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DNA stretch during electrophoresis due to a step change in mobility
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We investigate DNA stretching during electrophoresis when the mobility abruptly changes. This is a sim-
plified geometry that produces a nonhomogeneous strain rate over the scale of a single molecule. An effective
Weissenberg number (Wi) and Deborah number were identified, and the degree of stretching was examined as
a function of these two parameters. The system does not undergo a coil-stretch transition. The finite extensi-
bility of the chains only affects the response if the chain is stretched to a significant fraction of the contour

length. The wormlike chain shows a characteristic approach to full extension of Wi~

DOI: 10.1103/PhysRevE.76.011805

I. INTRODUCTION

Mechanical models have been used widely to represent
the behavior of polymers in flow. Many of the flows which
have been considered previously are homogeneous in that
the strain rate is the same everywhere in space, such as uni-
form shear or elongational flow. Even in a macroscopic com-
plex geometry, at the scale of a single polymer molecule, the
strain rate is homogeneous in space, although the flow can
change in time in a Lagrangian sense. This is a result of the
difference in scales between the size of the device and the
size of a polymer molecule. However, a number of microflu-
idic devices involving biological polymers, such as double-
stranded DNA, produce nonhomogeneous strain rates over
the scale of a molecule. Examples of this type of flow in-
clude DNA separation devices using post arrays [1] or en-
tropic traps [2] and DNA stretching devices for genome map-
ping [3]. A number of studies have been performed on
polymers in nonhomogeneous flows. For example, Szeri et
al. [4] examined deformable bodies in two-dimensional non-
homogeneous flows to understand the strong flow criterion.
A number of different groups have performed Brownian dy-
namics simulations of polymers using an imposed, known
flow field which is nonhomogeneous, and the dynamics and
stretching of the polymer have been examined [5-7]. Randall
et al. [8] have recently examined experimentally the stretch-
ing of DNA using nonhomogeneous fields generated using
micro-contractions or the stretching as the DNA exits from a
gel into aqueous solution.

The number of possible different nonhomogeneous prob-
lems is quite large. In general it is important to include the
details of this nonhomogeneous field. Our approach is to
examine a simplified system which contains the required
physics of a nonhomogeneous strain rate over the scale of
the molecule inspired by the experiments of Randall et al.
[8]. The system is simple enough that some analytical
progress can be made but also allows us to learn aspects such
as the important dimensionless groups that apply to more
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complicated situations. The simplified geometry we consider
is a step increase in the electrophoretic velocity, which is
illustrated in Fig. 1. Under the conditions of electrohydrody-
namic equivalence [9,10], the response to a hydrodynamic
flow with velocity v is the same as to an electric field if the
hydrodynamic velocity is replaced by the electrophoretic ve-
locity wE, where w is the mobility. Therefore, the electro-
phoretic velocity wE is the nonhomogeneous field we con-
sider. Note that the step change in “field” could be
accomplished either by a step change in electric field or mo-
bility or a combination of both.

The problem which most resembles this geometry is the
exit of a DNA molecule from a gel (region 1) to aqueous
solution (region 2) [8], although our simplified geometry
does not contain any structure in region 1 to describe details
of the gel. The gel would simply act as a method of changing
the electrophoretic velocity. The geometry could also repre-
sent the change of field that occurs in sharp constrictions
such as entropic traps or hyperbolic contractions, although
those geometries have additional steric hindrance not in-
cluded here.

Our analysis will show that in a limiting case this geom-
etry reduces to a tethered chain in a uniform flow, a problem
which has received significant attention. Brochard-Wyart and
co-workers [11,12] have used blob theory to examine the
stretching and unwinding of tethered polymers. The validity
of the blob theory has been investigated using Brownian dy-
namics simulations by Zimmermann and co-workers [13].
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FIG. 1. The polymer is moving from right to left, initially with
electrophoretic velocity («E);. The maximum extent in the x direc-
tion is denoted by X. The chain crosses the dashed line into a region
with electrophoretic velocity (uE),> (uE);. The maximum extent
of the polymer when the rear crosses the dashed line is defined as
X;.
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Brownian dynamics simulations have also been used to in-
vestigate the validity of a dumbbell model for a tethered
chain [14] and to examine the dynamics of tethered chains in
shear flow [15].

We will first examine a toy model consisting of a single
Hookean dumbbell neglecting Brownian motion and hydro-
dynamic interactions to derive the dimensionless groups gov-
erning the response. A similar type of toy model can be used
to understand the coil-stretch transition in elongational flow
as reviewed in Ref. [16]. We will then show with Brownian
dynamics simulations that the Hookean chains in the long
chain limit converge to a result which has the same scaling
as the toy model. Finally, we will show the effect that finitely
extensible springs have on the result.

II. DUMBBELL MODEL

Here we will discuss a toy model which considers a single
Hookean spring without Brownian motion or hydrodynamic
interactions. The system is sketched in Fig. 1. The polymer is
moving in region 1 with an electrophoretic velocity (wE);
and crosses into a region with electrophoretic velocity (wE),.
For this discussion we consider (wE), > (1E),, which causes
the polymer to stretch in the x direction. The stretch when
the last segment of polymer crosses from region 1 to 2 is
defined as X;. By using this toy model we can understand
how this stretch scales with the properties of the chain and
strength of the two velocities. In this way we can understand
the physical mechanism involved in stretching.

To calculate the response of the dumbbell, we write down
a force balance for each bead neglecting inertia, Brownian
motion, hydrodynamic interaction, and electrostatic interac-
tion between the beads. This is analogous to Long and Ajdari
[17] who examined the mobility of composite objects. In
Ref. [17], they neglected hydrodynamic and electrostatic in-
teractions between segments with different mobilities. They
were concerned with calculating the steady mobility of the
composite object. The situation here is by necessity transient
thus we are not concerned with calculating a mobility of the
whole chain. Time zero is taken to be the first time one of the
beads crosses from region 1 into region 2. This bead is de-
noted a while the other bead is denoted 3. Using electrohy-
drodynamic equivalence and within the assumptions men-
tioned above the equations of motion are

dry _ —1

dr §(xa)H(x“_xﬁ)+(“E)(xa)’ (1)
d 1
gxf = @H(xa—xlg) + (,LLE)()CB), 2)

where H is the linear spring constant and the drag coefficient
on a bead { and the electrophoretic velocity wE can be a
function of position. The situation in Fig. 1 considers a step
change in wE and possibly a step change in . The initial
condition is that x,(0)=0 and x4(0)=-X,. Prior to =0, the
spring is at equilibrium, so X, is a random variable taken
from a half-Gaussian. The integration forward in time is split
into two types, depending on the value of X,. If X, is small,
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dx,/dt will be positive, and there will be a range of times
0<t<t, for which x,>0 and xz<<0. With these restrictions
we can calculate X=x,—xz to be

X(t) = % - <§/;I£ - Xo)exp[— 12H/], (3)

where we define an averaged drag coefficient as

1 1/ 1 1
— ==+, 4
I 2<§1+£2> @

{, and ¢, are the drag coefficients on a bead in regions 1 and
2, respectively, and 6,g=(uE),~(KE),.

The final stretch can be calculated as X,=X(r=t), where
ty is defined by x4(¢)=0. This condition for #; becomes an
algebraic equation that must be solved numerically

o2+ (£ B0+ (45 [ 2
&1 /\2HX, HX, )| ¢
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Once this equation is solved for #;, the result can be placed
into

8.l (8.l "
X;= —% - (—‘;EF - X0>exp[— t2H/L. (6)

This summarizes the procedure to calculate X for a value
of X, such that the front part of the dumbbell moves forward.
First, the value of ¢, is calculated numerically from the alge-
braic Eq. (5). This value is then used in Eq. (6) to calculate
the final value of the stretch. However, for large values of X,
these two equations are not appropriate because the front
bead can retract back into the first region.

This situation is not a problem, however. If we return to
the general formula with position dependent drag and elec-
trophoretic velocity we see there will exist a region of time
from 0<<t<r" for which both beads are in the first region
and have the same drag and electrophoretic velocity. This
time ¢* can also be calculated by solving numerically an al-
gebraic equation

. [—t*zﬂ}_[(ME)lgl]ﬁzH )
U 1Tl Ex o

At time t* the front bead will reach the step change (at x
=0) again. However, the value of the stretch will now be
smaller. This new stretch can be calculated from

- t*ZH}

1

XO,new = XO eXp|: (8)
This value of the stretch is small enough that the integration
will now proceed exactly as in Egs. (5) and (6) but now with
a new value of the initial stretch X ey

To this point we have discussed how the final value of the
stretch X can be calculated for an initial value of the stretch
X The property of interest is the average value of X, given
a distribution of initial stretch X,,. This is calculated simply
as

011805-2



DNA STRETCH DURING ELECTROPHORESIS DUE TO A...

<Xf>=f XfP(X())dXO’ (9)
0

where P(X,) is the probability distribution of initial stretch
and is given by a half-Gaussian because of the linear spring
force law.

Throughout Egs. (5), (6), (7), and (8) we have seen that
two parameters greatly affect the response. These two param-
eters are

5 ok
_A , (10)
2HX ) 1yp
(uE)\ & o
HXp 4y

where X, is a typical value of the initial stretch. For the
linear springs this typical value is taken to be

Xo.yp = Vk5T/H. (12)

In order to compare this toy model with the response of
bead-spring chains and models including finite extensibility,
we need to generalize these parameters to other types of
chains. We choose to do this by replacing

C'H — 47, (13)
Xougp — V(RD)e/3, (14)

where 7 is the longest relaxation time if each bead had drag
coefficient £* and (R?),, is the equilibrium averaged end-to-
end distance squared of the chain. With these substitutions
the two parameters become

i= —5& (15)
vV <R2>eq/ 3

De= wE—i (16)
w"(Rz)eq/3

The first of these parameters is a Wiessenberg number be-
cause the chain sees a difference in the electrophoretic ve-
locity of &,5=(uE),~(uE), over the size of the polymer.
The ratio of these gives an effective strain rate which is used
to calculate a Weissenberg number. This is not like a typical
elongational flow, though, for two reasons. First, as the chain
extends, the same difference in velocities is seen by the chain
over a larger distance, resulting in a decreasing effective
strain rate as the chain stretches. This continues until the
stretching provided by the change in velocity exactly cancels
the spring force trying to resist stretching. Second, the chain
only has a finite residence time across the step change. Once
the rear of the chain passes over the step change in electro-
phoretic velocity, the chain relaxes back to the equilibrium
state. The finite residence time is due both to the fact that the
front of the molecule is pulling the back across the interface
and to the fact that the back is being convected across the
interface. Thus the velocity in region 1 also plays a role,
which comes in through the Deborah number (De). This is a
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Deborah number because the residence time to cross the in-
terface is typically of order \(R?)¢/3/(1E), because
Brownian motion has been neglected in the toy model. This
convective time scale introduces another flow time scale
which can be compared to the relaxation time, separate from
the inverse strain rate, so we can define a Deborah number in
addition to the Weissenberg number, which is always taken
to be the product of the strain rate and the relaxation time
[16,18].

Instead of also using a Deborah number, an effective
strain can be defined as the ratio of the Weissenberg number
to the Deborah number

Wi 0,
e=—]=—’L. (17)
De ~ 2(uE),

This represents an effective strain because it is the product of
the effective strain rate used in Wi and the residence time
used in De. We will find that some situations are more natu-
rally described using De while others with e.

While these parameters play a key role, looking at Eq. (5)
we see that how the drag coefficient changes across the in-
terface also affects the response through the parameter £*/ ;.
We model the drag coefficient using the Stokes law formula
{=6mnR, where 7 is the effective viscosity of the medium
and R is the radius of the bead. If the first region is a gel, this
formula is a simplifying assumption in which we treat the gel
as a Newtonian fluid with an effective viscosity. Because we
are not allowing the radius of a bead to change as it crosses
the step change, the drag coefficient only changes if the ef-
fective viscosity changes.

We must similarly consider how a change in effective
viscosity would affect the mobility of a bead. Calculating the
mobility of a bead a priori is a difficult task which is not the
goal of this work nor is it necessary here. We are only con-
cerned with how a change in the effective viscosity changes
the mobility. Consider the Smoluchowski formula for the
mobility of a sphere w=0/(7«), where o is the surface
charge density, 7 is the effective viscosity of the medium,
and 7! is the Debye length. The mobility is inversely pro-
portional to the effective viscosity, which is expected if the
deformation of the counterionic cloud can be neglected.
Therefore in terms of the effective viscosity, the product {u
is constant for a bead as it crosses the step change. Certainly
this product will depend on the size of the bead, the Debye
length, and many other parameters. However, we are assum-
ing that the only thing allowed to change to affect the drag
coefficient or mobility is the effective viscosity. With respect
to this property, the product {u is constant. This allows us to
relate the ratio {*/{; to the parameters already defined.

As we mentioned previously, a step change in the “field”
ME can result from a step change in E or u or both. Although
the way in which wE changes does not affect the value of uFE
in each region, it is only the change in u (through a change
in effective viscosity) that also affects the drag coefficient.

In the rest of this article we will consider the case in
which E;=E,. The difference in electrophoretic velocity
comes about because of a change in effective viscosity which
affects the mobility. Because the electric field is the same
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FIG. 2. (Color online) Contours of constant (X;)/(X)., for the
toy model as a function of the two parameters De and Wi. From left
to right, the lines represent constant (X;)/(X)eq of 2, 10, and 30.

across the interface, the effective strain becomes e=(u,
— )/ (2u;). However, the change in effective viscosity
means that {,/{,=u,/u; as discussed in the past few para-
graphs. Together, these relations become (*/{;=1/(1+e¢).
This is used in Eq. (5) when the response of the toy model is
calculated.

This may seem like a strange system to consider as an
example of a nonhomogeneous field because the electric
field is actually constant everywhere. However, the concept
of electrohydrodynamic equivalence tells us that it is not the
electric field that plays the role of the externally imposed
“flow field” but instead the product wE. This type of stretch-
ing in a uniform electric field by a change in mobility has
been observed experimentally by Randall er al. [8]. They
performed experiments observing DNA stretching as it exits
from a gel into a region without a gel (from smaller mobility
to larger mobility).

We can characterize the response of this model by exam-
ining the amount of stretching relative to equilibrium
(X1)/{X)eq as a function of Wi and De, as shown in Fig. 2. In
Fig. 3, we show the same data but in terms of Wi and e.

The first key observation is the absence of a coil-stretch
transition. Up to near a value of Wi=1 the toy model pre-
dicts no stretching beyond equilibrium because at this point
the stretching is balanced by the spring force. Therefore, we
see that below a value of about Wi=1 there is only minimal
stretching. At larger Wi the stretch increases approximately
linearly. The slope of this increase is determined by De.

The affine limit is reached as the De becomes very large.
In this region, the back part of the chain is simply convected

| 41.8
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FIG. 3. (Color online) Contours of constant (X;)/{X)., for the
toy model as a function of the two parameters € and Wi. From left
to right, the lines represent constant (X)/(X)q of 2, 10, and 30.

PHYSICAL REVIEW E 76, 011805 (2007)

to the interface. The final stretch is the distance the front of
the chain travels in the time it takes for the back part to reach
the interface. In this limit the toy model gives

X 2Wi
X)W e (18)
<X>eq De

The key observation in this region is that the stretch is only
a function of the ratio Wi/De, or the strain €. Therefore, the
details of the polymer in terms of the coil size and relaxation
time and the applied electric field are irrelevant in determin-
ing the relative stretch from the equilibrium state. In this
region the stretch is simply a function of the ratio w,/pu;.
This region can be seen in Fig. 3. The lower-right region
(Wi €) corresponds to the affine limit (De>>>1). The con-
tours become flat, which means the stretch is independent of
Wi, and only depends on e.

In the limit of very small De, the response approaches that
of a tethered chain. In this region the toy model gives

Xy .
Xp
X Wi. (19)

The mobility in region 1 is small enough that the chain in
region 2 reaches a “steady” or balanced configuration in
which the stretching due to the velocity difference is bal-
anced by the spring force before the rear of the polymer
crosses the interface. Note that in this limit the Wi could also
be thought of as the Peclet number in the two regions be-
cause De— 0. For example, in this limit the average drag
{*—2¢,, and the relaxation time could be related to a diffu-
sivity using scaling relations [19]. Again this limit can be
easily seen in Fig. 3. The upper-left region (e>>Wi) corre-
sponds to small De. In this limit the contours become verti-
cal, i.e., independent of € and only dependent on Wi.

III. LONG CHAIN LIMIT

To verify that these scaling ideas hold even for polymer
chains, with the additional complexity of back-folds and
kinks, we performed Brownian dynamics simulations of
bead-spring chains with Hookean springs. The details of the
Brownian dynamics method are reviewed elsewhere [20].
We used a standard explicit Euler time-stepping scheme, but
the change in drag coefficient, and therefore diffusivity,
across the step change must be correctly included. We used
the midpoint algorithm of Grassia er al. [21] which is able to
account for this change.

Chains were simulated for increasing number of beads,
and it was found that for N=40 the results collapsed onto a
single curve, and thus are in the long chain limit. These
chains in the long chain limit were observed to have the
same scaling with De and Wi as the toy model. This illus-
trates the validity of the two dimensionless groups and the
regions in phase space discussed previously. It is not surpris-
ing that there is not quantitative agreement between the toy
model and the chains which can form kinks and hairpins.
Over a range of parameters it was found that a simple for-
mula can relate the response of the long chains and the toy
model. This approximation is defined by the equation
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FIG. 4. This shows a comparison of Brownian dynamics simu-
lations in the long chain limit to the toy model. We show the result
of the simulations divided by the approximation in Eq. (20). The
symbols represent values of De: 0.5 (crosses), 1.0 (squares), 2.0
(triangles), 5.0 (pluses), and 10.0 (diamonds).

<X >a — <<X >t0 _ )
—f—P-E<X>eq 1+0.6 _LX(X)eq 1. (20)

In Fig. 4 we show the ratio of the simulated stretch of the
bead-spring chains with N=40 to this approximate formula
versus Wi. We see that other than at very small De, this
simple approximation works quite well. The prefactor of 0.6
and the slight change at small De are probably due to the
tendency of chains to form hairpins which tend to reduce the
extension relative to that seen with a dumbbell model.

IV. FINITE EXTENSIBILITY

To this point we have only considered Hookean springs,
which can be infinitely extended. Real polymers, however,
have a finite length. As the chain is extended to a significant
fraction of that fully extended length, the spring force in-
creases nonlinearly, ultimately diverging to prevent the chain
from extending past the contour length. Typically this non-
linear increase in force begins when the extension is approxi-
mately one-third of the contour length. We expect that if the
stretch experienced crossing the step change (X,) is less than
about one-third of the contour length, the finite extensibility
does not influence the result. The stretch will be the same as
with Hookean chains.

We performed a series of simulations of bead-spring
chains with nonlinear springs, with some characteristic data
shown in Fig. 5. The spring force law was developed previ-
ously [22] to model a worm-like chain polymer. The spring
force law is

P 7 77 +<3 3 6>A

— - — = — — —=|r

- w(1-/) \32 4v
1308172 1479

+
32 v e
A1 -7 21
|_4225 487 H1-7), 1)
— +_
v 2

where the spring force is made dimensionless using the per-
sistence length fs =f,A,/(kgT), the spring extension is written
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FIG. 5. Results from simulations with increasing finite extensi-
bility. The Deborah number is De=2.0. The dashed line represents
the approximation for Hookean chains in the long chain limit [Eq.
(20)]. The symbols represent simulations for X (crosses), 2\
(squares), and 3\ (triangles).

as the fractional extension of the spring 7, and v is the num-
ber of persistence lengths represented by each spring.

A common molecule used in single molecule video fluo-
rescence microscopy experiments is N-phage DNA which
contains about 400 persistence lengths when stained with a
fluorescent dye [23]. It is also common to examine concate-
mers which are twice and three times as long, which we call
2\ and 3\. The result of simulations of these three molecules
are shown in Fig. 5. The chains contain 20, 39, and 58 beads,
respectively, so that the number of persistence lengths per
spring is the same. The dashed line is the approximation to a
long chain of Hookean springs [Eq. (20)]. For the nonlinear
bead-spring chains with a large number of beads, we expect
that at small extensions the simulations follow the Hookean
chain result. As the extension grows, it eventually reaches a
significant fraction of the contour length. At this point the
nonlinearity in the spring makes the extension less than that
predicted from the Hookean model which was valid at small
extensions. The finite extensibility for longer contour length
chains does not influence the result until larger Wi as seen in
Fig. 5.

At large enough Wi the extension will approach the con-
tour length of the polymer L. A characteristic of the worm-
like chain in elongational flow is that the approach to full
extension follows the power law Wi~!/2. This is distinguished
from the approach for the freely jointed chain which follows
Wi~!. This same power law has also been observed for the
stretching of tethered DNA in uniform flow, which can be
generated either by hydrodynamic or electrophoretic forces
[24-26]. For a tethered wormlike chain in shear flow, it has
been shown that the approach to full extension follows the
power law Wi~3 [15]. In Fig. 6 we show the approach to
full extension for the case of A DNA modeled with 20 beads.
We see that for both De=2 and De=5 if the stretch is greater
than about 0.3L, the finite extensibility is important and the
approach to full extension decays as Wi~""2.

This influence of finite extensibility can also be under-
stood in terms of the phase plot given in Figs. 2 and 3. For a
given molecule of interest, a curve of constant stretch can be
placed on the phase plot which corresponds to a significant
fraction of the contour length, such as one-third. From force-
extension results for flexible polymers we know the nonlin-
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FIG. 6. Approach of the nonlinear bead-spring chains to full
extension. The chain contains 20 beads and 400 persistence lengths
in the whole chain. The data corresponds to De of 2 (triangles) and
5 (squares). The dotted line is a power law of Wi~"2. The dashed
line represents a value of (X)=0.3L.

earity begins influencing the stretch at about this point. In the
region with stretch less than this value, a simple Hookean
chain can correctly model the stretch experienced. On the
other side of the curve, the nonlinearity will limit the stretch
to a smaller value than that predicted by a Hookean theory.
For molecules of increasing contour length, this curve will
be pushed to higher Wi and smaller De. Thus for increas-
ingly long polymers, more of the region of phase space will
be correctly modeled using a Hookean chain.

V. CONCLUSIONS

In this paper, we have discussed a simplified system
which has a nonhomogeneous strain rate over the scale of a
single polymer molecule. We used a toy model of a single
Hookean spring without Brownian motion to identify a Weis-
senberg number and Deborah number. We showed that the
stretch of Hookean chains in the long chain limit still scale
with these two parameters. The change in velocity divided by
the size of the molecule as the effective strain rate. The chain
stretching is also a transient process, with a finite residence
time experiencing the stretching force.

These two dimensionless groups formed a phase space
which we examined. For Wi= 1 the chain experiences mini-
mal stretching. Above Wi=1 there is an approximate linear
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increase of stretch with Wi. For large De, this increase fol-
lows the affine limit scaling. For very small De, the system
approaches a tethered limit, in which the chain has time to
reach a “steady” balance between the velocity difference
which is trying to stretch the chain and the spring force
which is trying to relax the chain. If chains are stretched to
greater than approximately one-third of the contour length,
the finite extensibility of the chain is important. We showed a
characteristic approach of Wi~"? to full extension for the
wormlike chain.

These same dimensionless groups and this type of phase
space analysis should also provide insight into other more
complex flow geometries in which the flow has nonhomoge-
neous strain rates over the scale of a single molecule as well
as transient flows. These types of flows should become even
more prevalent in single molecule studies in microfluidic de-
vices. Recent experimental studies observing the stretching
of DNA as it moves through a contraction have been per-
formed using hydrodynamic flows [27] and electric fields
[3,8]. Computer simulations have also been done recently for
the case of electric fields [28] to understand which designs
produce the maximum stretching of the DNA. These simula-
tions analyzed the stretching of DNA undergoing electro-
phoresis in different channel contractions. The gradients in
the electric field cause stretching of the DNA. One observa-
tion from those simulations can be understood using the
analysis we have presented. In the nomenclature of this ar-
ticle, the contraction may act similarly to an increase in elec-
tric field E,>E, with no change of the mobility or drag
coefficient. As the electric field is increased, both Wi and De
increase because the device essentially operates at constant
effective strain e. In this limit they see a maximum obtained
stretching which is less than the contour length. This can be
understood by looking at a plot similar to the one in Fig. 3.
Because the experiments are performed at constant strain, the
infinite Wi limit is given by the affine result.
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