
Stochastic Modeling and Simulation of DNA Electrophoretic
Separation in a Microfluidic Obstacle Array

Aruna Mohan† and Patrick S. Doyle*

Department of Chemical Engineering, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139

ReceiVed June 19, 2007; ReVised Manuscript ReceiVed August 10, 2007

ABSTRACT: The size-dependent separation of electrophoresing DNA chains of varying lengths has recently
been demonstrated to occur in microfluidic obstacle arrays. The chain dynamics in the array may be modeled as
a continuous-time random walk, wherein the motion of the chain in the array is interspersed with collisions with
the obstacles, involving a size-dependent random waiting time necessitated by the chain unraveling and unhooking
following each collision. Previous studies employing the continuous-time random walk model do not fully account
for the electric-field dependence of chain extension during collisions in the array. In this study, we extend the
continuous-time random walk model of chain dynamics with account for incomplete chain extension. We evaluate
the accuracy of the model by performing Brownian dynamics simulations of DNA chains of different lengths in
a self-assembled array of magnetic beads at various electric field strengths and lattice spacings and provide
comparisons between the predictions of the model and simulation results for the chain mobilities, dispersivities,
mean collision probabilities, and the separation resolution achievable between different chain sizes in the device.
We demonstrate that the model correctly predicts the nonmonotonicity of the separation resolution with respect
to the electric field strength.

1. Introduction

The use of microfluidic post arrays for the size-based
separation of electric-field driven DNA chains of different
lengths, actuated by their size-dependent collisions with the
posts, has recently been experimentally established. The size
specificity of this technique owes itself to the fact that a longer
chain requires more time for disentanglement following its
collision with an obstacle than a shorter chain. The separation
of DNA chains of various lengths in an obstacle array was first
demonstrated by Volkmuth and Austin,1 who employed obstacle
courses fabricated in silicon via optical microlithography. More
recently, Doyle et al.,2 followed by Minc et al.,3,4 have used
self-assembled columns of superparamagnetic beads confined
in a microfluidic channel, formed upon the imposition of a
transverse magnetic field, to separate DNA chains of different
lengths driven through the channel by the application of an
electric field. Under conditions wherein the post spacing is larger
than the chain sizes, separation in these devices relies on the
formation of hooked chain configurations following collisions.
Consequently, these devices may be used to separate long DNA
chains. In contrast, the conventional separation technique of gel
electrophoresis employs gels having a mean pore size smaller
than the radii of gyration of the chains and relies on the reptation
mechanism to achieve size separation. Under the application
of a constant electric field, the chain mobility in the gel becomes
independent of chain size for long chains, thereby imposing an
upper limit of typically several tens of kilobase pairs on the
chain lengths that can be separated via gel electrophoresis.5

Thus, the use of microfluidic post arrays offers an advantage
over gel electrophoresis. Post arrays have also been fabricated
and employed under conditions such that the post spacing is
comparable to the sizes of the chains to be separated.6

The chain dynamics in the obstacle array may be decomposed
into three sequential, cyclically repeating steps,7,8 namely, the

collision of the chain with an obstacle and the unraveling of
the two arms on either side of the obstacle, the unhooking of
the chain, and the unhindered motion of the chain until its next
collision with an obstacle. This process has been modeled by
Minc et al.7 as a nonseparable continuous-time random walk
(CTRW) on a lattice.9,10 The model of Minc et al. involves a
random waiting time subsequent to a collision encompassing
both the duration of the collision, namely, the time required
for chain unraveling and unhooking, as well as the transit time
at the free solution electrophoretic velocity between successive
collisions.

Minc et al., following the analysis of Popelka et al.,11 assumed
the unraveling time for each arm of the chain to be proportional
to the fraction of the chain represented by that arm. However,
it has recently been established12 that, upon modeling the post
as a tether point during the unraveling process, the unraveling
of the arms under conditions of strong field strengths occurs
via a convective mechanism, whereby the transient arm length
grows linearly in time at a rate equal to the free solution
electrophoretic velocity and independent of its length. The
analysis of Minc et al., therefore, overestimates the unraveling
time and, hence, the duration of the collision. Another drawback
of the analysis is that the collision probability at each obstacle
was set equal to the areal post density, irrespective of the size
of the chain. Moreover, Minc et al. equated the chain extension
at the end of the unraveling process to the contour length of
the chain, thereby neglecting its field-dependence. Consequently,
their model failed to predict the experimentally observed field-
dependence of the separation resolution.3

Recently, an attempt was made to take into account the
incomplete extension of the chain during collisions at finite field
strengths by Dorfman.8 This study modeled the unraveling
process as being equivalent to the unraveling of a tethered
polymer chain in a uniform solvent flow field at a solvent
velocity equal to the free solution electrophoretic velocity. With
this assumption, use may be made of the results of Brochard-
Wyart13 relating the steady-state extension of a tethered chain
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to the solvent velocity, upon replacing the solvent velocity with
the relative velocity of the solvent with respect to the extending
chain arm, and solving for the rate of chain growth as a function
of the instantaneous chain length, under the assumption of
quasisteady stretching. The relationship between chain extension
and solvent velocity at steady-state provided by Brochard-
Wyart13 is expressed in eq 12 of ref 8, wherein the symbol “V”
may be associated with the solvent velocity relative to the rate
of chain growth (namely,µ0E - dL1/dt in the notation of ref
8). However, the symbol “V” in eqs 5 and 6 of ref 8 refers to
the rate of extension of the long arm of the chain (or in
dimensional notation, dL1/dt). The study of ref 8 subsequently
assumes equivalence of the relationship between the steady-
state chain extension and the free solution electrophoretic
velocity and that between the transient chain extension and its
rate of growth, thereby rendering invalid the analysis of ref 8.

The development of a more accurate model of chain dynamics
in an obstacle array requires knowledge of chain-obstacle
interactions during and subsequent to a collision. Several studies
have focused on the mechanism of collision of a chain with a
single, stationary obstacle. Nixon and Slater14 have provided a
rope-over-pulley model of chain unhooking, assuming Gaussian
and uniform distributions of the initial difference in arm lengths
on either side of the obstacle following a collision. These authors
have found that the mean and variance of the unhooking time
exhibit the same scaling dependence on the chain length
regardless of the initial distribution of arm lengths. A strong
dependence of the collision probability and the duration of a
collision on the impact parameter has been demonstrated in refs
15 and 16. More complicated configurations involving the
hooking of a single chain around two or more obstacles have
been theoretically studied in ref 17.

More recently, as described in a series of papers, Randall
and Doyle18-20 have provided detailed experimental investiga-
tions of polymer-obstacle collisions in PDMS microchannels
enclosing an obstacle or a dilute array of obstacles and have
proposed physical mechanisms for the dynamics of chain
unraveling and unhooking subsequent to a collision. These
authors have classified polymer-obstacle collisions into J- or
U-collisions (according as the initial lengths of the two arms
of the chain are unequal or equal) involving the sequential
unraveling and ropelike unhooking of the two arms of the chain,
X-collisions, wherein the long arm of the chain continues to
unravel as the chain is unhooking from the post, and rare,
metastable W-collisions, resulting from the formation of en-
tangled chain configurations.20 Different models were proposed
for the unhooking time and the holdup time during which the
center of mass motion is obstructed by the obstacle following
X- and J-collisions, inspired by the distinct mechanisms
operative in the two cases. X-collisions were found to occur
predominantly under conditions of strong electric fields or,
equivalently, at high Peclet numbers. These findings were
corroborated by the simulation study of Kim and Doyle,21 based
on Brownian dynamics simulations of collisions ofλ-, 2λ-, and
T4-DNA with a single post. The latter study revealed that a
crossover from the predominance of X-collisions to J-collisions
occurs at an initial short arm fraction of approximately 0.4, with
X-collisions being predominant at initial short arm fractions
below this value. Kim and Doyle further provided comparisons
of the unhooking time and center of mass holdup time as
predicted by the collision models of ref 20 with simulation data.
In accord with the experimental observations of ref 20, it was
discovered that the ropelike unhooking time of a chain at
constant extension provides an excellent approximation of the

center of mass holdup time during a polymer-obstacle collision
for the entire range of field strengths and chain lengths studied
for both X- and J-collisions. Although the holdup times for
W-collisions observed in simulations differed from the predicted
holdup times of the X- and J-models, as well as from the
ropelike unhooking time, such collisions are rare and may be
neglected. Furthermore, Kim and Doyle also observed the
probability distribution of the initial short arm fraction to be
increasingly well-approximated by a uniform distribution as the
field strength is increased.

In the present study, we make use of the insight gained into
chain-obstacle collisions from the aforementioned studies to
develop a more accurate CTRW model of chain dynamics in
the array. The center of mass holdup time following each
collision is well-approximated by the ropelike unhooking time,
as described in the preceding paragraph. We employ the low-
force and large-force limits of the Marko-Siggia interpolation
formula for the wormlike chain,22 which best describes DNA
elasticity, to derive the dependence of chain extension on the
field strength.21 Furthermore, we account for the dependence
of the collision probability at each obstacle on the chain size.
Concomitantly, we perform Brownian dynamics simulations of
DNA chains of three sizes, namely,λ-DNA and the two shorter
chainsλ/3-DNA and 2λ/3-DNA resulting from its digestion with
the restriction enzyme Xho I,2 in microfluidic post arrays formed
from the self-assembly of magnetic beads.23,24 We analyze the
shortcomings of the model in light of the results for chain
mobility, dispersivity, collision probability, mean distance
covered between successive collisions, and the separation
resolution obtained from simulation.

The paper is organized as follows. In section 2, we present
the revised CTRW model. Section 3 details our simulation
methods, while in section 4, we provide comparisons between
model predictions and simulation results and evaluate the
performance of the model. Section 5 provides a summary of
our findings.

2. CTRW Model of Chain Dynamics

In this section, we briefly describe the main features of the
revised CTRW model of DNA motion in the obstacle array.
The chain is modeled as a random walker commencing from
position r ) 0 and moving in the field direction at the free
solution electrophoretic velocityµ0E between successive col-
lisions, withµ0 the free solution electrophoretic mobility andE
the magnitude of the electric field strength. When a collision
occurs at an obstacle, the chain waits at the locationr ) na of
the obstacle during the unraveling and unhooking processes
before continuing at the free solution electrophoretic velocity
until the next collision, wherea denotes the lattice constant and
n is an integer. We denote byτH the holdup time20 during which
the center of mass motion is obstructed by the obstacle, which
we approximate by the expression

representing the ropelike unhooking time of a chain at constant
extension, withr0 the initial fraction of the chain contained in
the short arm andL the total chain extension at the start of the
unhooking process. Equation 1 has been found to provide an
excellent approximation to the holdup time for a wide range of
chain lengths and field strengths.21 The short arm fraction at
the start of each collision,r0 ) x1(0)/L, with x1(0) the short
arm length at the start of the unhooking process, is assumed to
be uniformly distributed in the interval [0, 0.5]. The assumption

τH ) - L
2µ0E

ln(1 - 2r0) (1)
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of a uniformly distributed initial short arm fraction has been
found to hold at high field strengths.21 The use of other
distributions at low field strengths, such as the Gaussian
distribution, may have a quantitative effect on the results.14

The transition time taken to move from the start of one
chain-obstacle collision to the next is now computed as the
sum of the holdup timeτH and the transit time until the next
collision occurring a distancer ) na away, i.e.,

Following Minc et al.,7 we assume that no collisions occur along
the extended backbone of the chain and set the probabilityh(n)
that successive collisions are separated byn lattice columns to
be

whereF is the collision probability at any obstacle andn* is
the first lattice position at which the next collision can occur,
given by the expression7

Note that the mean distance covered between successive
collisions obtained from eq 3 is

Equations 1-3, taken in conjunction with the assumption that
r0 is uniform in the interval [0, 0.5], enable the computation of
the transition probability density function for making a transition
between successive collisions separated by a given number of
lattice columns in a specified time duration. Knowledge of the
transition probability density next enables the calculation of the
probability densityp(r,t) of the positionR(t) of the random
walker at timet. For this purpose, we adopt the CTRW model
on a discrete lattice developed by Scher and Lax9,10 and
employed previously by Minc et al.7 and Dorfman.8 The reader
is referred to the aforementioned studies for details. The long
time asymptotic mean velocityU and dispersivityD of the
walker are related as usual for diffusion processes to the mean
and variance of the random walker’s positionR(t) in the long
time limit of t f ∞. We omit the tedious but straightforward
algebraic details and simply provide the results below:

and

where we have introduced the mobilityµ via the relationU )
µE.

The Scher-Lax model9 assumes that, following a collision,
the random walker waits at the lattice site representing the
obstacle position for the entire duration of the transition time
and instantaneously makes a jump to the next lattice site at the
end of the transition time period. This model has been variously
referred to as the leaper model10 or the jump model.25 In reality,

the DNA molecule moves at approximately the free solution
electrophoretic velocity between successive collisions. A CTRW
model wherein the random walker moves at a constant velocity
between successive turning points, referred to as the creeper
model10 or the velocity model,25 has been previously proposed.
Although both models are known to exhibit the same asymptotic
behavior, they may differ by a numerical constant.10,25However,
the form of the transition probability density used in the present
study (as well as in refs 7 and 8) decays exponentially for large
values of the transition time, rendering the long time behavior
of the moments of the walk insensitive to the type of model
used.10

The collision probabilityF and the field-dependence of the
chain extensionL at the start of unhooking remain to be
specified. We postulate thatF may be approximated by the
expression

where Rg is the radius of gyration of the chain. Equation 8
attempts to account for the dependence of the collision prob-
ability on the chain size and is expected to be best-suited to
situations wherein the post diameter is small compared to the
coil size, which in turn is small compared to the lattice constant,
under the assumption that the chain instantaneously relaxes to
its equilibrium coil shape following a collision. We, however,
make use of eq 8 even in situations wherein the chain radius of
gyration is comparable to the post radius.

The chain extension will be derived from the low- and large-
force limit of the Marko-Siggia formula in the regime of weak
and strong stretching, respectively. The former, Gaussian regime
derives from the Marko-Siggia rule in the limitL /L , 1, while
the latter corresponds to the limitL /L j 1, whereL denotes
the contour length of the chain. The crossover from weak
stretching to strong stretching occurs at Pechain ∼ 1,12 where
we have introduced the Peclet number

In eq 9, úchain, A, and kBT refer, respectively, to the drag
coefficient for the chain, the persistence length of double-
stranded DNA (known to be 53 nm), and the thermal energy.
Note that eq 9 represents the nondimensional drag force acting
on the chain, whereby the value Pechain ∼ 1 delineates the
regimes of weak and strong chain stretching.12 The Marko-
Siggia interpolation rule then yields

where an effective force equivalent to1/4 of the drag force
µ0Eúchain has been employed to account for the nonuniformity
in drag along the chain.21,22 As intimated by eq 10, the
dependence of the chain extension on the Peclet number is
deduced from the Marko-Siggia interpolation formula under
the assumption that a sharp transition from weak to strong
stretching occurs at Pechain) 1, although no such sharp transition
occurs in reality. We have verified that the results are hardly

τ ) τH + na
µ0E

(2)

h(n) ) {F(1 - F)n-n* if n g n*
0 otherwise

(3)

n* ) L
a

(4)

a〈n〉 ) a(1 - F
F

+ n* ) (5)

µ
µ0

)
2(1 - F + Fn*)

3Fn* + 2(1 - F)
(6)

D
µ0Ea

)
n*2F [2 + F(2n* - 3) + F2(n* - 1)2]

[3Fn* + 2(1 - F)]3
(7)

F )
Rg

a
(8)

Pechain)
µ0EúchainA

kBT
(9)

L ) {L
6

Pechain, Pechaine 1

L(1 - Pechain
-1/2), Pechain> 1
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affected upon instead assuming the transition to occur at Pechain

) 2, corresponding to roughly 30% chain extension.
Equations 6 and 7 may now be substituted in the expression7

for the separation resolutionRs, where the subscripts 1 and 2
refer to the two species to be separated, andLs is the separation
length.

3. Brownian Dynamics Simulations

3.1. Chain Simulations.We adopt the technique of Brownian
dynamics applied to the bead-spring model of the chain to
simulate its behavior in a post array. Brownian dynamics is
based on the application of the Langevin equation

to each beadj ) 1, .., N of the chain, wherer j denotes the
position vector of beadj relative to the origin, whileFj

s andFj
ev

refer, respectively, to the spring force exerted on beadj by the
adjoining springs and the net excluded volume force exerted
on beadj by the remaining beads. The distortion of the electric
field E caused by the presence of finite-size, nonconducting
posts is neglected. The force exerted on the negatively charged
DNA chain by the electric field is accounted for via the inclusion
of the termµ0E in eq 11.26 Contrary to convention, we assign
the direction ofE to that of the electric force experienced by a
negative test charge, so thatµ0 is positive. Free draining
conditions are assumed, and the drag coefficient for a single
bead, given by Stokes’ law, is denoted byú, wherebyúchain )
Nú. The termW j represents a three-dimensional Wiener process,
with 〈dW j(t)〉 ) 0 and〈dW j(t)dWk(t′)〉 ) dtδjkδ(t - t′)δ, where
k ) 1, .., N and δ is the identity tensor. Thex-coordinate is
measured along the direction of the electric fieldE.

We consider DNA molecules of three lengths, namely,
λ-DNA (having 48 502 base pairs with a contour length of 20.5
µm when stained with YOYO dye in the ratio of 4 base pairs
of DNA per molecule of dye) and the two fragments 2λ/3-DNA
(containing 33 497 base pairs) andλ/3-DNA obtained from the
digestion ofλ-DNA with the restriction enzyme Xho I.2 We
adopt the discretization used by Kim and Doyle to modelλ
-DNA21 and selectNk,s ) 5.23 Kuhn lengths per spring, with
the Kuhn lengthbk ) 0.106 µm being equivalent to two
persistence lengths. At this discretization, used in conjunction
with a sufficiently small time step as described later in this
section, we are assured that aphysical configurations, wherein
the chain appears to intersect an obstacle, are forbidden from
arising. Concurrently, use of this discretization offers a com-
promise between ensuring an acceptable computational speed
and providing an adequately fine-grained description of the
chain. We, therefore, selectN ) 38 beads to modelλ-DNA,
whereas 2λ/3-DNA andλ/3-DNA are modeled byN ) 27 and
N ) 12 beads, respectively. The corresponding chain lengths
of 2λ/3-DNA andλ/3-DNA, 14.4µm and 6.1µm, respectively,
differ slightly from the values 14.2µm and 6.3µm, respectively,
estimated by assuming a linear dependence of the contour length
on the number of base pairs.

We perform simulations at a number of experimentally
accessible field strengths expressed in terms of a Peclet number
as defined by eq 9, with Peλ, based on the valueN ) 38 selected
for λ-DNA, varying from 0.1 to 50. The corresponding values
of Pechain for 2λ/3-DNA andλ/3-DNA are obtained by means

of the equality Pechain) PeλNchain/38, whereNchain is the number
of beads modeling the chain of interest. This range of values
corresponds to electric field strengths ranging from 0.5 to 100
V/cm, estimated from eq 9 for aλ-DNA molecule having a
radius of gyration of 0.69µm and a thickness of 2 nm27 at T )
298 K in a solvent of viscosity 1 cP by making use of the Zimm
drag coefficient for a coil at Peλ ) 0.1 and the drag coefficient
for a rod at Peλ ) 50,28 and using the experimentally measured
value ofµ0.3 In addition, forλ-DNA, we also provide data for
chain dispersivity at Peλ ) 0.01 and 0.05.

The elasticity of DNA is characterized by the wormlike chain
model, the force-extension behavior of which is described by
the interpolation formula due to Marko and Siggia,22 modified
by Underhill and Doyle29 by the introduction of an effective
persistence length in place of the true persistence length.
Following Kim and Doyle,21 we adopt the modified Marko-
Siggia law and employ the ratio 1.91 of the effective persistence
length to the true persistence length deriving from the low force
criterion of Underhill and Doyle.29 We model intrachain
exclusion by means of the soft, repulsive force proposed by
Jendrejack et al.,30 given by the expression

whereV is the excluded volume parameter andSs
2 ) Nk,sbk

2/6
the mean equilibrium size of a Gaussian spring ofNk,s Kuhn
segments. We employ the valueV ) 0.0004µm3, determined
by Kim and Doyle to accurately reproduce the radius of gyration
of λ-DNA. With the above parameters, the equilibrium radii of
gyration obtained from simulations of 2λ/3-DNA andλ/3-DNA
in free solution are 0.59µm and 0.37µm, respectively, which
are close to the values 0.56µm and 0.34µm obtained from the
good solvent scaling lawRg ∼ L0.589.31

We consider channel heights large compared to the size of
the chain3 and ignore interactions between the beads and the
channel walls. As a result, the dynamic behavior of interest to
us is confined to the two dimensions spanning the channel plane.
The interactions between the chain and the obstacles in the array
are modeled by hard-sphere exclusion implemented via the
Heyes-Melrose algorithm,32 whereby an overlap between a
bead and an obstacle resulting from the integration of eq 11 at
any time point is subsequently corrected by displacing the bead
along the line of centers until the bead and the obstacle are just
touching. The beads are modeled as having no hard-sphere
volume.21 Since hard-sphere exclusion is implemented inde-
pendent of time stepping, the possibility exists that a spring
may be overstretched as a result of its implementation. This
problem is alleviated by using sufficiently small time steps.
Simultaneously, the time step must also be small compared to
the relaxation time of a single spring. At a Peclet number below
0.1 for each chain, a time step of 0.01úQ0

2/(kBT), with Q0 the
maximum spring length, was found to suffice, with the time
step at stronger field strengths chosen to be inversely propor-
tional to the Peclet number. Under these conditions, overstretch-
ing is largely eliminated. In the extremely rare instances when
overstretching occurred (in fewer than a millionth of the total
number of time steps for a typical trajectory), the spring force
was calculated by linearly extrapolating the modified Marko-
Siggia force law from the value of the force at 99% spring
extension.

Rs )
|U1 - U2|
U1 + U2 xLs

16(U1

D1
+

U2

D2
) (10)

dr j ) [µ0E + 1
ú
(Fj

s + Fj
ev)]dt + x2kBT

ú
dW j, j ) 1, ..,N

(11)

Fj
ev ) VkBTNk,s

2 π( 3

4πSs
2)5/2

∑
k)1,k*j

N

exp[-
3

4Ss
2|r j - r k|2](r j - r k) (12)
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We adopt the semi-implicit predictor-corrector scheme
described in ref 28 for the integration of eq 11. Averages are
performed over an ensemble of between 100 and 1000 chains.
The array geometries employed are described in section 3.2.
Initial equilibrium configurations are generated by employing
the Marko-Siggia force law to simulate the evolution to
equilibrium of initially Gaussian coils.12 These coil configura-
tions are placed upstream of the array at the start of the
simulation and are subsequently stretched and deformed from
their initial coil shape owing to collisions, resulting in an initial
increase in chain stretch. Subsequently, the stretch equilibrates,
fluctuating about a steady mean value. A time duration
corresponding to the time taken to cross a distance of 50-100
lattice spacings at the free solution electrophoretic velocity is
found sufficient to ensure equilibration. Subsequently, the
equilibrated chain is simulated further in the array for the same
time duration.

The long time mean velocity and dispersivity are obtained
from the mean and variance of the distribution of the center of
massx-coordinates (denotedxcm) for an ensemble of chains at
the end of the simulation, measured relative to their values at
the end of the equilibration process, by fitting to a normal
distribution and using the relations〈xcm〉 ) Ut and var(xcm) )
2Dt, wheret is the time duration of the simulation following
the equilibration process. In all cases, the assumption of
normality is confirmed by performing the Kolmogorov-
Smirnov test.33 Additionally, we define a collision to have
occurred when a portion of the chain is present in all four
quadrants of a coordinate plane whose origin lies at the obstacle
center,20,21 and enforce the conditions that a collision with a
given obstacle occur only once per trajectory, and (although
the situation did not arise in our simulations) that a collision at
a given time step with multiple obstacles be counted as a single
collision. We deduce the mean probability of collision at each
obstacle from simulation by dividing the number of collision
events occurring in a trajectory by the number of lattice spacings
covered by the chain center of mass in that trajectory following
equilibration, averaged over the ensemble. We also measure the
mean distance covered by the chain center of mass between
successive collisions in each trajectory after equilibration,
averaged over the ensemble, while excluding trajectories in
which fewer than two collisions occur in performing the
ensemble-average. We note that this exclusion of trajectories,
arising from our inability to account for the effectively infinite
distance between collisions observed in trajectories involving
a single collision or no collisions, may adversely impact our
prediction of the mean distance covered between collisions, as
pointed out in section 4.

3.2. Selection of Array Geometries.We chose a hexagonal
geometry as being representative of the lattice pattern resulting
from the self-assembly of magnetic colloids23,24and conducted
an initial set of simulations ofλ-DNA in a planar, semi-infinite
hexagonal array occupying the right-half planex g 0, composed
of obstacles of diameterd ) 1 µm at a lattice constant ofa )
3 µm. The array orientation was such that the separation between
adjacent lattice points along thex-axis was equal to the lattice
constant. Hard-sphere exclusion between the chain and the
obstacles was enforced by exploiting the regularity of the lattice
to identify the obstacles in the vicinity of each bead of the chain
at every time step. Figure 1 illustrates the results of these
simulations. It is clear from Figure 1 that the obstacles in a
regular, dilute lattice provide straight channels through which
the chain can pass without hindrance, and the normalized
mobility and normalized dispersivity of the chain rapidly

asymptote to 1 and 0, respectively, as the Peclet number is
increased. This observation is consistent with the finding of Patel
and Shaqfeh34 that disordered post arrangements are essential
for separation.

We were motivated by the above finding to employ an array
more representative of a magnetic colloid assembly, generated
via free draining Brownian dynamics simulations of a collection
of hard spheres, each of diameterd ) 1 µm, with repulsive
point dipoles at their centers in two dimensions, with a magnetic
field applied normal to the plane, and with the neglect of mutual
induction between the colloids.23,24 The magnetic particles are
confined to the portion of thex-y plane bounded byx ) 0, x
) X, y ) 0, and y ) Y by means of periodic boundary
conditions.X and Y, denoting the length and width of the
periodically repeating unit constituting the semi-infinite, planar
array occupying the regionx g 0, are chosen to be 600.1 and
129.9µm, respectively. The initial condition corresponds to a
perfect hexagonal lattice, with four times as many particles
placed along thex-axis as along they-axis. This condition, in
conjunction with the ratioY/X ) x3/8 of the unit cell
dimensions, was chosen to yield an array orientation such that
the separation between adjacent lattice points along thex-axis
was equal to the lattice constant.

The dimensionless interaction energy for the magnetic colloid
system is defined as23,24

whereR ) a sin(π/3), a denotes the lattice spacing, andΛ is
the ratio of the interaction potential between two dipoles oriented
parallel to each other and separated by a distanced, to the
thermal energy.23,24 All two-dimensional systems at the same
value of Γ behave identically ifR is the only relevant length
scale in the system, provided that the system size is large enough
that finite size effects are negligible.23,24We chose the valueΓ
) 12, at which the lattice possesses neither translational nor
long-range orientational order and, hence, lies in the liquid
phase. The value ofΓ was held constant at 12, and the number
of colloids Nc in the unit cell andΛ were varied in order to
vary the lattice spacing while holding fixed the remaining
lattice characteristics, by means of the relationa )
[x3Nc/(2XY)]-1/2.23,24 In all simulations, pairwise dipole-

Figure 1. (a) Normalized mobility and (b) dispersivity ofλ-DNA as
a function of Peλ calculated from simulation in a regular hexagonal
array having a lattice constant of 3µm.

Γ ) Λ
2(dR)3

(13)
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dipole interactions were considered only between pairs of
particles separated by a distance less than a cutoff of 7R. The
simulations were run until the defect concentration reached
steady state,24 at a time step of approximately 10-3ú′d2/(kBT),
where ú′ is the drag coefficient for each magnetic colloid.
Following the attainment of steady state, the positions of the
magnetic colloids were held constant and were not allowed to
evolve further once the chain was introduced in the array. The
reader is referred to refs 23 and 24 for further details on the
simulation methods adopted for magnetic colloid systems and
their characteristics.

We employ assemblies ofNc ) 40 000, 10 000, 4900, 2500,
1600, and 900 colloidal particles, yielding mean lattice spacings
averaged over nearest-neighbor pairs23,24 of 1.53, 3.06, 4.37,
6.12, 7.65, and 10.21µm, respectively. The corresponding defect
concentrations (where a defect is defined as a particle with
greater or fewer than six nearest neighbors) are 0.306, 0.301,
0.292, 0.307, 0.311, and 0.332, respectively. The slight increase
in defect concentration for the system containingNc ) 900
particles may be the result of finite size effects associated with
the relatively small size of the system. However, finite size
effects are not significant atΓ ) 12, which is sufficiently far
from the phase boundary.23,24 The assembly having a mean
lattice spacing ofa ) 3.06µm is employed to study the behavior
of the chain at varying field strengths. This lattice is illustrated
in Figure 2, which provides a comparison between a regular
hexagonal lattice and the former quasi-regular array of magnetic
colloids as well as an experimentally generated lattice of
magnetic colloids from the study of Doyle et al.2 In studies
where the mean lattice spacing is varied, the field strength is
held constant at its value corresponding to Peλ ) 5.

Upon the introduction of the chain in the array, the imple-
mentation of hard-sphere chain-obstacle exclusion and the
identification of hooked chain configurations require that a
search be performed over obstacles at each time step. This is
facilitated by binning the obstacles in the unit cell at the start
of the simulation via a linked list implementation of neighbor
lists within each bin.35 The bin dimensions are chosen to be
comparable to the mean lattice spacing. Periodic boundary
conditions are imposed on the chain at the boundaries of the
unit cell by periodically reconstructing the unit cell in the
vicinity of the chain. Subsequently, chain-obstacle overlaps
may be detected by searching only the bin containing the
position of each bead of the chain and the eight surrounding
bins, and similarly, hooked chain configurations may be
identified by searching only the bins enclosed by the maximum
and minimum chain coordinates.

The results of our simulations in the self-assembled magnetic
colloid arrays are described in section 4.

4. Comparison of Model Predictions and Simulation
Results

4.1. Varying Field Strengths. Figures 3-5 provide com-
parisons between the normalized mobility and dispersivity and
the mean distance covered between successive collisions
obtained from simulations and those predicted by the CTRW
model for the three chain lengths studied at various field
strengths at a fixed mean lattice spacing of 3.06µm. Further-
more, Figure 6 provides a comparison between the mean
collision probability observed in simulations and those assumed
in the present CTRW model, i.e.,Rg/a, and in the study of Minc
et al., i.e.,d/a. The mobility is normalized with respect to its
free solution valueµ0 and the dispersivity with respect toµ0Ea.
The error bars for the mobility and dispersivity are obtained

from the 95% confidence limits for the mean and variance upon
fitting the distribution of center of massx-coordinates at the
end of the simulation relative to their equilibrated values to a
normal distribution.33 Similarly, the error bars for the mean
distance covered between collisions and the mean collision
probability represent 95% confidence limits for the means of
the respective distributions, again upon fitting to a normal
distribution. The predictions of the CTRW model for the
normalized mobility and dispersivity derive from eqs 6 and 7,
respectively, taken in conjunction with eqs 4 and 8-10. The
mean distance between collisions following from the CTRW
model is stated in eq 5.

The simulation data depicted in Figures 3-6 enable the
identification of three regimes delineated by the Peclet number

Figure 2. (a) A regular hexagonal lattice, (b) a portion of a
self-assembled array of magnetic beads having a mean lattice spacing
of 3.06 µm, and (c) a portion of an experimentally generated
self-assembled array of magnetic beads,2 corresponding to a section of
width 40 µm.
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for the chain, namely, (i) Pechain< O(A/Rg), (ii) O(A/Rg) < Pechain

j O(1), and (iii) Pechain . O(1). Below, we investigate the
physical mechanisms operative in these three regimes.

The transition occurring at Pechain ∼ O(1) was encountered
earlier in eq 10 and corresponds to the transition from the regime
of weak stretching to strong stretching. For Pechain j O(1), the
chain is in the near-equilibrium, Gaussian regime and its
elasticity is well-described by linear Hooke’s law behavior,
corresponding to the limitL /L , 1 of the Marko-Siggia law.
However, as the Peclet number is increased, the behavior of
the chain is increasingly dominated by its finite extensibility
and for Pechain . O(1), we approach the opposite limitL /L j
1.12

Figures 3 and 5 reveal the existence of minima in the chain
mobility and the mean distance covered between successive
collisions at anO(1) value of Pechain. These minima correspond
well with the occurrence of a maximum in the collision
probability at anO(1) value of Pechain, as seen in Figure 6. The
existence of a minimum in the chain mobility at anO(1) value
of the chain Peclet number was also noted by Patel and Shaqfeh
in their study of chain dispersion in random arrays.34 These
authors have interpreted the chain Peclet number as representing
the ratio of the escape time for the chain to diffuse away from
the obstacle to the hairpin formation time. The time scale
Rg

2/Dchain [with Dchain ) kBT/(Nú)] for center of mass diffusion
over a distance equal to the equilibrium chain radius represents
a time scale for escape, enabling the chain to diffuse away from
the obstacle and, hence, avoid hooking, while a time scale of

L/(µ0E) represents a time scale for the unraveling of the chain
arms and may be identified with the time of formation of a
hooked chain configuration. As the ratio of the former to the
latter, µ0E/Dchain(Rg

2/L) ∼ Pechain, increases to anO(1) value,
the probability of hooking collisions increases. We caution that
the identification of Pechainwith the aforementioned ratio of time
scales is strictly valid only in aΘ solvent. Upon taking account
of the intrachain exclusion arising under good solvent conditions,
a weak dependence on the chain length appears in the scaling
relationµ0E/Dchain(Rg

2/L) ∼ Nk
0.2Pechain, deriving from the scal-

ing law Rg
2 ∼ Nk

1.2bk
2 for a self-avoiding walk ofNk Kuhn

steps.31 However, for the chain sizes presently under consid-
eration,Nk ∼ 100 and, consequently,Nk

0.2 ∼ 1, whereby our
conclusions remain valid.

In consequence of the preceding scaling arguments, the
probability of forming a hooked, hairpin configuration upon
encounter with an obstacle initially increases as the Peclet
number increases to approach anO(1) value. However, as the
Peclet number is further increased beyond a value of 1, the chain
becomes highly stretched during collisions and the cross-
sectional area subsequently presented to the obstacles decreases.
As a result, the collision probability decreases, and the mobility
and mean distance covered between collisions increase as the
Peclet number is increased beyondO(1) values. The location
of these extrema is shifted to higher values of Pechain in the
case ofλ/3-DNA, possibly owing to finite size effects arising
in shorter chains.

We next consider the behavior of the chain at Peclet numbers
of the order ofA/Rg or, equivalently, 0.1 for the chain sizes

Figure 3. Normalized mobility of (a)λ-DNA, (b) 2λ/3-DNA, and (c)
λ/3-DNA as a function of the Peclet number forλ-, 2λ/3-, andλ/3-
DNA, respectively, obtained by simulation in a self-assembled array
of magnetic beads having a mean lattice spacing of 3.06µm (O), that
predicted by the model (s), and that predicted by the model of Minc
et al. (- - - -). The error bars represent 95% confidence bounds on
simulation results.

Figure 4. Normalized dispersivity of (a)λ-DNA, (b) 2λ/3-DNA, and
(c) λ/3-DNA as a function of the Peclet number forλ-, 2λ/3-, andλ/3-
DNA, respectively, obtained by simulation in a self-assembled array
of magnetic beads having a mean lattice spacing of 3.06µm (O), that
predicted by the model (s), and that predicted by the model of Minc
et al. (- - - -). The error bars represent 95% confidence bounds on
simulation results.
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under consideration. We introduce a second parameter Pecoil,
defined as follows:

Pecoil represents the ratio of the drag force to the thermal force
acting on the chain in its equilibrium, coil configuration. An
O(1) value of Pecoil marks the onset of Gaussian chain stretching,
whereas the chain configuration is dominated by thermal forces
at lower values of Pecoil.13,22For the systems under consideration,
this transition occurs at anO(0.1) value of Pechain. Consequently,
for O(0.1) or lower values of Pechain, the chain retains its coil
configuration. The mobilities increase in this regime as the field
strength is increased, since the dominant mechanism of chain
motion gradually changes from thermal diffusion to convection
by the field. Because of the near-absence of chain stretching,
the probability of hooking collisions is very low. The apparent
increase in collision probability suggested by Figure 6a,b in this
regime is merely an artifact of its definition as the number of
collisions per lattice spacing covered by the chain, since at low
values of Pechain, the chain center of mass does not cover a
significant distance. Moreover, the chain, by darting around
obstacles without forming a hooked configuration, is able to
satisfy the condition imposed by us to identify collisions that a
portion of the chain be present in all four quadrants surrounding
the obstacle center. For the same reason, the apparent decrease

in the distance covered between successive collisions suggested
by Figure 5a,b is also an artifact of the criteria adopted by us
for its measurement.

In the regime where Pecoil e 1, we may expect the ap-
proximation of the DNA coil by a rigid sphere of equivalent
radius to be valid. The mobility and diffusivity of a particle in
periodic and random lattices under the application of a field
have been studied by Gauthier and Slater and Gauthier et al.
via Monte Carlo simulations.36,37 These authors found that the
mobility and diffusivity of the particle remain constant inde-
pendent of the field in the regime Pecoil e 1, while the diffusivity
exhibits a power-law dependence on Pecoil with an exponent of
2 for Pecoil > 1, where Pecoil is now interpreted as the ratio of
the force exerted by the field to the thermal force acting over a
length scale equal to the particle dimension. Consistent with
these findings in the regime Pecoil j 1 or, equivalently, Pechain

j 0.1, Figure 7 reveals that the dispersivity of the chain
normalized with respect to its free solution value remains
relatively unaffected by the field for Pechain j 0.1. The
approximation of the chain by a rigid sphere is no longer valid
as Pechain is increased beyond this value. Figure 7 suggests a
power-law dependence of dispersivity on the chain Peclet
number for Pechain > 0.1, with an exponent of approximately
1.3. The faster-than-linear rise in dispersivity with the chain
Peclet number is also manifested in Figure 4 and is attributed
to the fact that while collisions become increasingly rare at high
field strengths, those that do occur involve long holdup times.

Figure 5. Mean distance〈n〉a covered between successive collisions
by (a) λ-DNA, (b) 2λ/3-DNA, and (c)λ/3-DNA as a function of the
Peclet number forλ-, 2λ/3-, andλ/3-DNA, respectively, obtained by
simulation in a self-assembled array of magnetic beads having a mean
lattice spacing of 3.06µm (O), that predicted by the model (s), and
that predicted by the model of Minc et al. (- - - -). The error bars
represent 95% confidence bounds on simulation results. The simulation
data shown forλ/3-DNA correspond to Peλ/3 ) 1.58 and higher only,
since collisions were observed to occur in fewer than 10% of the
simulated trajectories at lower field strengths.

Pecoil )
µ0EúN

kBT/Rg
≡ Pechain

Rg

A
(14)

Figure 6. Mean collision probabilityF of (a) λ-DNA, (b) 2λ/3-DNA,
and (c)λ/3-DNA, calculated as the number of chain-obstacle collisions
per lattice column crossed by the chain center of mass, as a function
of the Peclet number forλ-, 2λ/3-, andλ/3-DNA, respectively, obtained
by simulation in a self-assembled array of magnetic beads having a
mean lattice spacing of 3.06µm (O). The error bars represent 95%
confidence bounds on simulation results. Also shown for comparison
are the mean collision probability assumed in the model,F ) Rg/a,
and the areal post density,d/a. The areal post density is not plotted in
part c due to its much higher value relative to the simulation results.
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We are now in a position to evaluate the ability of the CTRW
model to predict the behavior of the chain. The CTRW
mechanism is not realized for Pecoil ∼ O(1), owing to the rarity
of hooking events, and consequently, the model fails in the
regime Pechain ∼ O(A/Rg). The model is able to predict the
dispersivity reasonably well, as depicted by Figure 4. However,
the model fails to predict the minima in the mobility and the
mean distance covered between successive collisions, instead
predicting a monotonic decrease in mobility and a monotonic
increase in the distance covered between collisions, respectively,
beyond Pechain) 1, as illustrated by Figures 3 and 5. This failure
of the model may be attributed in part to the use of a fixed
collision probabilityF ) Rg/a regardless of the field strength.
Consequently, the model does not account for the existence of
a maximum inF at anO(1) chain Peclet number. We also note
that the dependence ofF on the size of the chain is manifestly
evident in Figure 6, rendering inaccurate the use of the areal
post densityd/a for F. In fact, the dependence on the size appears
to be stronger than that assumed by eq 8, as suggested by the
increase in the disparity between the simulation results and eq
8 as the chain size decreases. Equation 8 assumes a simple
dependence on only two of four (or possible more) length scales
relevant to the collision process, namely, the chain size, post
size, lattice spacing, impact parameter,15,16,18and possibly others.
Moreover, our use of eq 8 for the collision probability
presupposes instantaneous chain relaxation to equilibrium and
fails to take into account the reduction in the transverse radius
of gyration and, hence, the chain cross-section transverse to the
electric field direction following a collision at high field
strengths. A further shortcoming of eq 8 is that it fails to take
into account the dependence of the collision probability on the
distortion of the electric field by the obstacles.18

Figure 8 provides a comparison between the resolution
predicted by the model and that obtained from simulation data
by means of eq 10 for each pair of chains as a function of the
field strength (expressed in terms of Peλ). The mean velocity
and dispersivity, measured in the long time limit after the chain
has equilibrated in the array, are independent of the array length
for a sufficiently long array. In the present study, we consistently
employ a separation length ofLs ) 1 cm, which is similar to
the values used in prior studies.3,34 The error bars for the
simulation results were computed from the differential error
analysis of eq 10, treating the velocities and dispersivities of
the two species as independently measurable quantities. The
model successfully predicts the nonmonotonic behavior of the

resolution with respect to the field strength. The attainment of
a high resolution is contingent on the existence of a low
dispersivity for both chains and a large velocity difference
between the chains. These conditions are met at anO(1) value
of Peλ. The decrease in the resolution at high field strengths
may be attributed to the increase in dispersivity with the field
strength. Furthermore, although the model fails to predict the
existence of a minimum in the mobility, it is able to qualitatively
capture the decline in the chain mobilities in the region Pechain

∼ O(1) and, consequently, the initial increase in resolution in
this region.

Also depicted in Figures 3-5 and 8 are the results for the
corresponding quantities predicted by Minc et al.7 under the
same conditions. The model of Minc et al. clearly fails to predict
the field-dependence of the chain dynamics and, consequently,
the nonmonotonic dependence of the resolution on the electric
field strength observed in the simulations conducted in the
present study, as well as in previous experimental work.3

Quantitatively, as manifest in Figure 3, Minc et al. predict far
lower values of the chain mobility than those observed in
simulations, owing to their overestimation of the collision
probability and the chain extension.

4.2. Varying Mean Lattice Spacings.Figures 9-12 provide
comparisons between the simulation results and model predic-
tions at varying lattice spacings, at a fixed field strength
corresponding to Peλ ) 5, with the error bars again representing
95% confidence bounds on the simulation results. The CTRW
model is unable to predict the normalized mobility and
dispersivity at a mean lattice spacing of 1.53µm. The effective

Figure 7. Dispersivity ofλ-DNA (O), 2λ/3-DNA ()), andλ/3-DNA
(0) normalized with respect to the free solution diffusion coefficient
of a free draining chain, i.e.,D0 ) kBT/(Nú), as a function of the Peclet
number forλ-, 2λ/3-, andλ/3-DNA, respectively, obtained by simulation
in a self-assembled array of magnetic beads having a mean lattice
spacing of 3.06µm. The error bars represent 95% confidence bounds
on simulation results. Above a Peclet number of 0.1 for each chain
length, D/D0 exhibits a power-law dependence on Pechain with an
exponent of approximately 1.3. Also shown for comparison is a line
of slope 2, representing the power-law dependence of the normalized
diffusivity D/D0 of a rigid particle on the field strength in a lattice of
periodic obstacles.37

Figure 8. Separation resolution between (a)λ- andλ/3-DNA, (b) λ-
and 2λ/3-DNA, and (c) λ/3- and 2λ/3-DNA as a function of Peλ
calculated by simulation in a self-assembled array of magnetic beads
having a mean lattice spacing of 3.06µm (O) and that predicted by
the model (s) for a separation length ofLs ) 1 cm. The error bars
represent 95% confidence bounds on simulation results. Also shown
for comparison is the separation resolution predicted by the model of
Minc et al. (- - - -).
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mean pore size available to the chain in this array,a - d )
0.53 µm, is exceeded by the coil diameters of all three DNA
chains under consideration. Equation 8 predicts an unphysical,
diverging collision probability asa decreases to 0, leading to
the divergence of the dispersivity [cf. eq 7] in this limit, while
the mobility [cf. eq 6] approaches a constant value of2/3. The
CTRW mechanism is not realized whena - d j 2Rg, and the
mechanism is better described by the reptation model5 or the
entropic barrier model.38 The CTRW model performs well at
the remaining lattice spacings and is able to predict the
asymptotic approach of the normalized mobility and normalized
dispersivity to 1 and 0, respectively, as the lattice spacing
increases.

As evident from Figure 12, the collision probability assumed
in the CTRW model agrees well with the corresponding
simulation results forλ-DNA and 2λ/3-DNA. Figure 11 reveals
that the mean distance covered between successive collisions
as predicted by the model accords with simulation results for
λ-DNA and 2λ/3-DNA at mean lattice spacings below 7.65µm.
However, at mean lattice spacings of 7.65 and 10.21µm, fewer
than two collisions were observed to occur in as many as up to
50% of all simulated trajectories, which were excluded from
the calculation of〈n〉a. As a result, the simulation results do
not reflect the increase in the distance between collisions
predicted by the model under these conditions. The field strength
at Peλ ) 5 yields the values Pe2λ/3 ) 3.55 and Peλ/3 ) 1.58. At
theseO(1) values of Pechain, the collision probability reaches a
maximum with respect to the Peclet number and is close to
that predicted by eq 8 forλ-DNA and 2λ/3-DNA, thus
explaining the success of the model. The location of this

maximum occurs at a higher value of Pechain for λ/3-DNA, as
pointed out earlier. As a result, there is a large disparity between
the collision probability predicted by eq 8 and the much lower
values observed in simulations forλ/3-DNA. The corresponding
predictions for the mean distance covered between collisions
are exceeded by the results obtained from simulation. Collisions
were rarely observed to occur at large lattice spacings forλ/3-
DNA.

Figure 13 depicts the resolution predicted by the model and
that obtained from simulation data for each pair of chains as a
function of the lattice spacing. The error bars have been
computed as before from the differential error analysis of eq
10. The CTRW model predicts the existence of a maximum in
the resolution with respect to the lattice spacing and the decrease
of the resolution to 0 at both small and large lattice spacings.
In the regimea - d > 2Rg, the CTRW model correctly predicts
the decrease in the resolution betweenλ-DNA and λ/3-DNA,
and betweenλ/3-DNA and 2λ/3-DNA, as the lattice spacing is
increased. The quantitative differences between model predic-
tions and simulation results may be attributed to the failure of
the model to correctly describe the collision probability forλ/3-
DNA. Again in the regime of its validity, the resolution predicted
by the model betweenλ-DNA and 2λ/3-DNA is close to that
obtained from simulation within error bars. Unfortunately, it is
not possible to conclusively identify the existence of a maximum
in the resolution from the simulation data of Figure 13b, owing
to the size of the error bars.

The predictions of Minc et al.,7 also illustrated in Figures
9-11 and 13, do not adequately capture the chain dynamics
with increase in the lattice spacing. As apparent from Figure 9,
Minc et al. predict much lower values of the mobility than those

Figure 9. Normalized mobility of (a)λ-DNA, (b) 2λ/3-DNA, and (c)
λ/3-DNA as a function of the mean lattice spacing obtained by
simulation in a self-assembled array of magnetic beads at Peλ ) 5 (O),
that predicted by the model (s), and that predicted by the model of
Minc et al. (- - - -). The error bars represent 95% confidence bounds
on simulation results.

Figure 10. Normalized dispersivity of (a)λ-DNA, (b) 2λ/3-DNA, and
(c) λ/3-DNA as a function of the mean lattice spacing obtained by
simulation in a self-assembled array of magnetic beads at Peλ ) 5 (O),
that predicted by the model (s), and that predicted by the model of
Minc et al. (- - - -). The error bars represent 95% confidence bounds
on simulation results.
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observed in simulations. Moreover, as shown in Figure 10, they
predict the existence of a maximum in the normalized disper-
sivity with respect to the lattice spacing, not seen to occur in
simulations. Their predictions fail to reflect the rapid decline
in the resolution with increase in the lattice spacing seen in the
simulation data of Figure 13. At the field strength under
consideration, the chains are relatively strongly stretched and
the assumptions made by Minc et al.7 regarding the holdup time
and the collision probability, rather than their neglect of the
field-dependence of chain extension, may be responsible for
the discrepancies between their predictions and the simulation
results.

5. Discussion

In the present study, we provide a generalization of the
CTRW model of DNA dynamics in an array of obstacles7 with
account for the electric field dependence of the chain extension
during collisions. We make use of a semiempirical expression
recently developed from studies on chain collisions with single
obstacles21 for the holdup time during which the chain center
of mass motion is impeded by the obstacle following a collision.
In addition, we take into account the dependence of the collision
probability on the chain size.

We evaluate the model by comparing its predictions with the
results obtained from Brownian dynamics simulations of bead-
spring models ofλ-DNA, 2λ/3-DNA, andλ/3-DNA in obstacle

arrays. The use of a regular hexagonal lattice yields high
mobilities approaching the free solution electrophoretic mobility,
and hence, proves ineffective in achieving separation between
chains of different sizes. Instead, we select a self-assembled
array of magnetic colloids as being representative of arrays used
in experimental studies.2-4 These arrays are generated via
Brownian dynamics simulations of magnetic colloids that
interact with each other via a repulsive point dipolar potential
and mutual hard-sphere exclusion in two dimensions.23,24 Our
studies are conducted in an array having a mean lattice spacing
of 3.06 µm at several experimentally accessible electric field
strengths and at a constant electric field strength equivalent to
a Peclet number of Peλ ) 5 at several values of the mean lattice
spacing. Our neglect of hydrodynamic interactions in all
simulations is partially justified by the screening of hydrody-
namic interactions in complicated microchannel geometries. We
also neglect the distortion of the electric field due to the presence
of obstacles, a factor that may have adversely impacted our
ability to accurately model the probability of chain-obstacle
collision.18

Our simulation studies of chain dynamics at varying Peclet
numbers enable the identification of three regimes demarcated
by the chain Peclet number. The regime Pechain j O(A/Rg)
corresponds to the situation wherein thermal equilibrium has
yet to be disturbed, i.e., the drag on the chain,µ0ENú, is
exceeded by the thermal forcekBT/Rg acting on the chain in its
equilibrium, coil configuration. Under such conditions, the
formation of hooked chain configurations is unlikely and the
mechanism of the CTRW model is not realized. The rangeO
(A/Rg) < Pechain j O(1) is associated with chain stretching in

Figure 11. Mean distance covered between successive collisions by
(a) λ-DNA, (b) 2λ/3-DNA, and (c)λ/3-DNA as a function of the mean
lattice spacing obtained by simulation in a self-assembled array of
magnetic beads at Peλ ) 5 (O), that predicted by the model (s), and
that predicted by the model of Minc et al. (- - - -). The error bars
represent 95% confidence bounds on simulation results. The simulation
data shown forλ/3-DNA correspond toa ) 1.53µm , a ) 3.06µm,
anda ) 4.37µm only, since collisions were found to occur in fewer
than 10% of the simulated trajectories at larger values of the mean
lattice spacing.

Figure 12. Mean collision probabilityF of (a) λ-DNA, (b) 2λ/3-DNA,
and (c)λ/3-DNA as a function of the mean lattice spacing, calculated
from simulation as the number of chain-obstacle collisions per lattice
column crossed by the chain center of mass at Peλ ) 5 in a
self-assembled array of magnetic beads. Also shown for comparison
are the mean collision probability assumed in the model,F ) Rg/a,
and the areal post density,d/a.
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the Gaussian regime, whereby the chain extension is well-
described by the low-force limit of the Marko-Siggia formula.22

The chain mobility reaches a minimum at anO(1) value of
Pechain, corresponding to the attainment of a maximum in the
collision probability. For Pechain . O(1), the chain extension is
derived from the large-force limit of the Marko-Siggia law.22

In this regime, the probability of chain-obstacle collision
decreases and, consequently, the mobility increases. At the same
time, the chain dispersivity increases with the field strength,
owing to the fact that while collisions are rare, they involve
long holdup times when they do occur. Further investigation
of a wider range of chain sizes is required to conclusively
establish the proposed dependence of these regimes on chain
size.

The CTRW model, in failing to account for the dependence
of the collision probability on the field strength, is unable to
predict the existence of a minimum in the chain mobility with
respect to the Peclet number. However, it satisfactorily predicts
the increase in dispersivity with increasing field strength and
the initial decline in the mobility atO(1) values of the Peclet
number, and consequently, is able to predict the existence of a
maximum in the separation resolution with respect to the field
strength. Under conditions of constant electric field strength,
the CTRW model is able to provide reasonable predictions of
the chain dynamics as the lattice spacing is varied in the regime
of its applicability, when the mean pore size available to the
chain in between obstacles exceeds the chain size.

The use of a constant collision probability, independent of
the electric field strength, is an obvious weakness of the model.

The model also does not account for the effect of the distortion
of the electric field lines in the vicinity of the obstacles and
neglects the dependence of the collision probability on other
relevant length scales such as the impact parameter and the post
size.15,16,18We emphasize that the collision probability assumed
by us is justifiable only when the post diameter is small
compared to the chain diameter. The influence of the post size
on the collision probability bears further investigation by means
of experiment or simulation wherein the post diameter is varied.
Yet another source of error is the assumption that the chain
instantaneously relaxes to a coil at the location of its leading
end following a collision and subsequently moves at its free
solution electrophoretic velocityµ0E until the next collision
occurs.

Owing to the paucity of experimental studies on the systems
under consideration, we are able to provide only limited
comparisons with experiment. The nonmonotonicity of the
separation resolution with respect to the electric field strength,
as predicted by us, was observed by Minc et al. in studies on
the separation ofλ-DNA and 2λ-DNA chains.3 These authors
also observed the separation resolution to increase upon
changing the lattice spacing from 3.8 to 4.1µm. This observa-
tion, taken in conjunction with the decrease in resolution that
must necessarily follow at large lattice spacings upon approach-
ing the single-obstacle limit, renders the resolution nonmono-
tonic with respect to the lattice spacing. However, in the latter
study, the obstacle diameters were concurrently changed from
1 to 1.4 µm, whereby the increase in resolution cannot
conclusively be attributed to the increase in the lattice spacing.
We are unable to confirm the existence of a maximum in the
separation resolution with respect to the lattice spacing, as
predicted by our model, owing to the size of the error bars
associated with our simulation results.

Our findings shed light on the behavior of field-driven
polymers in post arrays wherein the pore size is large compared
to the coil size of the polymer. Moreover, our results success-
fully reflect the experimentally observed nonmonotonicity of
the separation resolution with respect to the electric field strength
and are expected to aid in the appropriate selection of parameters
for the operation of obstacle arrays employed for the size
separation of DNA chains and similar molecules.
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