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ABSTRACT: The size-dependent separation of electrophoresing DNA chains of varying lengths has recently
been demonstrated to occur in microfluidic obstacle arrays. The chain dynamics in the array may be modeled as
a continuous-time random walk, wherein the motion of the chain in the array is interspersed with collisions with
the obstacles, involving a size-dependent random waiting time necessitated by the chain unraveling and unhooking
following each collision. Previous studies employing the continuous-time random walk model do not fully account
for the electric-field dependence of chain extension during collisions in the array. In this study, we extend the
continuous-time random walk model of chain dynamics with account for incomplete chain extension. We evaluate
the accuracy of the model by performing Brownian dynamics simulations of DNA chains of different lengths in

a self-assembled array of magnetic beads at various electric field strengths and lattice spacings and provide
comparisons between the predictions of the model and simulation results for the chain mobilities, dispersivities,
mean collision probabilities, and the separation resolution achievable between different chain sizes in the device.
We demonstrate that the model correctly predicts the nonmonotonicity of the separation resolution with respect
to the electric field strength.

1. Introduction collision of the chain with an obstacle and the unraveling of
The use of microfluidic post arrays for the size-based the two arms on either side of the obstacle, the unhooking of
separation of electric-field driven DNA chains of different the chain, and the unhindered motion of the chain until its next

lengths, actuated by their size-dependent collisions with the collision with an obstacle. This process has been modeled by
posts, has recently been experimentally established. The sizéMinc et al’ as a nonseparable continuous-time random walk
specificity of this technique owes itself to the fact that a longer (CTRW) on a latticé*° The model of Minc et al. involves a
chain requires more time for disentanglement following its 'andom waiting time subsequent to a collision encompassing
collision with an obstacle than a shorter chain. The separation Poth the duration of the collision, namely, the time required
of DNA chains of various lengths in an obstacle array was first for chain unraveling and unhooking, as well as the transit time
demonstrated by Volkmuth and Ausfinyho employed obstacle @t the_ free solution electrophoretic velocity between successive
courses fabricated in silicon via optical microlithography. More collisions. _ _
recently, Doyle et aR,followed by Minc et al34 have used Minc et a!., fo[lowmg the analysis of Popel_ka et%assumeq
self-assembled columns of superparamagnetic beads confinedhe unraveling time for each arm of the chain to be proportional
in a microfluidic channel, formed upon the imposition of a !0 the fraction of the chain represented by that arm. However,
transverse magnetic field, to separate DNA chains of different it has recently been establiséthat, upon modeling the post
lengths driven through the channel by the application of an as @ tether point during the unraveling process, the unraveling
electric field. Under conditions wherein the post spacing is larger ©f the arms under conditions of strong field strengths occurs
than the chain sizes, separation in these devices relies on the/ia @ convective mechanism, whereby the transient arm length
formation of hooked chain configurations following collisions. 9rows linearly in time at a rate equal to the free solution
Consequently, these devices may be used to separate long DN,@Iectro.phoret!c velocity and lndependent of its length. The
chains. In contrast, the conventional separation technique of gel@nalysis of Minc et al., therefore, overestimates the unraveling
electrophoresis employs gels having a mean pore size smallefime and, hen_ce_, the duration pf_the coIhsm_q. Another drawback
than the radii of gyration of the chains and relies on the reptation Of the analysis is that the collision probability at each obstacle
mechanism to achieve size separation. Under the applicationWas set equal to the areal post density, irespective of the size
of a constant electric field, the chain mobility in the gel becomes ©f the chain. Moreover, Minc et al. equated the chain extension
independent of chain size for long chains, thereby imposing an at the end of the unraveling process to the contour length of
upper limit of typically several tens of kilobase pairs on the the chain, thereby neglecting its field-dependence. Consequently,
chain lengths that can be separated via gel electrophéresis.the'r model failed to pred|ct_the experimentally observed field-
Thus, the use of microfluidic post arrays offers an advantage dependence of the separation resolufion.
over gel electrophoresis. Post arrays have also been fabricated Recently, an attempt was made to take into account the
and employed under conditions such that the post spacing isincomplete extension of the chain during collisions at finite field
comparable to the sizes of the chains to be sepafated. strengths by Dorfmad.This study modeled the unraveling
The chain dynamics in the obstacle array may be decomposedProcess as being equivalent to the unraveling of a tethered

into three sequential, cyclically repeating stésiamely, the ~ Polymer chain in a uniform solvent flow field at a solvent
velocity equal to the free solution electrophoretic velocity. With

* Corresponding author. E-mail: pdoyle@mit.edu. this assumption, use may be made of the results of Brochard-
T E-mail: aruna@mit.edu. Wyartl3 relating the steady-state extension of a tethered chain
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to the solvent velocity, upon replacing the solvent velocity with center of mass holdup time during a polymebstacle collision

the relative velocity of the solvent with respect to the extending for the entire range of field strengths and chain lengths studied
chain arm, and solving for the rate of chain growth as a function for both X- and J-collisions. Although the holdup times for
of the instantaneous chain length, under the assumption of\W-collisions observed in simulations differed from the predicted
quasisteady stretching. The relationship between chain extensiorholdup times of the X- and J-models, as well as from the
and solvent velocity at steady-state provided by Brochard- ropelike unhooking time, such collisions are rare and may be

Wyartl3is expressed in eq 12 of ref 8, wherein the symhdl

neglected. Furthermore, Kim and Doyle also observed the

may be associated with the solvent velocity relative to the rate probability distribution of the initial short arm fraction to be

of chain growth (namelyyoE — dLi/dt in the notation of ref
8). However, the symbol” in egs 5 and 6 of ref 8 refers to
the rate of extension of the long arm of the chain (or in
dimensional notation,ld/dt). The study of ref 8 subsequently

increasingly well-approximated by a uniform distribution as the
field strength is increased.

In the present study, we make use of the insight gained into
chain—obstacle collisions from the aforementioned studies to

assumes equivalence of the relationship between the steadydevelop a more accurate CTRW model of chain dynamics in
state chain extension and the free solution electrophoreticthe array. The center of mass holdup time following each
velocity and that between the transient chain extension and itscollision is well-approximated by the ropelike unhooking time,

rate of growth, thereby rendering invalid the analysis of ref 8.

The development of a more accurate model of chain dynamics

in an obstacle array requires knowledge of chabstacle

interactions during and subsequent to a collision. Several studies,

have focused on the mechanism of collision of a chain with a
single, stationary obstacle. Nixon and Slétdrave provided a

rope-over-pulley model of chain unhooking, assuming Gaussian

and uniform distributions of the initial difference in arm lengths

on either side of the obstacle following a collision. These authors
have found that the mean and variance of the unhooking time
exhibit the same scaling dependence on the chain length

regardless of the initial distribution of arm lengths. A strong
dependence of the collision probability and the duration of a

collision on the impact parameter has been demonstrated in ref

15 and 16. More complicated configurations involving the

hooking of a single chain around two or more obstacles have

been theoretically studied in ref 17.

as described in the preceding paragraph. We employ the low-
force and large-force limits of the MarkdSiggia interpolation
formula for the wormlike chaif? which best describes DNA
elasticity, to derive the dependence of chain extension on the
field strength?® Furthermore, we account for the dependence
of the collision probability at each obstacle on the chain size.
Concomitantly, we perform Brownian dynamics simulations of
DNA chains of three sizes, namelitDNA and the two shorter
chainsi/3-DNA and 2/3-DNA resulting from its digestion with

the restriction enzyme Xha?lin microfluidic post arrays formed
from the self-assembly of magnetic bed#3*We analyze the
shortcomings of the model in light of the results for chain
mobility, dispersivity, collision probability, mean distance

Scovered between successive collisions, and the separation

resolution obtained from simulation.

The paper is organized as follows. In section 2, we present
the revised CTRW model. Section 3 details our simulation
methods, while in section 4, we provide comparisons between

More recently, as described in a series of papers, Randallode| predictions and simulation results and evaluate the

and Doylé® 20 have provided detailed experimental investiga-
tions of polymer-obstacle collisions in PDMS microchannels

performance of the model. Section 5 provides a summary of
our findings.

enclosing an obstacle or a dilute array of obstacles and have

proposed physical mechanisms for the dynamics of chain

unraveling and unhooking subsequent to a collision. These

authors have classified polymeobstacle collisions into J- or
U-collisions (according as the initial lengths of the two arms
of the chain are unequal or equal) involving the sequential
unraveling and ropelike unhooking of the two arms of the chain,
X-collisions, wherein the long arm of the chain continues to
unravel as the chain is unhooking from the post, and rare,
metastable W-collisions, resulting from the formation of en-
tangled chain configuratiorf8 Different models were proposed
for the unhooking time and the holdup time during which the
center of mass motion is obstructed by the obstacle following
X- and J-collisions, inspired by the distinct mechanisms
operative in the two cases. X-collisions were found to occur
predominantly under conditions of strong electric fields or,
equivalently, at high Peclet numbers. These findings were
corroborated by the simulation study of Kim and DofAdased

on Brownian dynamics simulations of collisions/f 21-, and
T4-DNA with a single post. The latter study revealed that a
crossover from the predominance of X-collisions to J-collisions
occurs at an initial short arm fraction of approximately 0.4, with
X-collisions being predominant at initial short arm fractions
below this value. Kim and Doyle further provided comparisons
of the unhooking time and center of mass holdup time as
predicted by the collision models of ref 20 with simulation data.
In accord with the experimental observations of ref 20, it was
discovered that the ropelike unhooking time of a chain at

2. CTRW Model of Chain Dynamics

In this section, we briefly describe the main features of the
revised CTRW model of DNA motion in the obstacle array.
The chain is modeled as a random walker commencing from
positionr = 0 and moving in the field direction at the free
solution electrophoretic velocityoE between successive col-
lisions, withug the free solution electrophoretic mobility akd
the magnitude of the electric field strength. When a collision
occurs at an obstacle, the chain waits at the locatienna of
the obstacle during the unraveling and unhooking processes
before continuing at the free solution electrophoretic velocity
until the next collision, whera denotes the lattice constant and
nis an integer. We denote hy the holdup timé” during which
the center of mass motion is obstructed by the obstacle, which
we approximate by the expression

2uoE

representing the ropelike unhooking time of a chain at constant
extension, withrg the initial fraction of the chain contained in
the short arm ang” the total chain extension at the start of the
unhooking process. Equation 1 has been found to provide an
excellent approximation to the holdup time for a wide range of
chain lengths and field strengtfisThe short arm fraction at
the start of each collisiormy = x3(0)/¢; with x;(0) the short

arm length at the start of the unhooking process, is assumed to

Ty = In(1 — 2ry) (1)

constant extension provides an excellent approximation of the be uniformly distributed in the interval [0, 0.5]. The assumption
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of a uniformly distributed initial short arm fraction has been
found to hold at high field strengt?$. The use of other
distributions at low field strengths, such as the Gaussian
distribution, may have a quantitative effect on the restlts.

The transition time taken to move from the start of one
chain—obstacle collision to the next is now computed as the
sum of the holdup timey and the transit time until the next
collision occurring a distance= na away, i.e.,

na

rer—i-ﬂoE

)

Following Minc et al.” we assume that no collisions occur along
the extended backbone of the chain and set the probalhfii)y
that successive collisions are separatedh ligttice columns to
be

if n> n*

_le@=p)"
h(ry {0 otherwise ®)

wherep is the collision probability at any obstacle antlis
the first lattice position at which the next collision can occur,
given by the expressidn

n*

L
= 4
< @
Note that the mean distance covered between successiv
collisions obtained from eq 3 is

Al = a(u + n*) )

p

Equations +3, taken in conjunction with the assumption that

ro is uniform in the interval [0, 0.5], enable the computation of
the transition probability density function for making a transition

between successive collisions separated by a given number oty o |atter corresponds to the limit/L <

lattice columns in a specified time duration. Knowledge of the
transition probability density next enables the calculation of the
probability densityp(r,t) of the positionR(t) of the random
walker at timet. For this purpose, we adopt the CTRW model
on a discrete lattice developed by Scher and °l&xand
employed previously by Minc et dland Dorfmar The reader

is referred to the aforementioned studies for details. The long
time asymptotic mean velocity and dispersivityD of the
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the DNA molecule moves at approximately the free solution
electrophoretic velocity between successive collisions. A CTRW
model wherein the random walker moves at a constant velocity
between successive turning points, referred to as the creeper
model® or the velocity modet? has been previously proposed.
Although both models are known to exhibit the same asymptotic
behavior, they may differ by a numerical const#2However,

the form of the transition probability density used in the present
study (as well as in refs 7 and 8) decays exponentially for large
values of the transition time, rendering the long time behavior
of the moments of the walk insensitive to the type of model
used?0

The collision probabilityp and the field-dependence of the
chain extension/” at the start of unhooking remain to be
specified. We postulate that may be approximated by the
expression

p (8)

Ry
a
where Ry is the radius of gyration of the chain. Equation 8

attempts to account for the dependence of the collision prob-
ability on the chain size and is expected to be best-suited to
situations wherein the post diameter is small compared to the
coil size, which in turn is small compared to the lattice constant,

Snder the assumption that the chain instantaneously relaxes to

its equilibrium coil shape following a collision. We, however,
make use of eq 8 even in situations wherein the chain radius of
gyration is comparable to the post radius.

The chain extension will be derived from the low- and large-
force limit of the Marko-Siggia formula in the regime of weak
and strong stretching, respectively. The former, Gaussian regime
derives from the Marke Siggia rule in the limit//L < 1, while
1, whereL denotes
the contour length of the chain. The crossover from weak
stretching to strong stretching occurs atgg~ 1,12 where
we have introduced the Peclet number

_ HoES chairft

I:)(':chain

walker are related as usual for diffusion processes to the meanin eq 9, &enain A, and keT refer, respectively, to the drag

and variance of the random walker’s positiB(t) in the long
time limit of t — c. We omit the tedious but straightforward
algebraic details and simply provide the results below:

u _ 2(1—p+pn¥)

“o  3pn* +2(1—p) ©)

and

D _n%p[2+p(@n* — 3)+ p*(n* — 1]
HoEa [Bpn* + 2(1— p)]?

(@)

where we have introduced the mobiligyvia the relationd =
UE.

The Scher-Lax mode? assumes that, following a collision,
the random walker waits at the lattice site representing the
obstacle position for the entire duration of the transition time

coefficient for the chain, the persistence length of double-
stranded DNA (known to be 53 nm), and the thermal energy.
Note that eq 9 represents the nondimensional drag force acting
on the chain, whereby the value Rg ~ 1 delineates the
regimes of weak and strong chain stretchihd@he Marko-
Siggia interpolation rule then yields

L
é PQhain’

L(l - Pechainillz)a P%hain> 1

P Pechain =1

where an effective force equivalent #fy of the drag force
toEEchain has been employed to account for the nonuniformity
in drag along the chaif?? As intimated by eq 10, the
dependence of the chain extension on the Peclet number is
deduced from the MarkeSiggia interpolation formula under

and instantaneously makes a jump to the next lattice site at thethe assumption that a sharp transition from weak to strong

end of the transition time period. This model has been variously
referred to as the leaper motfedr the jump modet? In reality,

stretching occurs at RBgin= 1, although no such sharp transition
occurs in reality. We have verified that the results are hardly
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affected upon instead assuming the transition to occur@giiPe
= 2, corresponding to roughly 30% chain extension.
Equations 6 and 7 may now be substituted in the expre&sion

LofYs , Y
16\D, D,

for the separation resolutioRs, where the subscripts 1 and 2
refer to the two species to be separated, layid the separation
length.

o |U1 - U2|

R= U+ U0, (10)

3. Brownian Dynamics Simulations

3.1. Chain Simulations.We adopt the technique of Brownian
dynamics applied to the beadpring model of the chain to
simulate its behavior in a post array. Brownian dynamics is
based on the application of the Langevin equation

F+ Fjev)]dt + 4 /ﬁgwaj, j

to each bead = 1, .., N of the chain, where; denotes the
position vector of beafrelative to the origin, whilé=} andF;
refer, respectively, to the spring force exerted on beaylthe
adjoining springs and the net excluded volume force exerted
on bead by the remaining beads. The distortion of the electric
field E caused by the presence of finite-size, nonconducting

1
g

drj = |uE + N

11)

posts is neglected. The force exerted on the negatively charged

DNA chain by the electric field is accounted for via the inclusion
of the termuoE in eq 112 Contrary to convention, we assign
the direction ofE to that of the electric force experienced by a
negative test charge, so thap is positive. Free draining
conditions are assumed, and the drag coefficient for a single
bead, given by Stokes’ law, is denoted Hiywhereby&chain =
NC. The termW; represents a three-dimensional Wiener process,
with [dW;(t)C= 0 anddW;(t)dW (t") C= dtdyd(t — t')d, where
k=1, ..,Nandd is the identity tensor. The&-coordinate is
measured along the direction of the electric figld

We consider DNA molecules of three lengths, namely,
A-DNA (having 48 502 base pairs with a contour length of 20.5
um when stained with YOYO dye in the ratio of 4 base pairs
of DNA per molecule of dye) and the two fragmenig2DNA
(containing 33 497 base pairs) at3-DNA obtained from the
digestion of1-DNA with the restriction enzyme Xho3.We
adopt the discretization used by Kim and Doyle to madel
-DNAZ2! and selectNg s = 5.23 Kuhn lengths per spring, with
the Kuhn lengthby = 0.106 um being equivalent to two
persistence lengths. At this discretization, used in conjunction
with a sufficiently small time step as described later in this
section, we are assured that aphysical configurations, wherein
the chain appears to intersect an obstacle, are forbidden fro
arising. Concurrently, use of this discretization offers a com-
promise between ensuring an acceptable computational spee
and providing an adequately fine-grained description of the
chain. We, therefore, selebt = 38 beads to model-DNA,
whereas 2/3-DNA andA/3-DNA are modeled byN = 27 and
N = 12 beads, respectively. The corresponding chain lengths
of 21/3-DNA andA/3-DNA, 14.4um and 6.1um, respectively,
differ slightly from the values 14.2m and 6.3um, respectively,

m
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of the equality P&ain= P&Nchaif38, whereNghainis the number

of beads modeling the chain of interest. This range of values
corresponds to electric field strengths ranging from 0.5 to 100
V/cm, estimated from eq 9 for 2&-DNA molecule having a
radius of gyration of 0.6@m and a thickness of 2 nihat T =

298 K in a solvent of viscosity 1 cP by making use of the Zimm
drag coefficient for a coil at Re= 0.1 and the drag coefficient
for a rod at Pe= 5028 and using the experimentally measured
value ofuo.3 In addition, forA-DNA, we also provide data for
chain dispersivity at Be= 0.01 and 0.05.

The elasticity of DNA is characterized by the wormlike chain
model, the force-extension behavior of which is described by
the interpolation formula due to Marko and Sigéfanodified
by Underhill and Doylé® by the introduction of an effective
persistence length in place of the true persistence length.
Following Kim and Doyle?* we adopt the modified Marke
Siggia law and employ the ratio 1.91 of the effective persistence
length to the true persistence length deriving from the low force
criterion of Underhill and Doyl@ We model intrachain
exclusion by means of the soft, repulsive force proposed by
Jendrejack et aP? given by the expression

\2 3 \s2 N
FY= ok T L
: ‘ (4n§) k=§¢1’

3

where is the excluded volume parameter affd= Ny b7/6

the mean equilibrium size of a Gaussian spring\Rf Kuhn
segments. We employ the valwe= 0.0004umq, determined

by Kim and Doyle to accurately reproduce the radius of gyration
of 2-DNA. With the above parameters, the equilibrium radii of
gyration obtained from simulations of/3-DNA andA/3-DNA

in free solution are 0.58m and 0.37um, respectively, which
are close to the values 0.0 and 0.34«m obtained from the
good solvent scaling laiRy ~ L0-58931

We consider channel heights large compared to the size of
the chaifd and ignore interactions between the beads and the
channel walls. As a result, the dynamic behavior of interest to
us is confined to the two dimensions spanning the channel plane.
The interactions between the chain and the obstacles in the array
are modeled by hard-sphere exclusion implemented via the
Heyes-Melrose algorithn?? whereby an overlap between a
bead and an obstacle resulting from the integration of eq 11 at
any time point is subsequently corrected by displacing the bead
along the line of centers until the bead and the obstacle are just
touching. The beads are modeled as having no hard-sphere
volume?! Since hard-sphere exclusion is implemented inde-
pendent of time stepping, the possibility exists that a spring

2]<rj —-r) (12)

gnay be overstretched as a result of its implementation. This

problem is alleviated by using sufficiently small time steps.
Simultaneously, the time step must also be small compared to
the relaxation time of a single spring. At a Peclet number below
0.1 for each chain, a time step of Oé_mél(kBT), with Qp the
maximum spring length, was found to suffice, with the time
step at stronger field strengths chosen to be inversely propor-

estimated by assuming a linear dependence of the contour lengtfiional to the Peclet number. Under these conditions, overstretch-

on the number of base pairs.
We perform simulations at a number of experimentally

ing is largely eliminated. In the extremely rare instances when
overstretching occurred (in fewer than a millionth of the total

accessible field strengths expressed in terms of a Peclet numbenumber of time steps for a typical trajectory), the spring force
as defined by eq 9, with Rebased on the valug = 38 selected was calculated by linearly extrapolating the modified Marko
for A-DNA, varying from 0.1 to 50. The corresponding values Siggia force law from the value of the force at 99% spring
of Penain for 24/3-DNA and A/3-DNA are obtained by means  extension.
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We adopt the semi-implicit predictecorrector scheme 1.00 T ) ®
described in ref 28 for the integration of eq 11. Averages are 0.98 - o |
performed over an ensemble of between 100 and 1000 chains. @
The array geometries employed are described in section 3.2. 096 .
Initial equilibrium configurations are generated by employing § 0.94 - _
the Marko-Siggia force law to simulate the evolution to
equilibrium of initially Gaussian coil%? These coil configura- 0.92 "I’ 7]
tions are placed upstream of the array at the start of the 0.900 ; 1'0 1'5 o

simulation and are subsequently stretched and deformed from
their initial coil shape owing to collisions, resulting in an initial
increase in chain stretch. Subsequently, the stretch equilibrates,
fluctuating about a steady mean value. A time duration
corresponding to the time taken to cross a distance ef120
lattice spacings at the free solution electrophoretic velocity is
found sufficient to ensure equilibration. Subsequently, the
equilibrated chain is simulated further in the array for the same
time duration.

0 1 ® @ ®

The long time mean velocity and dispersivity are obtained 0 5 10 15 20
from the mean and variance of the distribution of the center of Pey
massx-coordinates (denotexty,) for an ensemble of chains at  Figure 1. (a) Normalized mobility and (b) dispersivity dEDNA as
the end of the simulation, measured relative to their values ata function of Pg calculated from simulation in a regular hexagonal
the end of the equilibration process, by fitting to a normal @ray having a lattice constant ofi8n.
distribution and using the relationzm[1= Ut and varkem) = asymptote to 1 and 0, respectively, as the Peclet number is
2Dt, wheret is the time duration of the simulation following increased. This observation is consistent with the finding of Patel
the equilibration process. In all cases, the assumption of and Shagfelf that disordered post arrangements are essential
normality is confirmed by performing the Kolmogorev for separation.
Smirnov tes€3 Additionally, we define a collision to have We were motivated by the above finding to employ an array
occurred when a portion of the chain is present in all four more representative of a magnetic colloid assembly, generated
quadrants of a coordinate plane whose origin lies at the obstaclevia free draining Brownian dynamics simulations of a collection
centerr%2! and enforce the conditions that a collision with a of hard spheres, each of diametkr= 1 um, with repulsive
given obstacle occur only once per trajectory, and (although point dipoles at their centers in two dimensions, with a magnetic
the situation did not arise in our simulations) that a collision at field applied normal to the plane, and with the neglect of mutual
a given time step with multiple obstacles be counted as a singleinduction between the colloidd:2* The magnetic particles are
collision. We deduce the mean probability of collision at each confined to the portion of the—y plane bounded by = 0, x
obstacle from simulation by dividing the number of collision = X, y = 0, andy = Y by means of periodic boundary
events occurring in a trajectory by the number of lattice spacings conditions. X and Y, denoting the length and width of the
covered by the chain center of mass in that trajectory following periodically repeating unit constituting the semi-infinite, planar
equilibration, averaged over the ensemble. We also measure tharray occupying the regiox > 0, are chosen to be 600.1 and
mean distance covered by the chain center of mass betweerl29.9um, respectively. The initial condition corresponds to a
successive collisions in each trajectory after equilibration, perfect hexagonal lattice, with four times as many particles
averaged over the ensemble, while excluding trajectories in placed along the&-axis as along thg-axis. This condition, in
which fewer than two collisions occur in performing the conjunction with the ratioY/X = V3/8 of the unit cell
ensemble-average. We note that this exclusion of trajectories,dimensions, was chosen to yield an array orientation such that
arising from our inability to account for the effectively infinite  the separation between adjacent lattice points along-tods
distance between collisions observed in trajectories involving was equal to the lattice constant.
a single collision or no collisions, may adversely impact our  The dimensionless interaction energy for the magnetic colloid
prediction of the mean distance covered between collisions, assystem is defined %24
pointed out in section 4.

. . _ A3

3.2. Selection of Array GeometriesWe chose a hexagonal I'= E(ﬁ) (13)
geometry as being representative of the lattice pattern resulting
from the self-assembly of magnetic collo#@3*and conducted ~ whereR = a sin(z/3), a denotes the lattice spacing, andis
an initial set of simulations of-DNA in a planar, semi-infinite  the ratio of the interaction potential between two dipoles oriented
hexagonal array occupying the right-half plane 0, composed parallel to each other and separated by a distahd® the
of obstacles of diametat = 1 um at a lattice constant @ = thermal energy324 All two-dimensional systems at the same
3um. The array orientation was such that the separation betweenvalue ofI' behave identically iR is the only relevant length
adjacent lattice points along tixeaxis was equal to the lattice ~ scale in the system, provided that the system size is large enough
constant. Hard-sphere exclusion between the chain and thethat finite size effects are negligibfé2*We chose the valub
obstacles was enforced by exploiting the regularity of the lattice = 12, at which the lattice possesses neither translational nor
to identify the obstacles in the vicinity of each bead of the chain long-range orientational order and, hence, lies in the liquid
at every time step. Figure 1 illustrates the results of these phase. The value df was held constant at 12, and the number
simulations. It is clear from Figure 1 that the obstacles in a of colloids N¢ in the unit cell andA were varied in order to
regular, dilute lattice provide straight channels through which vary the lattice spacing while holding fixed the remaining
the chain can pass without hindrance, and the normalizedlattice characteristics, by means of the relatien =
mobility and normalized dispersivity of the chain rapidly [v3NJ/(2XY)]"¥22324 |n all simulations, pairwise dipote
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dipo_leI interactionz E/)vered_considelred orr]ﬂy betwe?g ﬂggirs of (a)

gﬂtl;?a?isc)rfgpv?;?:ae rlunyl?nti:s:ﬁgcgel?esci tcc?r?cinctlrjc:\?igno re:ched © 0 0 0 060 0 0 0 O
where. s the crag coeticient for each magnetic coli. | © © © © © © © ©
magnetic coloids were heid sonstant and were not alowed s © © © © © © © © ©
reador is refered 1o refs 23 and 24 for furher detals onthe  © © © © © © © ©
f};gt:lgﬂg:\agee:gzgz.adopted for magnetic colloid systems and © 0 0 00 0 0 © ©

We employ assemblies &f; = 40 000, 10 000, 4900, 2500,
1600, and 900 colloidal particles, yielding mean lattice spacings © 0 6 6000 00
averaged over nearest-neighbor p&iféof 1.53, 3.06, 4.37,
6.12, 7.65, and 10.24m, respectively. The corresponding defect © 06 6 06000 00 0
concentrations (where a defect is defined as a particle with (b)
greater or fewer than six nearest neighbors) are 0.306, 0.301,
0.292, 0.307, 0.311, and 0.332, respectively. The slight increase L & [ ) w - [ ] e
in defect concentration for the system containidg= 900 O O
particles may be the result of finite size effects associated with O e © &
the relatively small size of the system. However, finite size O
effects are not significant &t = 12, which is sufficiently far 7] & [ ] L
from the phase boundafy?* The assembly having a mean & L
lattice spacing o& = 3.06um is employed to study the behavior L ¢ @ @
of the chain at varying field strengths. This lattice is illustrated ® @ ©® © L 7]
in Figure 2, which provides a comparison between a regular o
hexagonal lattice and the former quasi-regular array of magnetic O © [
colloids as well as an experimentally generated lattice of
magnetic colloids from the study of Doyle etZln studies i O [ 7]
where the mean lattice spacing is varied, the field strength is L L 7] -
held constant at its value corresponding tq Pe5. (©)

Upon the introduction of the chain in the array, the imple-
mentation of hard-sphere chainbstacle exclusion and the et PRl w ® o .
identification of hooked chain configurations require that a . & l . . L
search be performed over obstacles at each time step. This is
facilitated by binning the obstacles in the unit cell at the start
of the simulation via a linked list implementation of neighbor . .
lists within each birf> The bin dimensions are chosen to be . L © E) ° 3 {
comparable to the mean lattice spacing. Periodic boundary . - .
conditions are imposed on the chain at the boundaries of the [ . . - - ) . “ . ‘

unit cell by periodically reconstructing the unit cell in the s Hh .

vicinity of the chain. Subsequently, chainbstacle overlaps R ™ . . . K2

may be detected by searching only the bin containing the k] . .,

position of each bead of the chain and the eight surrounding . e ® El . Kl B . E:

bins, and similarly, hooked chain configurations may be - a8 - a

identified by searching only the bins enclosed by the maximum Figure 2. (a) A regular hexagonal lattice, (b) a portion of a
and minimum chain coordinates. self-assembled array of magnetic beads having a mean lattice spacing

of 3.06 um, and (c) a portion of an experimentally generated

The results of our simulations in the self-assembled magnetic ¢o it 2ssembled array of magnetic beadsrresponding to a section of

colloid arrays are described in section 4. width 40 um.

4. Comparison of Model Predictions and Simulation from the 95% confidence limits for the mean and variance upon

Results fitting the distribution of center of masscoordinates at the
4.1. Varying Field Strengths. Figures 3-5 provide com- end of the simulation relative to their equilibrated values to a

parisons between the normalized mobility and dispersivity and normal distributior?® Similarly, the error bars for the mean
the mean distance covered between successive collisiongdistance covered between collisions and the mean collision
obtained from simulations and those predicted by the CTRW Probability represent 95% confidence limits for the means of
model for the three chain lengths studied at various field the respective distributions, again upon fitting to a normal
Strengths at a fixed mean lattice Spacing of m Further- distribution. The predictions of the CTRW model for the
more, Figure 6 provides a Comparison between the mean normalized m0b|||ty and diSperSiVity derive from egs 6 and 7,
collision probability observed in simulations and those assumed respectively, taken in conjunction with egs 4 and1®. The

in the present CTRW model, i.&Ry/a, and in the study of Minc mean distance between collisions following from the CTRW
et al., i.e.,d/a. The mobility is normalized with respect to its model is stated in eq 5.

free solution valuery and the dispersivity with respect tgEa. The simulation data depicted in Figures-@ enable the
The error bars for the mobility and dispersivity are obtained identification of three regimes delineated by the Peclet number
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Figure 3. Normalized mobility of (al-DNA, (b) 24/3-DNA, and (c) Figure 4. Normalized dispersivity of (a}-DNA, (b) 24/3-DNA, and
AM3-DNA as a function of the Peclet number fbr, 24/3-, and1/3- (c) A/3-DNA as a function of the Peclet number for, 24/3-, andA/3-
DNA, respectively, obtained by simulation in a self-assembled array DNA, respectively, obtained by simulation in a self-assembled array
of magnetic beads having a mean lattice spacing of @8r@g0), that of magnetic beads having a mean lattice spacing of 83@g0), that

predicted by the modeH), and that predicted by the model of Minc  predicted by the modeH), and that predicted by the model of Minc
et al. (----). The error bars represent 95% confidence bounds on et al. (----). The error bars represent 95% confidence bounds on
simulation results. simulation results.

L/(uoE) represents a time scale for the unraveling of the chain
for the chain, namely, (i) Rguin < O(A/Ry), (i) O(A/Rg) < Penain arms and may be identified with the time of formation of a
= O(1), and (iii) Pgnain > O(1). Below, we investigate the  hooked chain configuration. As the ratio of the former to the
physical mechanisms operative in these three regimes. latter, 4oE/Denai(RY/L) ~ P&nain increases to ad(1) value,

The transition occurring at Rgin ~ O(1) was encountered  the probability of hooking collisions increases. We caution that
earlier in eq 10 and corresponds to the transition from the regimethe identification of PginWith the aforementioned ratio of time
of weak stretching to strong stretching. FoRg < O(1), the scales is strictly valid only in ® solvent. Upon taking account
chain is in the near-equilibrium, Gaussian regime and its of the intrachain exclusion arising under good solvent conditions,
elasticity is well-described by linear Hooke’s law behavior, a weak dependence on the chain length appears in the scaling
corresponding to the limif/L < 1 of the Marka-Siggia law. relation toE/Denair(RE/L) ~ ka’-szham deriving from the scal-
However, as the Peclet number is increased, the behavior ofing |Jaw RZ ~ Nﬁ'zbk for a self-avoiding walk ofN, Kuhn
the chain is inCI’eaSingly dominated by its finite extensibility Steps"%l However, for the chain sizes presenﬂy under consid-
arlg for Penain> O(1), we approach the opposite limit/L < eration, N, ~ 100 and, consequentifyo? ~ 1, whereby our
L conclusions remain valid.

Figures 3 and 5 reveal the existence of minima in the chain  In consequence of the preceding scaling arguments, the
mobility and the mean distance covered between successiveprobability of forming a hooked, hairpin configuration upon
collisions at arO(1) value of Pgyqin These minima correspond  encounter with an obstacle initially increases as the Peclet
well with the occurrence of a maximum in the collision number increases to approach@fl) value. However, as the
probability at anO(1) value of Pgnain as seen in Figure 6. The  Peclet number is further increased beyond a value of 1, the chain
existence of a minimum in the chain mobility at @¢l1) value becomes highly stretched during collisions and the cross-
of the chain Peclet number was also noted by Patel and Shagfefsectional area subsequently presented to the obstacles decreases.
in their study of chain dispersion in random arrdyShese As a result, the collision probability decreases, and the mobility
authors have interpreted the chain Peclet number as representingnd mean distance covered between collisions increase as the
the ratio of the escape time for the chain to diffuse away from Peclet number is increased beyo@(l) values. The location
the obstacle to the hairpin formation time. The time scale of these extrema is shifted to higher values of;Rein the
RS/Dchain [with Dchain= ks T/(NC)] for center of mass diffusion case 0f1/3-DNA, possibly owing to finite size effects arising
over a distance equal to the equilibrium chain radius representsin shorter chains.

a time scale for escape, enabling the chain to diffuse away from We next consider the behavior of the chain at Peclet numbers
the obstacle and, hence, avoid hooking, while a time scale of of the order ofA/Ry or, equivalently, 0.1 for the chain sizes
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Figure 5. Mean distancénia covered between successive collisions ~Figure 6. Mean collision probability of (a) A-DNA, (b) 24/3-DNA,

by (a) -DNA, (b) 24/3-DNA, and (c)A/3-DNA as a function of the and (c)@/B-DNA, calculated as the number of chaiobstacle collisions .
Peclet number foi-, 24/3-, andA/3-DNA, respectively, obtained by per lattice column crossed by the chain center of mass, as a function
simulation in a self-assembled array of magnetic beads having a mean©f the Peclet number for-, 24/3-, andi/3-DNA, respectively, obtained
lattice spacing of 3.0&@m (O), that predicted by the modet), and by S|mula_t|on ina self-assembled array of magnetic beads having a
that predicted by the model of Minc et ak-(--). The error bars mean lattice spacing of 3.0ém (O). The error bars represent 95%
represent 95% confidence bounds on simulation results. The simulationconfidence bounds on simulation results. Also shown for comparison

data shown fol/3-DNA correspond to Pg = 1.58 and higher only, ~ are the mean collision probability assumed in the mode¥ Rya,
since collisions were observed to occur in fewer than 10% of the and the areal post densit/a. The areal post density is not plotted in
simulated trajectories at lower field strengths. part ¢ due to its much higher value relative to the simulation results.

under consideration. We introduce a second parametgi, Pe in the distance covered between successive collisions suggested

defined as follows: by Figure 5a,b is also an artifact of the criteria adopted by us
for its measurement.
_ zﬂoECNz = E (14) In the regime where Rg < 1, we may expect the ap-
ol ke T/R, Ptha'”A proximation of the DNA coil by a rigid sphere of equivalent

radius to be valid. The mobility and diffusivity of a particle in
Pe.il represents the ratio of the drag force to the thermal force periodic and random lattices under the application of a field
acting on the chain in its equilibrium, coil configuration. An  have been studied by Gauthier and Slater and Gauthier et al.
0O(1) value of Pgyj marks the onset of Gaussian chain stretching, via Monte Carlo simulation&3” These authors found that the
whereas the chain configuration is dominated by thermal forces mobility and diffusivity of the particle remain constant inde-
at lower values of Rg;.1322For the systems under consideration, pendent of the field in the regime Be< 1, while the diffusivity
this transition occurs at &0(0.1) value of Pgain Consequently, exhibits a power-law dependence ondf&ith an exponent of
for O(0.1) or lower values of Rgain, the chain retains its coil 2 for Pgei > 1, where Pg is now interpreted as the ratio of
configuration. The mobilities increase in this regime as the field the force exerted by the field to the thermal force acting over a
strength is increased, since the dominant mechanism of chainlength scale equal to the particle dimension. Consistent with
motion gradually changes from thermal diffusion to convection these findings in the regime Rg < 1 or, equivalently, P&ain
by the field. Because of the near-absence of chain stretching,< 0.1, Figure 7 reveals that the dispersivity of the chain
the probability of hooking collisions is very low. The apparent normalized with respect to its free solution value remains
increase in collision probability suggested by Figure 6a,b in this relatively unaffected by the field for Rgn < 0.1. The
regime is merely an artifact of its definition as the number of approximation of the chain by a rigid sphere is no longer valid
collisions per lattice spacing covered by the chain, since at low as Penain is increased beyond this value. Figure 7 suggests a
values of Pgain the chain center of mass does not cover a power-law dependence of dispersivity on the chain Peclet
significant distance. Moreover, the chain, by darting around number for Pgain > 0.1, with an exponent of approximately
obstacles without forming a hooked configuration, is able to 1.3. The faster-than-linear rise in dispersivity with the chain
satisfy the condition imposed by us to identify collisions that a Peclet number is also manifested in Figure 4 and is attributed
portion of the chain be present in all four quadrants surrounding to the fact that while collisions become increasingly rare at high
the obstacle center. For the same reason, the apparent decreasield strengths, those that do occur involve long holdup times.



8802 Mohan and Doyle Macromolecules, Vol. 40, No. 24, 2007

O A-DNA 10 @ -
100 - & 2)/3-DNA 2 o T e _—Médelt X
. === Minc et al
QO O A/3-DNA & = § 6L O Simulation
Qo0 F ) !ﬁ . & Gpy S
w = o - D
@ -
1@1.2@;@@,@%,, Lo n (Z)GD_ il
0.01 0.1 1 10 % S T T
Pechain Pey
Figure 7. Dispersivity of --DNA (O), 24/3-DNA (©), and1/3-DNA 4 M el
(O) normalized with respect to the free solution diffusion coefficient I . M?nceet all
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number forl-, 24/3-, andi/3-DNA, respectively, obtained by simulation Q) 1
in a self-assembled array of magnetic beads having a mean lattice &f 2
spacing of 3.06:m. The error bars represent 95% confidence bounds =
on simulation results. Above a Peclet number of 0.1 for each chain &)
length, D/D, exhibits a power-law dependence oncgRg with an g
exponent of approximately 1.3. Also shown for comparison is a line L
of slope 2, representing the power-law dependence of the normalized 0.1 1 10
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periodic obstacle¥. 8 —
We are now in a position to evaluate the ability of the CTRW = '__(C)Model ? ]
model to predict the behavior of the chain. The CTRW < p-o-Mincetal
mechanism is not realized for Bg~ O(1), owing to the rarity & g O Simuation /o g
of hooking events, and consequently, the model fails in the =
regime Pegnin ~ O(A/Ry). The model is able to predict the <2 T
dispersivity reasonably well, as depicted by Figure 4. However, ¢ .CP....I ]
the model fails to predict the minima in the mobility and the %1 2odes 2 oaes 2
mean distance covered between successive collisions, instead ' Pe,

predicting a mor_lotonic decrease in mobility_a_nd a monotqnic Figure 8. Separation resolution between ga)andA/3-DNA, (b) A-
increase in the distance covered between collisions, respectivelyand 2/3-DNA, and (c) 4/3- and 2/3-DNA as a function of Pe

beyond Pgp.in= 1, as illustrated by Figures 3 and 5. This failure calculated by simulation in a self-assembled array of magnetic beads

; ; : having a mean lattice spacing of 3.2 (O) and that predicted by
of the model may be attributed in part to the use of a fixed the model £) for a separation length dfs = 1 cm. The error bars

collision probabilityp = Ry/a regardless of the field str_ength. represent 95% confidence bounds on simulation results. Also shown
Consequently, the model does not account for the existence offor comparison is the separation resolution predicted by the model of
a maximum inp at anO(1) chain Peclet number. We also note Minc et al. ¢---).
that the dependence pfon the size of the chain is manifestly
evident in Figure 6, rendering inaccurate the use of the arealresolution with respect to the field strength. The attainment of
post densityd/a for p. In fact, the dependence on the size appears a high resolution is contingent on the existence of a low
to be stronger than that assumed by eq 8, as suggested by thdispersivity for both chains and a large velocity difference
increase in the disparity between the simulation results and egbetween the chains. These conditions are met &(&h value
8 as the chain size decreases. Equation 8 assumes a simplef Pe. The decrease in the resolution at high field strengths
dependence on only two of four (or possible more) length scalesmay be attributed to the increase in dispersivity with the field
relevant to the collision process, namely, the chain size, poststrength. Furthermore, although the model fails to predict the
size, lattice spacing, impact paraméfeté-18and possibly others.  existence of a minimum in the mobility, it is able to qualitatively
Moreover, our use of eq 8 for the collision probability capture the decline in the chain mobilities in the regiog.Re
presupposes instantaneous chain relaxation to equilibrium and~ O(1) and, consequently, the initial increase in resolution in
fails to take into account the reduction in the transverse radius this region.
of gyration and, hence, the chain cross-section transverse to the Also depicted in Figures-35 and 8 are the results for the
electric field direction following a collision at high field corresponding quantities predicted by Minc ef ainder the
strengths. A further shortcoming of eq 8 is that it fails to take same conditions. The model of Minc et al. clearly fails to predict
into account the dependence of the collision probability on the the field-dependence of the chain dynamics and, consequently,
distortion of the electric field by the obstacl¥s. the nonmonotonic dependence of the resolution on the electric
Figure 8 provides a comparison between the resolution field strength observed in the simulations conducted in the
predicted by the model and that obtained from simulation data present study, as well as in previous experimental Work.
by means of eq 10 for each pair of chains as a function of the Quantitatively, as manifest in Figure 3, Minc et al. predict far
field strength (expressed in terms of;€rhe mean velocity lower values of the chain mobility than those observed in
and dispersivity, measured in the long time limit after the chain simulations, owing to their overestimation of the collision
has equilibrated in the array, are independent of the array lengthprobability and the chain extension.
for a sufficiently long array. In the present study, we consistently  4.2. Varying Mean Lattice SpacingsFigures 9-12 provide
employ a separation length & = 1 cm, which is similar to comparisons between the simulation results and model predic-
the values used in prior studiéd* The error bars for the tions at varying lattice spacings, at a fixed field strength
simulation results were computed from the differential error corresponding to Re= 5, with the error bars again representing
analysis of eq 10, treating the velocities and dispersivities of 95% confidence bounds on the simulation results. The CTRW
the two species as independently measurable quantities. Thenodel is unable to predict the normalized mobility and
model successfully predicts the nonmonotonic behavior of the dispersivity at a mean lattice spacing of 1,48. The effective
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Figure 9. Normalized mobility of (a)l-DNA, (b) 24/3-DNA, and (c) (c) A/3-DNA as a function of the mean lattice spacing obtained by
AI3-DNA as a function of the mean lattice spacing obtained by simulation in a self-assembled array of magnetic beads;atPe0O),
simulation in a self-assembled array of magnetic beads;at:Pe(O), that predicted by the modet), and that predicted by the model of
that predicted by the modet), and that predicted by the model of  Minc et al. ¢ - - -). The error bars represent 95% confidence bounds
Minc et al. ¢ - - -). The error bars represent 95% confidence bounds on simulation results.

on simulation results. maximum occurs at a higher value of Rg for 1/3-DNA, as

mean pore size available to the chain in this aray; d = pointed out earlier. As a result, there is a large disparity between
0.53um, is exceeded by the coil diameters of all three DNA the collision probability predicted by eq 8 and the much lower
chains under consideration. Equation 8 predicts an unphysical,values observed in simulations #&8-DNA. The corresponding
diverging collision probability as decreases to 0, leading to  predictions for the mean distance covered between collisions
the divergence of the dispersivity [cf. eq 7] in this limit, while are exceeded by the results obtained from simulation. Collisions

the mobility [cf. eq 6] approaches a constant valué/efThe were rarely observed to occur at large lattice spacingd/®r
CTRW mechanism is not realized whan- d < 2R, and the DNA.
mechanism is better described by the reptation ntooiethe Figure 13 depicts the resolution predicted by the model and

entropic barrier mode® The CTRW model performs well at  that obtained from simulation data for each pair of chains as a
the remaining lattice spacings and is able to predict the function of the lattice spacing. The error bars have been
asymptotic approach of the normalized mobility and normalized computed as before from the differential error analysis of eq
dispersivity to 1 and O, respectively, as the lattice spacing 10. The CTRW model predicts the existence of a maximum in
increases. the resolution with respect to the lattice spacing and the decrease
As evident from Figure 12, the collision probability assumed of the resolution to O at both small and large lattice spacings.
in the CTRW model agrees well with the corresponding Inthe regimea— d > 2Ry, the CTRW model correctly predicts
simulation results fof-DNA and 21/3-DNA. Figure 11 reveals  the decrease in the resolution betweeDNA and A/3-DNA,
that the mean distance covered between successive collisiongnd betweerl/3-DNA and 2/3-DNA, as the lattice spacing is
as predicted by the model accords with simulation results for increased. The quantitative differences between model predic-
A-DNA and 2/3-DNA at mean lattice spacings below 7 &%. tions and simulation results may be attributed to the failure of
However, at mean lattice spacings of 7.65 and 1@12] fewer the model to correctly describe the collision probability A¢3-
than two collisions were observed to occur in as many as up to DNA. Again in the regime of its validity, the resolution predicted
50% of all simulated trajectories, which were excluded from by the model betweeA-DNA and 21/3-DNA is close to that
the calculation ofin@. As a result, the simulation results do obtained from simulation within error bars. Unfortunately, it is
not reflect the increase in the distance between collisions not possible to conclusively identify the existence of a maximum
predicted by the model under these conditions. The field strengthin the resolution from the simulation data of Figure 13b, owing
at Pg = 5 yields the values Bgs = 3.55 and Pg; = 1.58. At to the size of the error bars.
theseO(1) values of Pgain the collision probability reaches a The predictions of Minc et al.,also illustrated in Figures
maximum with respect to the Peclet number and is close to 9—11 and 13, do not adequately capture the chain dynamics
that predicted by eq 8 forl-DNA and 2/3-DNA, thus with increase in the lattice spacing. As apparent from Figure 9,
explaining the success of the model. The location of this Minc et al. predict much lower values of the mobility than those
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Figure 12. Mean collision probability of (a) 1-DNA, (b) 21/3-DNA,

and (c)A/3-DNA as a function of the mean lattice spacing, calculated
from simulation as the number of chainbstacle collisions per lattice
column crossed by the chain center of mass at Pe5 in a
self-assembled array of magnetic beads. Also shown for comparison
are the mean collision probability assumed in the mogdet Ry/a,

and the areal post density/a.
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Figure 11. Mean distance covered between successive collisions by
(a)A-DNA, (b) 24/3-DNA, and (c)A/3-DNA as a function of the mean
lattice spacing obtained by simulation in a self-assembled array of
magnetic beads at pPe= 5 (O), that predicted by the modet), and
that predicted by the model of Minc et ak-(--). The error bars
represent 95% confidence bounds on simulation results. The simulation
data shown fot/3-DNA correspond t@a = 1.53um , a = 3.06 um,
anda = 4.37um only, since collisions were found to occur in fewer arrays. The use of a regular hexagonal lattice yields high
than 10% of the simulated trajectories at larger values of the mean mgpjjities approaching the free solution electrophoretic mobility,
lattice spacing. and hence, proves ineffective in achieving separation between
chains of different sizes. Instead, we select a self-assembled
array of magnetic colloids as being representative of arrays used
in experimental studies* These arrays are generated via
Brownian dynamics simulations of magnetic colloids that
interact with each other via a repulsive point dipolar potential
and mutual hard-sphere exclusion in two dimens#S#é Our
studies are conducted in an array having a mean lattice spacing
of 3.06 um at several experimentally accessible electric field
strengths and at a constant electric field strength equivalent to
a Peclet number of Re= 5 at several values of the mean lattice
spacing. Our neglect of hydrodynamic interactions in all
simulations is partially justified by the screening of hydrody-
namic interactions in complicated microchannel geometries. We
also neglect the distortion of the electric field due to the presence
of obstacles, a factor that may have adversely impacted our

In the present study, we provide a generalization of the ability to accurately model the probability of chainbstacle
CTRW model of DNA dynamics in an array of obstaclasth collision18
account for the electric field dependence of the chain extension  Our simulation studies of chain dynamics at varying Peclet
during collisions. We make use of a semiempirical expression numbers enable the identification of three regimes demarcated
recently developed from studies on chain collisions with single by the chain Peclet number. The regime.Bg < O(A/Ry)
obstacle# for the holdup time during which the chain center corresponds to the situation wherein thermal equilibrium has
of mass motion is impeded by the obstacle following a collision. yet to be disturbed, i.e., the drag on the chaipENZ, is
In addition, we take into account the dependence of the collision exceeded by the thermal forkgT/Ry acting on the chain in its
probability on the chain size. equilibrium, coil configuration. Under such conditions, the

We evaluate the model by comparing its predictions with the formation of hooked chain configurations is unlikely and the
results obtained from Brownian dynamics simulations of bead mechanism of the CTRW model is not realized. The raBge
spring models ofl-DNA, 24/3-DNA, andA/3-DNA in obstacle (A/Ry) < Penain = O(1) is associated with chain stretching in

observed in simulations. Moreover, as shown in Figure 10, they
predict the existence of a maximum in the normalized disper-
sivity with respect to the lattice spacing, not seen to occur in
simulations. Their predictions fail to reflect the rapid decline
in the resolution with increase in the lattice spacing seen in the
simulation data of Figure 13. At the field strength under
consideration, the chains are relatively strongly stretched and
the assumptions made by Minc ef akgarding the holdup time
and the collision probability, rather than their neglect of the
field-dependence of chain extension, may be responsible for
the discrepancies between their predictions and the simulation
results.

5. Discussion
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Figure 13. Separation resolution between fa)and1/3-DNA, (b) A-

and 2/3-DNA, and (c)4/3- and Z/3-DNA as a function of the mean
lattice spacing calculated by simulation in a self-assembled array of
magnetic beads at Pe 5 (O) and that predicted by the modet) for

a separation length ofs = 1 cm. The error bars represent 95%
confidence bounds on simulation results. Also shown for comparison
is the separation resolution predicted by the model of Minc et al.

the Gaussian regime, whereby the chain extension is well-
described by the low-force limit of the Mark&Siggia formula??

The chain mobility reaches a minimum at @1) value of
Penain corresponding to the attainment of a maximum in the
collision probability. For Pgain>> O(1), the chain extension is
derived from the large-force limit of the MarkdBiggia law??

In this regime, the probability of chairobstacle collision
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The model also does not account for the effect of the distortion
of the electric field lines in the vicinity of the obstacles and
neglects the dependence of the collision probability on other
relevant length scales such as the impact parameter and the post
size!>16.18\\e emphasize that the collision probability assumed
by us is justifiable only when the post diameter is small
compared to the chain diameter. The influence of the post size
on the collision probability bears further investigation by means
of experiment or simulation wherein the post diameter is varied.
Yet another source of error is the assumption that the chain
instantaneously relaxes to a coil at the location of its leading
end following a collision and subsequently moves at its free
solution electrophoretic velocityoE until the next collision
occurs.

Owing to the paucity of experimental studies on the systems
under consideration, we are able to provide only limited
comparisons with experiment. The nonmonotonicity of the
separation resolution with respect to the electric field strength,
as predicted by us, was observed by Minc et al. in studies on
the separation of-DNA and 2.-DNA chains® These authors
also observed the separation resolution to increase upon
changing the lattice spacing from 3.8 to 4uh. This observa-
tion, taken in conjunction with the decrease in resolution that
must necessarily follow at large lattice spacings upon approach-
ing the single-obstacle limit, renders the resolution nonmono-
tonic with respect to the lattice spacing. However, in the latter
study, the obstacle diameters were concurrently changed from
1 to 1.4 um, whereby the increase in resolution cannot
conclusively be attributed to the increase in the lattice spacing.
We are unable to confirm the existence of a maximum in the
separation resolution with respect to the lattice spacing, as
predicted by our model, owing to the size of the error bars
associated with our simulation results.

Our findings shed light on the behavior of field-driven
polymers in post arrays wherein the pore size is large compared
to the coil size of the polymer. Moreover, our results success-
fully reflect the experimentally observed nonmonotonicity of
the separation resolution with respect to the electric field strength
and are expected to aid in the appropriate selection of parameters
for the operation of obstacle arrays employed for the size
separation of DNA chains and similar molecules.
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