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Unraveling of a Tethered Polymer Chain in Uniform Solvent Flow
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ABSTRACT: The separation of electrophoresing DNA molecules of varying lengths, actuated by their size-
dependent collision with a stationary obstacle or array of obstacles, has recently gained prominence. To gain
insight into how a chain initially unravels subsequent to a polynoedstacle collision, we investigate the stretching
dynamics of a tethered polymer chain initially at equilibrium, following the imposition of a uniform flow of
solvent. The solution for the Rouse model of the polymer chain is obtained via an analysis into normal modes.
We examine the consequences of finite chain extensibility by performing Brownian dynamics simulations of the
wormlike chain model, which describes DNA elasticity. Detailed results are presented for the propagation of
tension with time in Rouse and wormlike chains. Our results suggest the diffusive propagation of tension in
Rouse chains, whereas a convective mechanism of tension propagation in wormlike chains under conditions of
strong flow is demonstrated.

1. Introduction In this direction, several models of polymesbstacle hooking
aimed at deducing the unhooking time following a collision were
proposed by Randall and Doytdn particular, the “X model”

is proposed for collisions occurring under strong electric fields
or, equivalently, at high Peclet numbers. The validity of the X
model is restricted to situations wherein the long arm of the
chain continues to unravel as the chain is unhooking from the
post. The model hypothesizes that the long arm can be
decomposed into a tension-bearing section terminated by a freely
convected coil, convected at the free solution electrophoretic
velocity. It is further assumed that the length of the tension-
bearing portion of the long arm increases at a rate equal to the
electrophoretic velocity as the freely convected coil unwinds.
One of the objectives of the present investigation is to test this

Recently, a size-based method for the separation of DNA
chains of varying lengths has emerged, based on the electro
phoresis of the DNA chains through an array of obstacles. The
size specificity of this separation technique arises from the fact
that a longer chain, upon its collision with an obstacle, requires
more time for disentanglement than a shorter chain. Such a
separation technique was pioneered by Volkmuth and Adistin,
who employed optical microlithography to fabricate obstacle
courses in silicon dioxide. More recently, as described in a series
of papers, Randall and Doyie' have used soft lithography to
construct PDMS microchannels enclosing an obstacle or array
of obstacles and have investigated chain dynamics following

ploEI)ymedr—ob;tacle C?IH'S,{/?."S' Irt\ tél?ehexpgntmelnts of Doyle et assumption of convective tension propagation in a chain
al® and subsequently Minc et &l.the obstacle course was unraveling in an external field.

in formed from nsion of rparamagneti r- . . .
stead formed from a suspension of superparamagnetic pa Under the assumption that the unraveling and unhooking

ticles, which self-assembled into a quasi-reqular array of . :
q g y events are decoupled, the unraveling of each arm of the chain

columns upon the application of a magnetic field. Size-based following its collision with an obstacle may be modeled as being
ration h | n achieved via dil lution illar . . .
separation has also been achieved via dilute solution capilia yequwalent to the stretching of a chain tethered to the obstacle

electrophoresis, wherein a dilute solution of neutral polymer . ; . .

chains is used as the separation medi#ithe separation is ””de_r an |mpos§d f|_eId. The X model,_ln_a_lssumlng that the

induced by the size-dependent entanglement of the DNA tension propagation in the Io_ng arm is S|gn_|f|cantly faster than

molecules with the neutral host polymer chald8 These, as the ropelike unhook[ng motion of the chaln., a]so allows for

well as related studies on the electrophoretic separation of DNA such a deCOUp!'ng'Fm."""y’ we '12V0k? the principle of eleg-
trohydrodynamic equivalencé;!®> which states that chain

molecules, are discussed in the review of Vidby. Rrd o=t ) : .
: ] ; . stretching in an electric field is equivalent to that in a uniform

The transient unraveling of the polymer chain following & 1y 4rodynamic flow field at a flow velocity equal to the free
polymer-obstacle collision and the formation of a hooked gq)tion electrophoretic velocity of the chain. Such an equiva-
configuration is a feature common to the above-mentioned size-|ance holds especially under the free draining conditions
based separation techniques. The dynamics of DNA moleculesasgymed in the present study, justified partially by the screening
in an array of obstacles have been modeled by Minc &t al. hydrodynamic interactions in complicated channel geo-
and Dorfmar® as a continuous time random walk comprising  metries. However, more generally, hydrodynamic interactions
three distinct stages, namely, collision with a post and the ysing on average from the electric-field-induced motion of
unraveling of the two arms, unhooking from the post, and finally ;,qividual polymer segments are screened by the counterion
unhindered electrophoretic motion until the next collision. An 4,4 surrounding the polyelectrolytic DNA molecule over
improved understanding of the dynamics following impact is  gistances exceeding the Debye lentfthwith the above as-
expected to refine predictions of the unraveling and unhooking gmptions, a parallel between the stretching of a tethered chain
times, and, ultimately, the separation resolution attainable in i, 5n electric field and that in a hydrodynamic flow field may

these devices. be established.
Several studies exist on the steady-state properties of a
* Corresponding author. E-mail: pdoyle@mit.edu. tethered chain in uniform flow. The stretching of a tethered DNA
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molecule in uniform flow was experimentally visualized and draining assumption, the set of Langevin equations governing
the dependence of steady fractional extension on velocity andthe evolution of the chain is
chain length obtained by Perkins et l&llLarson et al’
performed Monte Carlo simulations of DNA chains used in the dro=0 @
experiments of Perkins et al. as well as of longer chains, whereas
Cheon et al® employed molecular dynamics simulations of 1 2k T )
chains of several lengths. These studies concentrated on the dFj = (V + EFI') dt + N waj' j=1,..N-1(2)
steady-state behavior of chain extension. Scaling arguments were
proposed for the steady extension of a chain modeled as a stringvherer;, i =0, ...,N — 1, denotes the position vector of bead
of nondraining blobs in uniform flow by Brochard-Wy&#20 i relative to the origin, chosen here to lie at the location of the
based on the trumpet picture for moderate stretching and thetethered beadr§ = 0), andF; refers to the net deterministic
stem-and-flower picture for strong stretching. Several static force acting on beagl. In the absence of excluded volume
properties of a tethered chain in a uniform flow field, including interactions and external forces, the latter is identical to the
end-to-end distance, drag, and tension distribution, have beenspring force exerted on begdoy the adjoining springs. The
investigated by Zimmermann and co-work&¥é2 using the ~ drag coefficient for a single bead, given by Stokes’ law, is
bead-spring model both with and without account for excluded denoted byZ, andksT denotes the thermal energy. The term
volume and hydrodynamic interactions and analytical calcula- Wj represents a three-dimensional Wiener process, with
tions based on the equilibrium configurational distribution or [@W;(t)d= 0 and [dWj(t) dW\(t')C= dt oxd(t — t')d, wherek
the blob model. These authors employ the Gaussian, FENE,= 1, ...,N — 1 andé is the identity tensor.
and freely jointed chain models. We consider DNA molecules of five lengths, namehpNA

The dynamics of stretching, however, remain relatively (Naving a contour length of 2im when stained with YOYO
unexplored. Scaling arguments have been proposed by Bro-dye in the ratio of 4 base pairs of DNA per molecule of dye),
chard-Wyart and co-worket&23 for the transient extension of 2/-DNA, 41-DNA, 61-DNA, and 10.-DNA. The persistence
a tethered chain stretched by the application of a constant force!®Ndth of DNA, assumed unchanged on staining, is known to
at the free end or by a flow field in the trumpet regime and for be 53 nm. We maintain a constantllevel of dlscre§|zat|on in our
stretching in a flow field and relaxation upon cessation of flow Study and vary the number of beadsn the beaespring model
in the stem-and-flower regime. Existing simulation studies of t© @ccommodate chains of different lengths. As a compromise
chain dynamics in uniform flow are restricted to the near- betyveen a}chlevmg satlsfactory resolution of the chain into
equilibrium or near-steady-state regimes. Avramova et al. SPrings while concurrgntly ensuring an acceptable computational
provide a Monte Carlo study of the near-equilibrium stretching SP€€d, we select a discretizationhdfs = 19.8 Kuhn lengths
of a chain upon the imposition of flow and its relaxation P€ SPring, with the Kuhn lengthy being equivalent to two
following the cessation of flo#* Conformational fluctuations ~ Persistence lengths, i.da = 0.106um. , _
of tethered Rouse and FENE chains in flow at steady state have 1€ elasticity of DNA is characterized by the wormlike chain

been studied in detail by Rzehak and Zimmerni&Ahand model, the force-extension behavior of which is commonly
Rzehak®’ A few recent studies have theoretically treated tension described by an interpolation formula due to Marko and Sigigia.
propagation in stiff polymers under external figiand in However, Underhill and Doyfé have noticed that errors result

semiflexible polymers under the application of a pulling fotge. ~ rom the formulation of a beagspring model with the use of
However, a description of the transient stretching of a semi- e Marko-Siggia interpolation formula (which describes the
flexible, wormlike chain in flow is lacking. global force-extension behavior of the polymer molecule

stretched at constant force) to determine the ferdension
behavior of each spring. These errors may be compensated in
part by replacing the true persistence length with an effective
persistence length in the Mark&iggia force law. We adopt
the ratiod = 1.1 of the effective persistence length to the true
doersistence length, found by Underhill and Doyle to eliminate
errors at 50% mean fractional chain extension. The resulting

The aim of the present investigation is to provide a compre-
hensive study of chain unraveling in uniform flow. The Rouse
model is selected for its analytical tractability. The consequences
of finite extensibility are examined via Brownian dynamics
simulations of DNA chains described by the wormlike chain
model, in the absence of other nonlinear effects such as exclude
volume and hydrodynamic interactions. The paper is organized

as follows. In section 2, we describe the problem under force law is

consideration and the methods of analysis adopted. Analytical ke T Q\-2 Q10

results for the Rouse model are presented in section 3. Section Fsp,(Q) = b, (1 - 6) -1+ 46 6 )
4 provides a comparison between the behavior of Rouse and K 0 0

wormlike chains and describes the scaling behavior of the latter
model. Results for tension propagation in Rouse and wormlike
chains are presented in section 5. Section 6 contains a summar
of our findings.

whereFs,, denotes the spring tensio®, the spring vector of
magnitudeQ, and Qy = N dx the maximum spring length.
%onsequently, the contour lengthis equal to N — 1)Qo. In
the linear regime corresponding @< Qo, the Marko-Siggia
force law reduces to Hooke’s law with a spring constantof
= 3kgT/(Ab®Nk 9, employed in our solution of the Rouse model.
In this study, we employ the beadpring model of the We characterize the strength of the solvent flow by means
polymer chain, whereby the chain is discretized iNtbeads, of a Peclet number, defined as PeuvN¢/(ksT/by), physically
indexed from O toN — 1, with each pair of adjacent beads equivalent to the dimensionless drag force acting on a chain of
connected by a spring. The first bead of the chain is held N beads. The diffusivity underlying our definition of Pe is,
tethered. The chain is initially in an equilibrium, coiled therefore, that of an unconstrained, free draining chai of
configuration, and at timé= 0, a uniform flow of solvent is beads as given by = kgT/(NE). (However, in the limit of large
imposed, withv = X denoting the unperturbed solvent velocity N, the difference between the useMdbr N — 1 in the definition
and X the unit vector in the flow direction. Under the free of the Peclet number and elsewhere is immaterial. Such

2. Problem Definition and Methodology
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differences will be ignored throughout this study.) This defini- and
tion of the Peclet number is motivated by the observation that

the fractional chain extension at steady state is a universal _ Nis N1 1— exp(—Hat)
function of the drag force acting on the chain, regardless of Fspri,x = P&— z (Qm — Qk—l,m)gjm—
chain lengtht®17.21 Furthermore, steady-state results for a N ni=1 am
tethered freely jointed chain are known to reduce to the k=2,.,N—1 (6)

corresponding results for a Gaussian chain in situations wherein
Pe< 12! Therefore, we may expect a crossover from the linear,

near-equilibrium regime to a regime of strong chain stretching

dominated by finite extensibility at a Peclet number of the order

of 1. In the present investigation, we consider a range of Peclet
numbers from 1 to 100. Assuming a temperature of 298 K, a

Peclet number of 100 corresponds to a drag force of 4 pN on
a DNA chain, which falls significantly below the value of 65

whereLe and Fspri x denote respectively the mean end-to-end
distance and spring tension in sprikgn the flow direction,
with the indexk = 1, ..., N — 1 measured from the tethered
end. The end-to-end distance is measured byxibeordinate

of the bead at the free end of the chain. The elements of the
matrix , composed of the normalized eigenvectors of the
Rouse matrix, are given BY

pN at which the stretching phase transition occurs. The Marko 1 2m-1 .
Siggia law remains valid for DNA molecules stretched to an Q= SIr(ZN —1 ﬂJ) (7)
extension of up to 97% or up to a Peclet number ofP&003° /N _1
Equations 1 and 2, with the spring force law given by Hooke’s 2 4
law in_ the Rouse model, reduce to a Iin_ea_r set of Langevin corresponding to the eigenvalues
equations and are amenable to an analysis into normal modes.
The wormlike chain model is treated via Brownian dynamics o2m— 17
simulations. Initial equilibrium configurations are generated by a, =4 SII’12(2N ) §) (8)

employing the Marko-Siggia force law to simulate the evolution
to equilibrium of Gaussian coils. The radius of gyration of an Itis evident from eqs 48 that the relaxation times of a tethered
initially Gaussian configuration converges to its steady, equi- Rouse chain may be identified with
librium value within 5 relaxation times for all the simulated
chain lengths, and the resulting configuration is subsequently ~ 1
. . . . . Tn=— = (9)
sampled at intervals of 1 relaxation time to obtain starting Ha,,
configurations for our simulations. We adopt the semiimplicit

predictor-corrector scheme described in ref 32 for the integra- Equations 46 may be simplified by means of elementary
tion of eq 2. A time step of 5< 10%CQu*/(keT) is used. The  trigonometric identities, and the summatidfi&;» and the term

equilibrium radius of gyration and chain stretch/eDNA in Qn-1,m approximated in the limit of largdy, yielding

the absence of flow were found to vary by less than 2% upon _

reducing the time step by a factor of 5. Averages are performed _ PelNN? 1—exp(t/z,)

over an ensemble of 100 chains. Upon doubling the ensemble L.= T—Z(—l)m“— (20)
size to 200 chains, the equilibrium radius of gyration and chain H aNAf= _g[2m—1m

stretch were found to differ by less than 1% from the sin N_1 E

corresponding values obtained from an ensemble of 100 chains

for A-DNA in the absence of flow, with thermal noise being and

further attenuated in the presence of flow. However, in order 5

to facilitate an accurate determination of the instantaneous chain_ Ny N2 {Zm -1 yr)l —expt/7,)

length under tension in flow, the results presented for a 61- Fsprk x = PE—ZCO K= f————

bead wormlike chain at Pe= 10 and Pe= 30 derive from 2N N-1 2 sirt 2m—1z

ensemble sizes of 10 000 and 1000, respectively. ON—12
Except where dimensional notation proves convenient, non- k=1,..,N—1 (11)

dimensional variables will be employed in the remainder of this

study and will be denoted by the symbe}™ surmounting the The scaling behavior of Rouse chains is manifest in eqs 10

corresponding dimensional variable. We utilize a length scale and 11. Owing to the linearity of the Rouse model, the
of Qo and a time scale afQu%(ksT). Consequently, the unit of ~ dependence on Pe is trivial. The behavior of the chain extension
force employed by us iksT/Qp with the spring constant — and tension distribution &¥ is varied may be gauged from the

expressed in units dfsT/Qo?. fact that the slow modes dominate the dynamics, except very
close tot = 0. This is true particularly as the dependence on
3. The Rouse Model am, Which rapidly increases witim, approaching a value of 4

Below, we summarize our results for the end-to-end distance @mapproachesl — 1, arises not only in the decaying exponent
and the tension distribution in a Rouse chain and highlight their Put also in the form of inverse powers af in eqs 10 and 121-
relevant features. The details of the normal mode solution are Similar to the case of an unconstrained Rouse clzginy 1/N

relegated to the Appendix. We obtain and, consequentlyt, 0 N2 for the slow modesni < N) and
for long chains il > 1). It then follows that the chain extension
. PeNs N-1 1— exp(—Hamf) expressed as a fraction of the contour length, naniegli¥, and
= — O 4) the tension in the first sprindsspr 1,x, Which balances the drag
H N =1 ' a, acting on the chain at steady state and is equivalent to the
L. restoring force experienced at the tethered chain end, are
5 N N2 1 — exp(—Hat) universal functions of the rescaled time coordirt&t at fixed
Foprix = Pe— z Qi (5) Pe. Similarly, the tension distributions for chains of varying

N ni=1 an lengths, compared at fixed Pe and at equal value§/Ns
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Figure 1. Fractional extension (a) and tension in the first spring (b)
as functions of the rescaled time coording¢? for Rouse chains of
several length$ at a Peclet number of 1.

Fopr i, 2

0.8
(2k — 1)/(2N — 1)
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Figure 2. Tension profiles for Rouse chains of 41 and 61 beads as
functions of the rescaled spring indexk(2 1)/(2N — 1) at a Peclet
number of 1 at several points in time, comparet/lst = 6.0 x 1075,

6.7 x 104 1.3x 1073 5.4 x 1073 1.1 x 102 and 1.6x 1072 for
both chain sizes.

collapse when plotted as functions ok(2 1)/(2N — 1). This
behavior is demonstrated in Figures 1 and 2.

Equation 10 reveals that the contributions from the various
modes to the chain extension alternate in sign, with the
dominant, positive contribution being that of the slowest mode,
m= 1. As a result, eq 10 may be well-approximated by a single-
exponential relaxation to steady state with time constardn

approximation that marginally overestimates the chain extension

(resulting in a maximum error of about 5% for a chain of 61
beads at Pe= 1). The same approximation predicts the spring
tensions with varying degrees of accurackasvaried, owing

Macromolecules, Vol. 40, No. 12, 2007
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Figure 3. Fractional extension as a function of time for 61-bead Rouse
chains and wormlike chains (abbreviated WLC) at Peclet numbers of
(a) 1 and (b) 100. Also shown is the fractional extension predicted in
the affine deformation limit, namelLe = ut.

behaviorLe = st and Fspr1x = Het in dimensional units. An
initial region of vanishing tension is predicted for the remaining
springs, indexed > 1. The assumptioh< Ty_1 is, however,
valid only in an extremely narrow time window. Wit = 61,
we obtain7y—; =~ 5 x 1073, leading to a time interval barely
discernible in Figure 1. The chain extension measured by the
end-to-end distance does, however, show convective behavior.
This behavior arises from the fact that the bead at the free
end of the chain is initially convected by the flow, until the
preceding spring begins to deform. This issue is discussed
further in section 5.

Single-exponential relaxation is predicted by egs64in
the long time limit oft > %,, while simultaneouslyt > 7.
Owing to the existence of almost an order of magnitude
difference between the relaxation times of the two slowest
modes, the range of validity of this approximation is reasonably
large. For instance, for a chain of 61 beatls~ 3, whereas
:L"1 =~ 28.

4. The Wormlike Chain Model

The approximation of a wormlike spring by a Gaussian spring
is valid for spring extensions below30% , i.e., under near-
equilibrium condition$® A comparison between the fractional

to the fact that the cosine term in eq 11 varies in sign as its chain extension and the tension in the first spring predicted by
argument varies fok > 1, resulting in a maximum error of  the Rouse and wormlike chain models fdr= 61 at Peclet
about 20% for the case= 1 andN = 61 at Pe= 1. Several numbers of 1 and 100 is presented in Figures 3 and 4. The Rouse
modes are required to yield accurate tension profiles, with the model is seen to provide a reasonable approximation of a
use of the first 10 modes being found to adequately capture thewormlike chain at a Peclet number of 1, but as the Peclet number
shape of the transient tension profiles for the didse 61. is increased, deviations from Gaussian behavior are apparent.
Equations 4-6 lead to simplified predictions in the shorttime The seeming agreement between the two models in predicting
limit of t < %, for all values ofm, yielding the convective the chain end-to-end extension, as shown by Figure 3, arises
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" Figure 6. Spring extension in the flow directioRsr x, plotted against
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500 e ] With the neglect of the nonuniformity in tension along the chain,
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Figure 4. Tension in the first spring as a function of time for 61-bead . . . .
Rouse and wormlike chains at Peclet numbers of (a) 1 and (b) 100.  The components of the spring vectors in the flow direction

are plotted against time for several springs of a wormlike chain

LO— T T with N = 61 at Pe= 10 and 100 in Figure 6. At a moderate
0.8 5::31:))0_ Peclet number of 10, the simultaneous, nonlinear deformation
of several springs contributes to the chain extension once the
= 061 Pe=10 spring at the free end of the chain, wikh= 60, begins to
3 041 . deform. On the other hand, at a high Peclet number of 100,
Pe=3 ; i i
0l | spring 60 does not deform almost until steady state is reached.
’ Pe=1 As aresult, bead 61 is freely convected, and the chain extension
0.0b——"t——t shows affine deformation almost until steady state. The region
0.0 0.4 0.8 1.2 . o . > .
to/L where nonlinear behavior is manifest in Figure 5 shrinks as Pe
Figure 5. Fractional extension as a function of time nondimension 's increased.
alized by the convective time scalév for a 61-bead wormlike chain Thes_e featur_es point to t_he mhgrent d|fference§ between
at several values of the Peclet number. Gaussian and finitely extensible springs. The Gaussian springs

close to the tether point of a Rouse chain can continue to extend

due to the convective transport of the free chain end at high Until steady state. On the other hand, the springs of a wormlike
Peclet numbers. In particular, at a Peclet number of 100, the chain close to the tether point, where the drag force exerted by

affine movement of the chain end of a wormlike chain, leading flow is maximum, are quickly stretched close to their steady
to the behaviolLe = ut, is seen to occur almost until steady Values, after which they exhibit little deformation. These issues
state is reached. also arise in the qualitatively different nature of tension

Figure 5 shows the evolution of the fractional chain extension Propagation in Rouse and wormlike chains. _
as a function of time nondimensionalized by the convective time  Motivated by the scaling behavior of Rouse chains, we next
scale, i.e. /L, for a wormlike chain of 61 beads at several investigate the collapse of data for wormlike chains of different
flow strengths. The curves initially show affine behavior, Cchain lengths. Figures 7 and 8 demonstrate the collapse of the
corresponding to a line of unit slope passing through the origin. fractlongl chain extension and thg tension in the first spring,
The duration of affine deformation increases with the Peclet respectively, when plotted as functionstd¥” for several chain
number, and in the limit Pe- », affine deformation is expected lengths at three values of the Peclet number. The tension profiles
to occur until steady state. The steady chain extension of aare found to collapse when compared at equal valueé\sf
strongly stretched wormlike chain acted upon by a stretching for different values oN on replacing the discrete spring index
force f may be estimated from the large force limit of the X With a continuous measure of distance along the chiihn,
Marko—Siggia law, given in dimensional form by the expression 1his behavior is depicted in Figure 9 at Pe10 and 100.

b, 1 5. Tension Propagation
K (12) A strongly stretched wormlike chain exhibits linear tension

keT 21— LJL)Z profiles at all times after an initial period of Gaussian stretching,
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Figure 7. Fractional extension as a functionté? for wormlike chains Figure 8. Tension in the first spring as a functiontik? for wormlike

of several lengths at Peclet numbers of (a) 1, (b) 10, and (c) 100.  chains of several lengths at Peclet numbers of (a) 1, (b) 10, and (c)

and a clear demarcation exists between the portion of the chain100

under tension and the remainder of the chain up to the free end.tension-bearing segment and that the remainder of the chain
This moving front remains well-defined with time. Such not under tension is freely convected by the flow, consequently
behavior is clearly manifest in Figure 9b at a Peclet number of experiencing no drag.

100. The behavior of the Rouse chain at the same Peclet number A further comparison between Rouse and wormlike chains
may be inferred by exploiting the linearity of the Rouse model is provided in Figure 10. At early time points, the tension
to amplify the scale of thg-axis of Figure 2 by a factor of  profiles of Rouse and wormlike chains are similar, although
100. A subsequent comparison with Figure 9b reveals that the springs of a wormlike chain very close to the tether point
tension propagates more gradually in a Rouse chain, asbecome highly stretched even at short times at a high Peclet
evidenced by its curved tension profiles. The Rouse chain takesnumber. Moreover, tension propagates very quickly in a
longer than the wormlike chain to attain a steady, linear profile. wormlike chain, and the steady, linear tension profile is evident
At steady state, the tension in each spring balances the drag orin a wormlike chain even as the Rouse chain continues to
the remainder of the chain up to the free end, and force balancedeform.

implies that a linear tension profile exists regardless of the spring  We next investigate the evolution of the chain length under
force law selected. Note that the linearity of the tension profiles tension with time. For the sake of definiteness, we associate
at intermediate times indicates that the portion of a wormlike the number of springs under tension, as illustrated in Figure
chain under tension at any instant behaves like a shorter, tethered 1, with the intercept made by the tangent to the tension profile
chain at steady state whose length is identical to that of the at the tether point on thg-axis. Thus, the symbatl; denotes
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Figure 10. Spring tension as a function of spring indefor 61-bead
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the number of springs under tension at tin@nd is determined
in a like manner for Rouse and wormlike chains. We allgw
to be nonintegral.

velocity of v in the positivex-direction att = 0.
Upon going to the continuous limi, we obtain the inho-
mogeneous diffusion equation

9s_
at

H s
€ an?

S

(14)

governing the bead-displacements(n,t), wheren, denoting

F!gure 12 shows the evolution ok W|th.t|me.for Rouse the bead index, is now treated as a continuous variable analogous
chains of several lengths. Because of the linearity of the Rouse; )+ the variables in eq 14 is analogous to the temperature of
mo_del, M 1S independent of the Pedet m_meer, although the a one-dimensional, semi-infinite, heat conducting rod with a
spring tensions themselves_grow Ilnearlywnh the Peclet number. constant heat production rate per unit length and with the
The collapse of data for different chain lengths at early time temperature ak = 0 being held fixed at the uniform initial
points reveals that while the deformation of the chain starts at temperature of the rod. Equation 14 may be solved subject to
the tether point, the springs closer to the _free end contl_nue 0 the boundary conditios(n=0) = 0 and the initial condition
be convected by the flow for a longer duration. At longer times, s(nt=0) = 0, yielding

a collapse of data is achieved by a rescaling of the axes, as
ai) r)
= (ot + erf]
( 2VHY

discussed in section 3.
/CU n Cun
4Ht (15)

As a simplified model of tension propagation in a Rouse s(n.p)
chain, we consider a semi-infinite chain of beads connected by
identical linear springs, lying along the positixa@xis and held
fixed atx = 0. We further assume that the beads are constrained
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spring indexk for a 101-bead Rouse chain, and that predicted by taking
the continuous limit of a semi-infinite Rouse chain at timest(a

2.5, (b)t = 25, and (c)t = 100.

The growth ofs(n,t), given by eq 15, is suggestive of the
diffusive scalingn; ~ t%5.
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4Ht
I

n = (18)

Equation 18 establishes that tension propagation in a semi-
infinite Rouse chain obeys diffusive scaling.

The existence of a power law dependencexain time for
Rouse chains over intermediate time scales is evident from
Figure 12a. For chains of lengtté = 41, 61, and 101, the
linear region of Figure 12a exhibits the scaling behawvior
t* over 2 decades in time, witoe = 0.43, 0.45, and 0.46,
respectively. Also shown in Figure 12a is the diffusive behavior
predicted by eq 18 in the continuous limit of a semi-infinite
Rouse chain. We attribute the deviations from diffusive behavior
to errors originating from discretization at early time points until
the spring closest to the tether point is stretched significantly
(beyond its equilibrium root-mean-square length). As steady
state is approached, the finiteness of the chain length causes
deviations from the behavior expected of a semi-infinite chain.

Finally, we test the hypothesis of the X model proposed by
Randall and Doylethat the length of a tethered DNA chain
under tension, denoted here hygrows linearly in time at a
rate equal to the velocity of flow, i.el; = vt. We hereafter
refer to this model as the convective model of tension propaga-
tion. While our simulations of wormlike chains provide us with
data on the evolution of with time, the deduction of the
corresponding chain length under tension requires an estimate
of the spring extensions. We obtain such an estimate by first
assuming that the lengths of all springs in the tension-bearing
segment of the chain at any instant are identical. While this
assumption may be justified at a high Peclet number (of the
order of 100), we expect it to prove less satisfactory at moderate
Peclet numbers of the order of 10.

We are now in a position to estimate the number of springs
under tension from the convective model. For this purpose, we

Furthermore, eq 15 enables a comparison between the tensioemploy the large force limit of the MarkeSiggia interpolation

profiles obtained from the normal-mode analysis of a finite
Rouse chain and those following from the continuous ap-
proximation of a semi-infinite chain. The tension in sprim

the continuous limit of the chain is given by the expression

Fsprn,x = H 3%an in nondimensional form. Hence, use of eq 15
yields the expression
- PeN
Feprn x = k‘S|ln erf——| +
prn, N —
2V Ht

24 /ﬂ exr{— nfri) —n| (16)
T 4Ht

formula (eqs 12 and 13, again with the neglect of the tension
variation along the chain), in whiché/L is replaced by the
fractional spring extensiong/Qo, in conjunction with the
hypothesis that (= nds) = vt. We thereby obtain the following
estimate for the number of springs under tension from the
convective model:

wtlQ,

1~ @pe) ™ .

nl=

Figure 14 provides a comparison between the prediction of
n; obtained from the convective model and that obtained from
simulation at a Peclet number of 100 for a 61-bead wormlike

for the spring tensions. A comparison between the tension chain. The convective model predicts a slope of 34.9nfars
profiles predicted by eq 16 and those obtained for a chain of a function oft at Pe= 100, while a slope of 34.4 with 95%
101 beads from egs 5 and 6 is illustrated in Figure 13 at three confidence limits of (34.0, 34.8) is obtained from a linear fit to
time points. The tension profiles predicted in the two cases agree19 points from simulation. The agreement between the two is
when the finite chain is far from Steady state. However, as the impressive, particu|ar|y given the assumption of equa| Spring
finite Rouse chain approaches steady state, it is no longer well-extensions estimated from the large force limit of the Marko

approximated by a semi-infinite chain. As expected, the failure

Siggia law. The corresponding vst curve for a Rouse chain,

of the approximation at later time points is most evident near shown for comparison, emphasizes the relatively rapid propaga-

the free end of the finite chain.
_ The tangentTy(t) to the instantaneous tension profile
Fsprn, x(t) from eq 16 at the tethered emd= 0 is of the form

d“( [ait )
N i1

To(b) = i 17

and consequently

tion of tension in a wormlike chain.

The transient behavior of the tension in the first spring of
the wormlike chain is also illustrated in Figure 14. At a high
Peclet number of 100, the tension at the tether point rises linearly
from an initial value of zero to its steady value equal to the
steady-state drag on the chain, correspondind-491x =
NksPe. Steady state is reached once tension propagates up to
the free chain end, corresponding to a timet ef NIJv. The
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Figure 14. Tension propagation in a 61-bead wormlike chain at a
Peclet number of 100. The circles represafii as a function ot for
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a wormlike chain and are found to superimpose on the rescaled tension

in the first springFspr 1.,/(Nk€), scaled to reach a value of unity at
steady state (shown by the solid line). Also shown for comparison are
the corresponding/N vst curve for a Rouse chain of identical length
(diamonds) and that predicted by the convective model of tension
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prediction of the convective model are again manifest as steady
state is approached. There is, however, an intermediate region
during whichn; grows linearly in time, and a comparison with
the prediction of the convective model may be made in this
region. At Pe= 10, the convective model predicts a slope of
4.18 forn; vst. A slope of 4.11 with 95% confidence limits of
(3.91, 4.32) is obtained from a linear fit to the 10 points con-
stituting the linear region obtained from simulation. At Pe
30, the slope of 11.2 predicted by the convective model com-
pares well to the value of 10.6 with 95% confidence limits of
(10.4, 10.7) obtained via simulation from a linear fit to 11 points.
The time point at which the crossover occurs from Rouse to
convective behavior may be estimated by imposing the equality
of the slope dy/df for a semi-infinite Rouse chain, derived from
eq 18, and that predicted by the convective model, obtained
from eq 19. We thereby obtain the expression

propagation (dashed line).

1.0 . .

W T =0 (ZPEYUT (20)
5 0.8 ) — ¢ JT Nk’sPeN
é 0.6 .
= o4 7 & © | for the nondimensional crossover time A crossover time of
3 <& tc = 1.1 is predicted by eq 20 at a Peclet number of 10, which
02 7 is close to the valug = 1.0 obtained from the simulation data
0.0 L L L L of Figure 15a. At a Peclet number of 30, the predictions of eq
5 0 15 20 25 20 and the simulation data of Figure 15b are respectiiety
t 0.15 andi. = 0.24. At a Peclet number of 100, eq 20 yields
W ¥ = 0.015. However, the prediction &ffrom the simulation data
= osf ® - of Figure 14 is hindered by the nonavailability of data points
g 06 | very close tot = 0, owing to the discretization error.
=7 Figure 15 reveals that the rescaled tension in the first spring,
i 0.4 o O Fspr 1.4/(NksP€), scaled to reach unity at steady state, closely
® 02 o © © _ mirrors the evolution of/N with time at Peclet numbers of 10
D and 30. This is consistent with the existence of a similar trend

0.0

at Pe= 100. However, such a correspondence betwgamd

the tension in the first spring is not observed in a Rouse chain,
Figure 15. Tension propagation in a 61-bead wormlike chain at Peclet where the rescalefj tension ",1 the ﬂrSt, Sprir,]g falls §ignificantly
numbers of (a) 10 and (b) 30. The circles represef vs t for a below then/N vs t curve at intermediate time points before
wormlike chain. Each dashed line represents the best-fit line passingsteady state is reached. These observations suggest that the
through the linear region of the corresponding curve for a wormlike tension-bearing segment of a wormlike chain, but not of a Rouse

chain. Also shown for comparison are the results for a Rouse chain - : : :
under identical conditions (diamonds). Each solid line is the tension in phalr!, behaves instantaneously like a shorter, tethered chain of
identical length at steady state.

the first spring rescaled to reach a value of unity at steady state, given
by Fspr 1,x/(Nk,5Pe).

6. Discussion

close accord between/N and Fsp 1.4/(NksP€), where both The present investigation provides an analysis of transient
quantities have been rescaled to attain a value of unity at steadychain stretching in a uniform flow field for a free draining
state, reinforces our conclusion that the tension-bearing segmenpolymer chain modeled as a Rouse chain or as a wormlike chain.
of a wormlike chain instantaneously acts like a shorter, tethered The Rouse model is found to provide a satisfactory approxima-
chain at steady state, and the drag it experiences is balanced byion of a finitely extensible DNA chain at Peclet numbers of
the tension at the tether point. the order of 1 or smaller, under which conditions the chain has
The prediction of the convective model is also tested under not been significantly perturbed from the linear, near-equilibrium
moderate conditions of Pe 10 and Pe= 30. The results are  stretching regime. The dynamic scaling behavior of the Rouse
presented in Figure 15, again for a 61-bead chain. At early times, model is readily inferred from the analytical solution of the set
the evolution ofn; in a wormlike chain closely mimics the  of linear Langevin equations governing Rouse dynamics.
behavior of a Rouse chain, as expected for stretching in the As the Peclet number is increased, finite extensibility is found
linear regime. As tension propagates up to the free end of theto play a dominant role in determining chain dynamics and in
chain, the springs near the free end, where the drag force iscontrolling the propagation of tension in the chain. For wormlike
minimum, tend to be weakly stretched in comparison with the chains, as for Rouse chains, the transient fractional extension
springs close to the tether point. Therefore, at moderate flow and spring tensions are found to be universal functiorté\sf
strengths and at long times, the assumption of equal springfor different chain lengthdN at a fixed value of the Peclet
extensions in the portion of the chain under tension and the usenumber. The wormlike chain model, unlike the Rouse model,
of the large force limit of the MarkeSiggia law become exhibits a nonlinear dependence on the Peclet number, with the
increasingly likely to fail. (This feature is also apparent in Figure chain extension being determined by the cooperative stretching
6, providing a comparison between the spring extensions at Peof strongly stretched springs governed by the nonlinear Marko
= 10 and Pe= 100.) Consequently, deviations from the Siggia force law.
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Our results for the time evolution of the chain length under obstacle collisiort;® in dilute solution capillary electrophoregisio
tension indicate a diffusive propagation of tension in Rouse and in flows of polymer solution%.
chains. For a wormlike chain, a comparison with the predictions
of the convective model of tension propagation is effected by ~ Acknowledgment. This material is based upon work sup-
assuming that the springs in the tension-bearing section of theported by the National Science Foundation under Grant No.
chain have identical extensions, derived from the large force 0239012 (Career Award).
limit of the Marko—Siggia force law. Our results for the tension )
propagation in a wormlike chain at high Peclet numbers of the APpendix
order of 100 corroborate the convective model proposed by In this section, we present the solution of the Langevin
Randall and Doylé.At a moderate Peclet number of the order equations, given by eqs 1 and 2, for a Rouse chain. For
of 10, our results suggest a transition from Rouse behavior atconvenience, we use dimensional notation in the following
early times to convective tension propagation at later times, andanalysis. The force acting on bepé given by Hooke’s law:
an estimate of the time at which the transition occurs is provided.
At still longer times, deviations from convective behavior are F= H(rj+1 -2+ rjfl)! j=1,...N—=2
observed, possibly because the weak stretching of the springs = —H(fy,— ) =N—1 1)
near the free chain end induces errors in our estimate of the N1 P2 )
spring lengths. Furthermore, the linearity of.the.tensiorll profilgs Sincero(t) = 0 Ot, it follows thatF, = H(r» — 2ra). Therefore,
and the close agreement between the tension in the first SPrNg, o obtain the equations
and the number of springs under tension at any given point in
time suggest that the portion of a wormlike chain under tension

acts instantaneously like a steady chain of length identical to =~ " 2kgT
that of the tension-bearing section. drj=|v— EkZlAikrk dt + c dw;,
A comparison may be made with the scaling arguments of ji=1,.N—1 (22)

Brochard-Wyart and co-worke?8?2 derived for nondraining

blobs in a good solvent. Our results for the short time behavior whereAy (j, k =1, ...,N — 1) are the matrix elements of the
of the chain extension agree with the convective behavior (N — 1) x (N — 1) Rouse matrix

predicted by those authors. This, however, has been interpreted

by us as arising from the affine movement of the free chain 2 —1-

end, especially at high Peclet numbers. The long time behavior A= -12 -1- (23)
of chain extension is predicted by Brochard-Wyart et al. from L

the trumpet pictur® to be an exponential relaxation to steady < - —11

state with a time constant that is inversely proportional to the ) ) - o )

flow velocity. In the stem-and-flower regime, Brochard-Wyart's A being a real,_ symmetric, positive definite matrix, possesses
arguments for the long time limit of chain stretchigmply rgal, positive eigenvalues and a comp_lete set of olrthon.ormal
an exponential relaxation of the chain extension to its steady &/genvectors. Consequently,is diagonalized by the similarity
value with a time constant that is inversely proportional to the transformation ~*AQJ; = awj, wherea, > 0 (k =1, ...,
square of the flow velocity. These predictions are not reproduced N — 1) are the eigenvalues #f, while Q is the unitary matrix

in our results. The linearity of the Rouse model imposes a Whose columns are the eigenvectorsfofThe unitarity ofQ
decoupling of the relaxation times from the solvent velocity. eads to the equality

The wormlike chain model predicts a nonlinear dependence of N-1

the qhain extension on the Peclet number different _from that ZQ"QK =0, k=1, ..N-1 (24)
predicted by Brochard-Wyart and co-workers, resulting from £ = :

the simultaneous stretching of strongly extended wormlike

springs. Furthermore, the results of these researchers predict &/e now make use of eq 24 to introduce the transformations
steady fractional extension proportional to-1f 1, in accord N1

with the behavior of a freely jointed chain acted upon by a drag ,
force of £35 The steady fractional extension of a strongly = Zgikrk
stretched wormlike chain is, on the other hand, proportional to k=

1 — f ~1230 A reformulation of the blob model in & solvent N-1
under free draining conditions leads to results in accord with = Zgjkrj (26)
the predictions of the Rouse model. =

As previously stated in section 1, hydrodynamic interactions .
. . .~ By means of the above transformations, eq 22 may be expressed
have been neglected in the present work. Experimental studies

of DNA dynamics are typically carried out in microchannels gtermz of the Va“ablesk' A Sl;]bsgq(ljjgntfrrlllult|plc|jcag|on by
whose heights are far exceeded by the chain contour lengths. "“I.an. a ?umrgatlond ot\1/er t ﬁ Indgx ofowe e fgn "
For example, the experiments of ref 4 employir®NA and ap;IJC;Cﬁtmn 0 ]?q 4 an the similarity transformation, finally
T4-DNA having contour lengths of 21 and #zn, respectively, yield the set of equations

were conducted in a microchannel of height:®. Hydrody-

namic interactions among chain segments are screened under. |
such conditions, thus partially justifying the free draining dri, =
assumption.

Our results elucidate the mechanism of transient chain
unraveling in uniform flow, relevant to disentanglement pro- where we have introduced the independent vector Wiener
cesses occurring in post arrays subsequent to a DNA €hain processe®V,, via

(25)

N-1 H 2k T
Qv——af,|dt+A/—dW,
]; jm C m C m

m=1,..,N-1 (27)
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N—-1 H
dw;, = ZQjm dw, (28) N1 1- exp(— Eamt)
3 Fsprk, x = g” Z (ka - Qk—l,m)Qjm—!
mi=1 am

It is readily verified thatdw (t)C= 0 and [dW, (t)dW (t') = k>1 (34)
dt OmO(t — t')d, with m, n= 1, ...,N — 1. The solution of the
decoupled, linear stochastic differential equations representedequations 3234 are expressed in the dimensionless notation
by eq 27 may be effectétito yield introduced in section 2 by eqs—.

The eigenvalues and eigenvectors of the Rouse matrix remain

N-1 [ to be specified. In our study, we make use of the solution
1 —

z gzjm
1=

t H
— [Cdw(t ——at—t)| (29
z;/; ()exp( 22 ))( )

provided by Rzehak and Zimmermaffrgiven by eqs 7 and 8.
In the continuous limit of the beatspring chain, the
eigenvalues and eigenvectors are given by the expressions

@

"0 p( H t)'(0)+ v
ri () = exg — —a,t|ri ——
cm Hay,

{4
exp — —
Cam

where the stochastic integral on the right-hand side of the above
equation is a Gaussian random variable having vanishing mean.and
An application of eqs 25 and 26 to eq 29 finally yields the
expression

+

2m—1 .

1 sir( n)
N1 N Y
N2 4

with the superscript “c” denoting the continuous approximation.

Q= (36)

N-1 Ha,t
rk(t) = Z ka exg — T lerl(o) +
mJl=1

1—exd— Eamt With the exception of the tension in the spring at the free chain
g Nt end (which becomes negative at very early times), the solution
-V z QQ———— + obtained by means of the continuous approximation is found
H ni= an to be indistinguishable from that obtained using the eigenmodes

of Rzehak and Zimmermann for a chain of 61 beads, thus

2k, TN-1 H . . . . .
t , reinforcing the scaling of the relaxation times for the slow modes
¢ ngm/;dwm(t) eXp(_ Eam(t - t)) B0 i NforNe 1
m=
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