Vidi<k=ml-
where the second term is of order =, ,(n)c_]i(n)v_vi(n)2 from Eq.

(7), that is, of the order of the inverse total number of dis-
placements X, ,n,; in D(n). This second term can thus be

neglected, and we finally get

H@MMkMkEMVM—EﬁMﬂz

iel(n) iel(n)

ol 3)

which is the estimate given in Eq. (3) for the first level of
uncertainty when 6(n)=1. To estimate u,[M,(n)] we follow
the same line of reasoning as for the variance of M (n). We
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used the software SYMSS [39], relying on the computer alge-
bra package MATHEMATICA (Wolfram Research), to calculate

the variance u,[M,(n)], under the homogeneity assumption,
and found
)

o (BT sy o T
o[ M)y = Ty ti (4 _@)"'T_(ﬁﬂ_@ﬂ)

3 el Z )

where we have dropped the dependency in n for conciseness
in the notation (also, we used @ %
=2 cin21= j=q W da, j@i j). The first-level term given by

Eq. (4) requires the estimation of w,[m(n)] {the other term

wo[m(n)] is estimated by M,(n)}, which is obtained under the
Gaussian assumption

— — —2—  —4
falm] = d%105 — 4d* d°/15 + 2d* d* - 3d* |
so that finally

ol Myl = (fg[m] = M3Ny' + fo[ M ], (10)

II. METHODS
A. Simulations

We used Brownian dynamics simulations to test the va-
lidity of the estimator. Simulations are convenient as they
provide both freedom of design and a well-defined system.
The input parameters are easily changed and well controlled
in a wide range of values. However, we must first ensure the
validity of this range as compared to real experimental de-
signs.

1. Scaling and range of parameters

The smallest dimension of the volume of observation
given in the z direction is called z, (see Fig. 1). Its value
depends on the depth of field of the multiple particle tracking
technique as well as the tracking parameters. But typical val-
ues range from 1 to 10 um (see Sec. II B). The concentra-
tion of probe particles is chosen such that minimal interac-
tion between particles is expected. Given the magnification,
between 10 and 100 particles can be tracked simultaneously
(10<N,<100). The video rate is usually not greater than
100 Hz; thus the time interval between consecutive frames is
At>0.01s. The duration of the movie is limited by the num-
ber of frames storable in memory, but typically 7,=1000A¢.
The smallest viscosity encountered in typical applications is
that of water 77:10‘3 Pas, and at 7=25 °C with smallest
trackable particle radius a=0.05 um, we get that £=6man
>1 cP um. Throughout the following sections, we will use
quantities made dimensionless with the distance z;, and the
time Ar. Hence, in the following we will designate the di-
mensionless quantities using a tilde, such that, for example,
m=m/ zi designates the dimensionless mean-squared dis-
placement. However, to avoid redundancy, the dimensionless
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lag time and acquisition duration are written n=7=7/At and
ny=Ty,=T,/At, respectively, as already introduced earlier.

2. Brownian dynamics simulations

A Brownian dynamics simulation was employed to create
particle trajectories [40]. An explicit first-order time-stepping
algorithm was used to advance the position x;(#) of a particle
j at time ¢,

X;(t+ o) = x,(t) + X,(1) &,

where &t is the time step and X;(7) satisfies the following
stochastic differential equation:

) 1 8T

(0 = ZE0) + | W,
obtained by assuming the drag on the particle to be Stokesian
and by neglecting any other hydrodynamic interactions.
Also, F(x)=—k;(x—c,) is the Hookean linear force law ap-
plied to the particle by the medium from the fixed center
position ¢; [F;(x)=0 when simulating a Newtonian fluid] and
W, is a Wiener process that satisfies (dW;=0 and
(dW;dW ;)= 6 where & is the unit second-order tensor [40].
The model fluid is then characterized by the pro ertles v;

=(¢;,k;), and dynamics by m(7)=2kgT(1- kil 1k;

each direction. NV, trajectories of duration 7}, were s1mulated
The effect of the finiteness of the imaging volume is taken
into account only in the z direction of the motion x(r)
=(x(t),y(r),z(r)), where only positions verifying 0=<z(¢)
<z, can be observed. In practice, the N, force centers
{eih< j=<n, are uniformly distributed in an interval [0,z] in
the z direction. About these centers, N, initial positions
{z/(0)}h<j< N, are randomly chosen from the equilibrium dis-
tribution P, (0)(z)O<e ~kj(z=¢)"2ksD)_ This ensures that the sys-
tem is at thermal equilibrium at #=0. The trajectories are then
simulated starting from these positions. For each trajectory
x,(1), with 1 <j<N,,, the first z position that lies outside the
box interval [0,z,] is translated by a length z; to fall back in
the observable interval. Accompanying this translation, an
index of trajectory is incremented and assigned to the frag-
ment of trajectory starting from this translated point. The
process is repeated over time to obtain fragments of the
original x;(r) as divided by these periodic boundary condi-
tions in the z direction. After performing this transformation
to the N, initially simulated trajectories, all the fragments are
reindexed to obtain the sample {x;(r)} <<y of N tracks. By
always keeping all successive positions in the volume of
observation, the condition of constant particle density,
E?ilTl:NbTb, is satisfied for all time. For all sets of simula-
tion, t=10"'Az. We verified that our results did not appre-
ciably change for smaller values of &t. Allowing the density
Ny (1) to fluctuate by observing only a subvolume of height z;,
in an initial box of height larger than z;, is a more detailed
model of real multiple particle particle tracking experiments.
But again, by doing so, we could not observe significant
change in the results, whereas the computation time is in-
creased.
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In the following, the friction coefficient and spring con-
stant are made dimensionless by using &= &/ (kgTAt/z72) and

E=k/(kBT/z§), respectively. From the previous discussion
about the range of parameters met in experiments, we con-

clude that typically E > 10.

B. Experiments

Simple bimodal heterogeneous systems were made by
creating gel features in the field of view of the multiple par-
ticle tracking setup. We used microscope projection photoli-
thography [41] to create well-defined regions of gel with
embedded beads, within a region of purely viscous, unpoly-
merized material also populated with the probe particles.

We used a solution of 10% (v/v) poly(ethylene gly-
col)(700) diacrylate (PEG-DA, Sigma-Aldrich), 0.5% (v/v)
solutions of Darocur 1173 (Sigma Aldrich) initiator, 20%
(v/v) ethanol (95% grade, Pharmco), and 20% (v/v) 5
X TBE buffer, in which 2a=0.518 um diameter carboxylate-
modified yellow-green particles (Polysciences) at a volume
fraction ¢=2.48X1073% were thoroughly dispersed by
20 min sonication. The sample was injected in a
150-um-high, custom built chamber of observation sealed
with vacuum grease, and mounted on an inverted microscope
(Zeiss). Four photomasks with unique pinholes of diameter
470, 700, 800, and 900 um were designed in AUTOCAD 2005
and printed using a high-resolution printer at CAD Art Ser-
vices (Poway, CA). The masks were then inserted into the
field-stop of the microscope. A 100 W HBO mercury lamp
served as the source of uv light. A filter set providing wide
uv excitation (11000v2, uv, Chroma) was used to select light
of the desired wavelength and a VS25 shutter system (Unib-
litz) driven by a computer-controlled VMM-D1 shutter
driver provided specified pulses of uv light. The oligomer
solutions mixed with probed particles were exposed for a
time of 1.5 s to photopolymerize poles in the chamber by
using the 10X objective [numerical aperture (NA)=0.25]. It
has been shown that the poles are not cylinders of uniform
radius because of the shape of the light beam [42]. However,
they can be considered as straight cylinders over a length
scale of 60 um around the focal plane of the beam. At this
altitude in the chamber, their diameters are respectively
2Ry =110£4, 170£2, 200+2, and 230+3 um (this leads to
a magnification of approximately 1/4 from the field-stop
plane to the objective focal plane). With a 20X objective
(NA=0.5), we recorded the motion of the particles in a vol-
ume of observation placed such that, within this imaging
volume, the poles are straight cylinders at all altitudes z
€ Vi,. The movies were acquired at a rate of ten frames per
second (i.e., Ar=0.1s) and for a duration of 2000 frames.
We verified that the tracking dynamic errors caused by the
video interlacing do not affect the validity of the results pre-
sented in this study [43]. We also verified that such an expo-
sure time of the solution using the fluorescein-matching fluo-
rescent filter does not induce any photopolymerization. The
movies were analyzed offline using the IDL language (Re-
search Systems) tracking package [16]. We find that we track
(Np) =250 particles in a field of view of dimensions 300
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FIG. 3. (Color online) Degree of sampling 6(n) in the parameter space (n,/m) scanned by two different kinds of dynamics m(n): (a) is a

purely Newtonian fluid, for which #i(n) «|n

, and (b) is a Voigt fluid with relaxation time 5, that is, /7i(n) & 1 —e™"/3. For each fluid type, two

acquisition times were simulated, n,=1000 on the left and n,=100 on the right. The dashed line represents the observation limit 72=1 due

to the volume of observation. The connected squares represent the limit above which the relative bias of M 1, defined by Eq. (11), is greater

than 5%.

X300 ,umz, with a standard deviation of less than 5% of this
mean (N,). Using (Np)=Cpx,y,z, With Cy=¢/[7(2a)/6]
and x,=y, =300 um, we can conclude that, for these experi-
ments, using the 20X objective, we have z,=8.2+0.4 um.
Note that this length scale is smaller than the length scale of
curvature of the poles’ profile in the z direction, ensuring that
the polymerized structures are seen as straight cylinders in
the experiments.

III. RESULTS AND DISCUSSION

We investigated the quality of the estimator for two dif-
ferent dynamics. The simple diffusive dynamics in Newton-
ian liquids allow us to scan the parameter space (n,/) using
the relation 7i(n)=2|n|/€ for varying & In the single-
relaxation-time Voigt fluid, the space (n,m) is mapped by
changing gandjg using the following dynamical relation:
ii(n)=2(1-¢"M&) k. Admittedly, these two kinds of dy-
namics do not cover all possible multiple-relaxation-time
viscoelastic dynamics often encountered in microrheometry
measurements on complex systems. However, they are
simple models that are easily implemented with Brownian
dynamics simulations, and they exhibit sufficiently different
dynamical characteristics to capture the effect of probe dy-
namics on the quality of the estimators, and more generally
on the statistics of the obtained sample.

Before analyzing heterogeneous fluids having these two
dynamics, it is instructive to evaluate and characterize the
formula in homogeneous fluids.

A. Homogeneous fluids
We performed simulations of homogeneous fluids using
{N=(£,=107,k=0)}p<,<;, to scan the parameter space
(n,im) using Newtonian dynamics 7i(n)=2|n|/&, with differ-

ent friction coefficients. Also, we used {»'=(£=10"2k,
=10"?/5)}y<,<1; to sample the parameter space using Voigt

dynamics with a dimensionless relaxation time at E,/ E,:S:

ii(n)=2(1—e1"5) /k,. These parameters allow us to investi-
gate (n,n1) around /m=1 where the main effects of the finite
volume of observation are expected to occur. But their range
also report mean-squared displacements sufficiently low, m
<1, so that the limit in which the volume of observation is
infinite is approached. In the simulation method, the latter
limit has been separately simulated by discarding the last
step consisting of the trajectories subdivision.

For each of the 24 types of fluid (12 Newtonian and 12
Voigt), simulations were repeated 100 times to obtain 100
observations of the various random parameters of interest.
These include the largest lag time n,,, for which it is pos-
sible to calculate the estimators [chosen such that there re-
mains at least two indices in the set I(n,,)], the degree of

sampling 6(n), and the estimators M ,(n) and ﬁz(n). From
the 100 simulations performed under identical conditions,
these observations are calculated at common values of lag
time from one simulation to another, so that statistics (mean
and standard deviation) for each measure are calculated for a
given n.

Figure 3 gives an overview of the results obtained for
homogeneous fluids with N,=100 and for two acquisition
times n,=1000 and 100. In particular, it shows the mapping
of the degree of sampling in the parameter space (n,m) for
the two kinds of dynamics. In this figure, each solid black
line represents the relation 7i(n) used in the simulations to
map the space, i7i(n) % |n| for (a) and i(n) = 1—e "5 for (b),
and their end points (the maximum n at which they are
drawn) is at E[n,].

First, we see that for mean-squared displacements above
the observation limit m=1, the degree of sampling vanishes
for both kinds of dynamics. This result is not surprising, as
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FIG. 4. (Color online) Trajectory statistics. As shown in (a), the
parameter space (n,71) is sampled using purely viscous dynamics
with material properties {1/1:1},5{0,3’6} and Voigt dynamics with relax-
ation time 5, {Vy}re{o’:;ﬁ} (see the labels on the figure). In (a), the
dashed line represents the observation limit 77=1 due to the volume
of observation. (b) shows the corresponding variations of the degree
of sampling 6(n) as a function of n for each fluid. (c) represents
typical trajectory durations: a single dot means that the particle was
observable for only one frame, and lines indicate trajectories of at
least At long. Each line in these plots refers to the original simu-
lated trajectory that has been fragmented to take limited observation
volume into account (see Sec. II A 2), and we present results for the
two kinds of fluid from top to bottom with increasing values of the
index r.

for such values of mean-squared displacement, the probes
are more likely to cross the entire volume of observation
over a time less than the lag time. Hence a particle in the box
at a given time ¢ is likely to be outside the volume of obser-
vation at a time 7+ 7, and thus its observed trajectory cannot
be used to extract a displacement at lag time 7.

More strikingly, we see that the degree of sampling in a
material where probes have a mean-squared displacement 7
at a lag time n depends on the entire dynamics relation 712(n)
and not only on the position (n,7i) in the parameter space
[compare the different mappings of Figs. 3(a) and 3(b)]. This
dependency may seem surprising, in particular for the Voigt
fluid where some values of (n,/m) are undetectable [6(n)
~0] even though m<1. To provide some insights into this
effect, we show in Fig. 4 typical trajectory durations #n; in a
selection {v’f},e{oﬁ,ﬁ} of Newtonian dynamics and
{VY},E{O,&G} of Voigt dynamics, as well as the resulting varia-
tion 6(n) of the degree of sampling with the lag time n, for
N,=100 and n,=100. Figure 4(c) was obtained by gathering
together on the same line the trajectories coming from the
same initial simulated trajectory, subsequently chopped when
taking the effect of a finite volume of observation into ac-
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count. Thus, in these plots, a line corresponds to one of the
Ny, simulated particles, and the chopping of this line occurs at
the successive absolute times when the corresponding par-
ticle crosses one of the observation volume’s z boundaries.
From r=0 to 6, we observe that trajectories are becoming
longer, or, equivalently, that the particles are leaving the vol-
ume of observation less frequently: from a given position in
the volume of observation, slower particles (lower /7 at con-
stant ) will not be as likely to reach a given boundary than
faster particles (higher value of 7i for the same n). Conse-
quently, the degree of sampling at a given lag time n will
increase from faster (higher /) to slower (lower 7) dynam-
ics, as seen in Fig. 4(b). Also, for each value of r, since the
Voigt dynamics are “slower” than the corresponding New-
tonian dynamics, we also verify in Fig. 4(b) that the curve
for the degree of sampling in Newtonian fluids falls below
the corresponding curve for Voigt fluids with same value of
r. The peculiarity of the detectability is, however, visible by
comparing the Newtonian dynamics v, /7i(n)=2|n|/ 103, and
the Voigt dynamics vy, iii(n)=(1-¢"/5)/10"2. At a lag time
n=100, both exhibit similar values of m [see Fig. 4(a)]
whereas the corresponding degrees of sampling are remark-
ably different, as seen in Fig. 4(b). Thus the degree of sam-
pling, and hence the detectability, does not depend only on
the particular value of 7, but rather on the function /7(n) that
describes the dynamics of the probes in the entire range of
lag times n. The undetectability of certain fluids with mul-
tiple particle tracking is an important limitation of the tech-
nique. But the dynamic dependency of this detectability is a
particularly strong weakness that prevents some universality
in judging a priori the feasibility of an experiment.

We also report in Fig. 3 the relative bias of the first esti-
mator M 1(n), defined as follows:

b[M ()] = E[M,(n) M, (n) - 1, (11)

where the above expected value is calculated from the 100
experiments repeated for each kind of fluid. For these homo-
geneous fluids, a bias of less than 5% is measured for almost
the entire observed parameter space. In particular, it is not
affected by the drop in the degree of sampling of the mate-
rial. In a wide part where the fluid is almost totally undetect-
able (#<<1), but where the mean-squared displacement can
be reported, the bias is negligible. This is not surprising for
homogeneous fluids, since any observed displacement will
report a valid measurement of the entire fluid. However, we
will show in the next part how the bias is greatly affected by
the nonuniform detectability of heterogeneous fluids. We

also observed that the estimator ﬁz(n) is unbiased for this
kind of fluid. We defined, for this section only, the bias of

M,(n) relative to M3(n) by

b'[My(n)] = E[M,(n) YM3(n),

and we saw that the trends followed by this bias (not re-
ported here) are very similar to the one followed by
b[M ,(n)]. That is, M}(n) is unbiased for almost all the ob-
servable parameter space [the ensemble of points (n,7) for
which 6>0]. Finally, we observe that these qualitative be-
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haviors are not significantly changed when decreasing ny,
from 1000 to 100 (see Fig. 3) or when decreasing N, from
100 to 10 (not shown).

B. Heterogeneous fluids

We use now the two model fluids, Newtonian and Voigt,
mentioned in the previous part to build heterogeneous fluids.
Rather than trying to cover a wide variety of heterogeneous
fluids, we will use a canonical model of a heterogeneous
fluid to point out the influence of a finite volume of obser-
vation on measurements. The study of these simple systems,
performed using both simulations and experiments, will be
followed by a model fluid with a more complex heteroge-
neous nature, which will illustrate the power of the formula.

1. Bimodal fluids

A canonical model for a heterogeneous fluid is given by a
balanced bimodal system, where the fluid is composed of
half of one kind and half of another kind. More precisely, we
define a set of balanced bimodal Newtonian fluids where half
of the volume of observation is occupied with a liquid of
friction &=10"2, and the other half exhibits a friction ¢,
=10"*D2 where 0<r<10. The resulting equally likely
probe dynamics are written mV(n)=2|n|/€, and m?(n)

=2|n|/&.,,, and the heterogeneous fluid will be denominated
VIr\I + vlr\i |- Similarly, a set of bimodal Voigt fluids is built from
a balanced mixture of (£,=1072,k,=10"2/5) on one side and
(&,,=100*D2 k  =100+D72/5) on the other side with 0
<r=10, and will lead to the two equally likely dynamics
AN (n)=2(1-e"7)/k, and m®(n)=2(1-e"?)/k,,,. The
latter fluid will be referred to as v\ + v, . Looking at Fig. 3,
we see that the described bimodal fluids are made of a bal-
anced composite of two successive dynamics represented by
the black solid lines. The estimators M 1(n) and ﬁz(n) are
built to evaluate

~(1) ~(2)
() = M

[ () = P ()]
4

Mz(") =

in these models.

In the simulation method, these fluids are obtained by
simulating 50 initial trajectories in one homogenous compo-
nent of the fluid, and then 50 trajectories in the other com-
ponent. The effect of the limited volume of observation is
taken into account in the same way as described in Sec.
IT A 2. In practice, an experiment in such a hypothetical fluid
should be simulated by assigning random initial positions for
each trajectory, uniformly distributed through the heteroge-
neous fluid. Hence, by exactly splitting the trajectory set in
half, we discard in this part the random spatial sampling. It is
aimed at isolating a specifically strong limitation of the
method: the effect of detectability on the bias of the estima-
tors. In the experiments described in the next section, the
spatial sampling is naturally performed.
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Referring again to Fig. 3, we observe that, in general,
along the lines representing the two dynamics involved in the
bimodal fluid, the drop in the degree of sampling is reached
at different values of n and m. The dynamics exhibiting
higher m, that is, mD, will eventually become undetectable
at smaller lag time, and the tracking technique will then only
probe the remaining observable side of the heterogeneous
fluid at larger lag time. Consequently, the estimators of the
mean and variance of the probes’ dynamics will be biased for
these large lag times.

To be more precise, we want to compare the detectability
map @ as scanned by dynamics in the fluid of type 1, for
which the mean-squared displacement is 77" (r), with a map
of the estimators’ bias as scanned by the composite dynamics

described by M,(n). To perform this comparison quantita-
tively, we juxtapose in Figs. 5(a) and 5(b) the behavior of the
levels of constant value of 6, with levels of constant bias of

M 1(n) and ﬁz(n) in the (n,7) space. The bias is defined here
for both estimators using Eq. (11),

b[M(n)]=E[M,(n)yM(n) -1 fori=1,2,

and is visible in Figs. 5(a) and 5(b) by comparing the theo-
retical composite dynamics M,(n) (black solid lines in these
figures) with the estimator M 1(n) (dash-dotted lines). Note

how M 1(n) tends to m®(n) (see labeled dashed line) as the
dynamics MY (n) of fluid 1 becomes less detectable, as ex-
plained above.

More specifically, we used the result for the degree of
sampling obtained in homogenous fluid of kind 1 to uniquely
read the coordinates (ny,n,) on the corresponding curve
ig=m"(n,) at which detectability reaches a given value 6
[the triangles in Figs. 5(a) and 5(b) are at (ny,m,) for 6
=0.5]. Then, at the same lag time n4, we read the bias of the
estimators at the point (n,,M,(n,)) [the diamonds in Figs.

5(a) and 5(b) are at (ny, M, (n,)) for #=0.5]. Next, by varying
r, we obtained a curve of constant degree of sampling [the
solid lines connecting the triangles in Figs. 5(a) and 5(b) are
extracted from the contour plots given in Fig. 3] for the fluid
of kind 1, and a corresponding set of bias values on the

associated composite dynamics M 1(n). The mean of this set
of bias values was calculated for a given degree of sampling,
and is reported in Figs. 5(c) and 5(d) for varying values of 6,
the error bars being given by the standard deviation of the
same set. If these error bars are small, it means that to a
given value of detectability of fluid 1 corresponds a well-
defined value of bias in the estimator.

To compare with other methods of calculation of the mo-
ments of dynamics, we also reported in Figs. 5(c) and 5(d)
calculations of the mean and variance of prior time averaged
individual mean-squared displacements extracted from each
trajectory [14,31,32]. The latter methods completely disre-
gard eventual differences in trajectory durations (hence an
apparent statistical heterogeneity in the accuracy of the indi-
vidual mean-squared displacement estimations). For these
estimates, we repeated the study described in the previous
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FIG. 5. (Color online) Bias as a function of the degree of sam-
pling 6. The first column of plots (a), (c), and (e) corresponds to a
mapping of the parameter space (n,m) using Newtonian dynamics
and the second column is for a Voigt fluid. (a) and (b) show the
relation between the degree of sampling of the homogeneous fluid 1
(the line connecting the triangles corresponds to a constant #=0.5)
with the bias [the line connecting the diamonds is a constant level

of bias for M;(n)] in the bimodal mixtures N+, (a) and v’

+vY,, (b). Refer to the text for further explanations on how these

lines are built. The composite fluid [M;(n) is given by the black
solid line] is made of a balanced mixture of two successive dashed
lines, V(1) and m®(n). The estimator M,(n) is given by the
dash-dotted line. (c) and (d) show the bias in M | (squares) and M 2
(circles) as a function of 6. (e) and (f) show the variation of the bias
for a bimodal fluid with greater difference in the dynamics er
+0, and v)+Y,,, respectively. In (c)—(f), the open symbols are
obtained using a prior time averaging for the corresponding estima-
tors (see text). Note that the open circles, corresponding to an esti-
mation of A712 with prior time averages on individual tracks, lie

above 100%, outside the range of bias shown here.

paragraph and the results are given by the open symbols in
Figs. 5(c) and 5(d).

In this figure, we see that as 6 increases the bias of each
estimator derived in this study vanishes. This is not the case
for the calculations with prior time averages on individual
trajectories as described above. Also, we remark that the er-
ror bars on each point are small compared with the ones on
the open symbols, indicating that the degree of sampling
defined by Eq. (5) in the first section is well correlated with
the bias in the estimators. Note finally that the variation of
the biases with the degree of sampling is fairly independent
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FIG. 6. (Color online) (a)—(d) are the measured trajectories in a
heterogeneous unbalanced bimodal model experimental fluid. Each
image has dimensions x, =y, =300 um. The centered circular gelled
region, where the particles are trapped, have radii Ry¢=55, 85, 100,
and 115 pm, respectively, from (a) to (d). (e) is the squared coef-
ficient of variation of the probes’ dynamics in these fluids. The open
squares are estimates of the measure u,[si(n)]/E[/i(n)]* using
M(n)/ M (n)? for the four bimodal fluids created by photopolymer-
ization at n=10. The filled square was obtained in the homogeneous
system R, =0. The solid line is the theoretical curve, Eq. (12). The
circles are the calculations of the squared coefficient of variation
using prior time averages on individual tracks (as explained in the
previous section about the simulated bimodal fluids; see also Fig.
5).

of the nature of the dynamics involved, Newtonian or Voigt.
The last two plots, Figs. 5(e) and 5(f), show the results cor-
responding to balanced bimodal fluids with greater differ-

ences in the dynamics: Y+ v\, designates a fluid where &,
=10 is mixed with &,,,=1072*! for the Newtonian dynam-
ics, and v)+v),, is for a bimodal fluid with (§,=10"2k,

=10"2/5) and (&,,,=10"**1 k,,,=10"2*'/5) for the Voigt
dynamics. We observe that the same conclusions still hold,
although the reported biases are significantly higher.

In the remaining, we will use an experimental unbalanced
bimodal system and also simulate a complex and random
heterogeneous fluid. To show the strength of the estimators,
we will place these studies in conditions where the fluid is
almost entirely detectable.

2. Experimental bimodal fluid

As explained in Sec. II, the experimental bimodal fluid is
composed of a region of viscous non-cross-linked oligomer
solution, and a cylindrical region of known radius where the
material is a stiff gel. In Figs. 6(a)-6(d), we show the trajec-
tories extracted from these experiments, where we see that
immobile particles are found in the circular region at the
center, with varying radius. Around the gelled area, the par-
ticles’ motion is not constrained. By performing multiple par-
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ticle tracking on a homogeneous gel system, we observed
that the motion of the beads in the gel is below spatial reso-
lution, such that the effective mean-squared displacement is
constant and measured at m(7)=5X 10~ um? [44]. In the
other kind, particles are freely diffusing and we found a dif-
fusion coefficient D=0.25+0.005 um?s~!. At unit distance
7,=8.2 um and unit time Ar=0.1 s (see Sec. II), we have an
unbalanced bimodal fluid with 7" (n)=2[n|/10>**>m? (n)
=2/10°* at all observed lag times n. Each fluid is observed
with respective probabilites pV=1-p@ and p®
:wRéell (xpyp). In that case, we can show that the squared
coefficient of variation is given by

m(A] M) p® (@@
Hm(A P = M TP 0(_”)' (12)

i

We estimate the above quantity using #,(n)/M,(n)>. The lag
time n is chosen such that the degree of sampling of fluid 1
is closer to 1. From Fig. 3, we evaluate that 6 significantly
drops at about n=100, in accordance with what we observed
in experiments on the homogeneous fluid of kind 1 (data not

shown). We evaluated in Fig. 6(e) the ratio ](/I}(n)/ M 1(n)? at
n=10 to discard any bias from an eventual undetectability of
fluid 1. At this lag time, we found an excellent agreement
between the estimator of the squared coefficient of variation
and the theoretical value given by Eq. (12) for the whole
range of reported p®. On Fig. 6(e), the error bars on the
experimental points (open squares) were calculated using
Egs. (8) and (10), whose validity is demonstrated in the next
section. In contrast with the accuracy of the estimators de-
rived in this paper, the evaluation of the squared coefficient
of variation, using estimators of w,[m(7)] and E[m(7)] cal-
culated with a prior time average on individual trajectory
(see description above), reports poor estimates (see the
circles in Fig. 6). This illustrates the importance of the char-
acterization and understanding of the sampling design in
multiple particle tracking measurements.

3. Random fluid

To conclude the characterization of the estimators, we
simulated a random heterogeneous fluid the following way.
Each probe undergoes purely Voigt dynamics, 7i(n)=2(1
—e W8 1k, where the parameters £and k are independently
distributed according to the following uniform and Gamma
probability density functions: Pg()c)=(105—104)‘1 for 10*
<x=<10° (0 otherwise), and Pj(x)=4xe > 10108 for 0
<x (0 otherwise). In particular, random values of k are gen-

erated using the expression k=-In(U,U,) X 10*/2, where 0
<U,;,U,<1 are random variates drawn from the uniform
standard distribution. We simulated 300 initial trajectories in
a volume of observation whose z dimension is 3z, but only
positions in [zy,2z,] were counted to build the trajectory.
Hence we let Ny(7) fluctuate in time around a constant value
near 100 (see Sec. II). Thus this simulates more realistic
experimental measurements. We compare in Fig. 7 the esti-

mators M 1 and ](/I}, and the theoretical results for M, and M,
respectively, whose expressions are given below:
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FIG. 7. (Color online) Estimators M  and 1\72 calculated for a
random fluid. For the random fluid simulated here, the parameter
space (n,m) is sampled with purely Voigt dynamics for which the

drag coefficient Eis uniformly distributed between 10* and 10°, and
the spring constant k is Gamma distributed with mean 10* and a
shape parameter of 2 (€ and k are statistically independent). The
resulting probability density of (n,m) is given (a), where the occur-
rence is color coded from light to dark for increasing likelihood.
The inset of (a) displays the probability density Pgj following the
same color-code convention. In (a), the solid line indicates the mean
M 1 and the squares report the corresponding estimate M 1. (b) com-
pares the results of 1172 (circles) obtained by the simulations with
the theoretical values 11712 (solid line). Error bars for both A 1 and

M, were calculated using Egs. (8) and (10), respectively (see Fig.

8).
i () = 2n (20+n)
=910t N\ 24
- 16n (1 +n)"+1(1 +n/20)n+20 ) B
M = )2
Z(n) 9 % 108 n<(1 +n/2)n+2(1 +I’l/10)n+10 l(l’l)

As seen in Fig. 7, we again find a good agreement between
the estimators and their theoretically expected values over
the range of lag times n investigated here. Small deviations
are visible at high lag times in Fig. 7(b), where eventually
undetectability of the faster dynamics in the fluid, for which
the mean-squared displacement approaches the volume size
limit z%,, can alter the bias of the estimators.
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FIG. 8. (Color online) Estimators fi,[M,] (squares) and fi,[M,]
(circles) calculated for the random fluid in Fig. 7 and scaled by the
squared mean M3=FE[m]* and the squared variance M3=u,[m]%,
respectively. The associated solid lines are the correspondingly
scaled estimates of u,[M,] and u,[M,] obtained from repeating the
simulation 100 times (the vertical lines are error bars).

For this advanced example, we plot in Fig. 8 the estima-
tors ,G,z[ﬁ J[Eq. (8)] and ,0,2[1@] [Eq. (10)] for the variances
of M | and ﬁz, respectively. In this figure, we also report the

corresponding estimates of u,[M,] and w,[M,] obtained
from the set of 100 simulations performed for the same ran-
dom fluid (solid lines). We see on this figure a good agree-
ment between the two estimates, ensuring the validity of the
expressions of ,[M,] and fi,[M,] derived in Sec. I C. Small
differences, although almost consistently within the error
bars reported in the figure (these error bars were obtained by
direct calculations of the sample variance of the sets of ob-
servations), could come from residual correlations in the
sample between block-averaged displacements (see Fig. 2),
but also from statistical uncertainty in estimating Mz[ﬁ]
from the finite-sized set of 100 observations. The accuracy of

/12[1\/4\ ] is not critical, however, these estimators being used to
indicate error bars on M . and 1\72 (as performed in Figs. 6

and 7). Similar agreements between fi,[M] and u,[M] have
been observed for all simulation results reported throughout
this paper.

IV. CONCLUSIONS

Multiple particle tracking experiments return a list of
Brownian probe trajectories. From this output, a sample of
displacements is extracted to calculate statistical quantities
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revealing the properties of the probed material. We outlined
here that the sample of displacements presents several pecu-
liarities in a spatially heterogeneous system. If not carefully
taken into account, these peculiarities can bias classical esti-
mations of the aforementioned statistical quantities. We pre-
sented a description of the sampling design of the multiple
particle tracking measurements. This description allowed us
to derive the main results of this paper: Eq. (6) estimates the
ensemble-averaged mean-squared displacement, a widely
used quantity to characterize the spatially averaged mechani-
cal property of the material, and Eq. (8) is used to evaluate
the error bars affecting the latter quantity; Eq. (9) gives the
ensemble spatial variance of the individual probes’ mean-
squared displacements, which is a valid and intelligible indi-
cator of the material’s heterogeneity, and Eq. (10) can then
be used to calculate its error bars. We expect that these for-
mulas will become standard routines to analyze multiple par-
ticle tracking data. Moreover, if a material is found to be
heterogeneous, we showed an important limitation of the
technique coming from undersampling regions in the mate-
rial where the thermal motion of the embedded probes is
allowed to exhibit fluctuations larger than the tracking depth.
We called this effect detectability, quantified through the de-
gree of sampling, and showed its influence when attempting
to calculate material properties with video microscopy par-
ticle tracking. For example, when particles are tracked to
assess the micromechanical mapping of live cells, an analy-
sis of individual mean-squared displacements indicates a sig-
nificant heterogeneity of the cytoplasm [19]. Some probes
can reach low-frequency fluctuations of amplitudes close to
the depth of tracking of the setup (see results in Ref. [19]
obtained with high microscope magnification, leading to
small z,~ 1um). Thus in this important application of the
video particle tracking technique, special attention should be
paid when tentatively applying the estimators derived in this
paper.

Overall, this study shows that great care should be allo-
cated to understanding the experimental output of the tech-
nique when calculating statistical quantities. Notably, we
provided here an initial pathway to further this understand-
ing.
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