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ABSTRACT: The separation of electrophoresing DNA molecules of varying lengths, actuated by their size-
dependent collision with a stationary obstacle or array of obstacles, has recently gained prominence. To gain
insight into how a chain initially unravels subsequent to a polymer-obstacle collision, we investigate the stretching
dynamics of a tethered polymer chain initially at equilibrium, following the imposition of a uniform flow of
solvent. The solution for the Rouse model of the polymer chain is obtained via an analysis into normal modes.
We examine the consequences of finite chain extensibility by performing Brownian dynamics simulations of the
wormlike chain model, which describes DNA elasticity. Detailed results are presented for the propagation of
tension with time in Rouse and wormlike chains. Our results suggest the diffusive propagation of tension in
Rouse chains, whereas a convective mechanism of tension propagation in wormlike chains under conditions of
strong flow is demonstrated.

1. Introduction

Recently, a size-based method for the separation of DNA
chains of varying lengths has emerged, based on the electro-
phoresis of the DNA chains through an array of obstacles. The
size specificity of this separation technique arises from the fact
that a longer chain, upon its collision with an obstacle, requires
more time for disentanglement than a shorter chain. Such a
separation technique was pioneered by Volkmuth and Austin,1

who employed optical microlithography to fabricate obstacle
courses in silicon dioxide. More recently, as described in a series
of papers, Randall and Doyle2-4 have used soft lithography to
construct PDMS microchannels enclosing an obstacle or array
of obstacles and have investigated chain dynamics following
polymer-obstacle collisions. In the experiments of Doyle et
al.5 and subsequently Minc et al.,6 the obstacle course was
instead formed from a suspension of superparamagnetic par-
ticles, which self-assembled into a quasi-regular array of
columns upon the application of a magnetic field. Size-based
separation has also been achieved via dilute solution capillary
electrophoresis, wherein a dilute solution of neutral polymer
chains is used as the separation medium.7,8 The separation is
induced by the size-dependent entanglement of the DNA
molecules with the neutral host polymer chains.9,10 These, as
well as related studies on the electrophoretic separation of DNA
molecules, are discussed in the review of Viovy.11

The transient unraveling of the polymer chain following a
polymer-obstacle collision and the formation of a hooked
configuration is a feature common to the above-mentioned size-
based separation techniques. The dynamics of DNA molecules
in an array of obstacles have been modeled by Minc et al.12

and Dorfman13 as a continuous time random walk comprising
three distinct stages, namely, collision with a post and the
unraveling of the two arms, unhooking from the post, and finally
unhindered electrophoretic motion until the next collision. An
improved understanding of the dynamics following impact is
expected to refine predictions of the unraveling and unhooking
times, and, ultimately, the separation resolution attainable in
these devices.

In this direction, several models of polymer-obstacle hooking
aimed at deducing the unhooking time following a collision were
proposed by Randall and Doyle.4 In particular, the “X model”
is proposed for collisions occurring under strong electric fields
or, equivalently, at high Peclet numbers. The validity of the X
model is restricted to situations wherein the long arm of the
chain continues to unravel as the chain is unhooking from the
post. The model hypothesizes that the long arm can be
decomposed into a tension-bearing section terminated by a freely
convected coil, convected at the free solution electrophoretic
velocity. It is further assumed that the length of the tension-
bearing portion of the long arm increases at a rate equal to the
electrophoretic velocity as the freely convected coil unwinds.
One of the objectives of the present investigation is to test this
assumption of convective tension propagation in a chain
unraveling in an external field.

Under the assumption that the unraveling and unhooking
events are decoupled, the unraveling of each arm of the chain
following its collision with an obstacle may be modeled as being
equivalent to the stretching of a chain tethered to the obstacle
under an imposed field. The X model, in assuming that the
tension propagation in the long arm is significantly faster than
the ropelike unhooking motion of the chain, also allows for
such a decoupling.4 Finally, we invoke the principle of elec-
trohydrodynamic equivalence,14,15 which states that chain
stretching in an electric field is equivalent to that in a uniform
hydrodynamic flow field at a flow velocity equal to the free
solution electrophoretic velocity of the chain. Such an equiva-
lence holds especially under the free draining conditions
assumed in the present study, justified partially by the screening
of hydrodynamic interactions in complicated channel geo-
metries. However, more generally, hydrodynamic interactions
arising on average from the electric-field-induced motion of
individual polymer segments are screened by the counterion
cloud surrounding the polyelectrolytic DNA molecule over
distances exceeding the Debye length.14 With the above as-
sumptions, a parallel between the stretching of a tethered chain
in an electric field and that in a hydrodynamic flow field may
be established.

Several studies exist on the steady-state properties of a
tethered chain in uniform flow. The stretching of a tethered DNA* Corresponding author. E-mail: pdoyle@mit.edu.
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molecule in uniform flow was experimentally visualized and
the dependence of steady fractional extension on velocity and
chain length obtained by Perkins et al.16 Larson et al.17

performed Monte Carlo simulations of DNA chains used in the
experiments of Perkins et al. as well as of longer chains, whereas
Cheon et al.18 employed molecular dynamics simulations of
chains of several lengths. These studies concentrated on the
steady-state behavior of chain extension. Scaling arguments were
proposed for the steady extension of a chain modeled as a string
of nondraining blobs in uniform flow by Brochard-Wyart,19,20

based on the trumpet picture for moderate stretching and the
stem-and-flower picture for strong stretching. Several static
properties of a tethered chain in a uniform flow field, including
end-to-end distance, drag, and tension distribution, have been
investigated by Zimmermann and co-workers,21,22 using the
bead-spring model both with and without account for excluded
volume and hydrodynamic interactions and analytical calcula-
tions based on the equilibrium configurational distribution or
the blob model. These authors employ the Gaussian, FENE,
and freely jointed chain models.

The dynamics of stretching, however, remain relatively
unexplored. Scaling arguments have been proposed by Bro-
chard-Wyart and co-workers20,23 for the transient extension of
a tethered chain stretched by the application of a constant force
at the free end or by a flow field in the trumpet regime and for
stretching in a flow field and relaxation upon cessation of flow
in the stem-and-flower regime. Existing simulation studies of
chain dynamics in uniform flow are restricted to the near-
equilibrium or near-steady-state regimes. Avramova et al.
provide a Monte Carlo study of the near-equilibrium stretching
of a chain upon the imposition of flow and its relaxation
following the cessation of flow.24 Conformational fluctuations
of tethered Rouse and FENE chains in flow at steady state have
been studied in detail by Rzehak and Zimmermann25,26 and
Rzehak.27 A few recent studies have theoretically treated tension
propagation in stiff polymers under external fields28 and in
semiflexible polymers under the application of a pulling force.29

However, a description of the transient stretching of a semi-
flexible, wormlike chain in flow is lacking.

The aim of the present investigation is to provide a compre-
hensive study of chain unraveling in uniform flow. The Rouse
model is selected for its analytical tractability. The consequences
of finite extensibility are examined via Brownian dynamics
simulations of DNA chains described by the wormlike chain
model, in the absence of other nonlinear effects such as excluded
volume and hydrodynamic interactions. The paper is organized
as follows. In section 2, we describe the problem under
consideration and the methods of analysis adopted. Analytical
results for the Rouse model are presented in section 3. Section
4 provides a comparison between the behavior of Rouse and
wormlike chains and describes the scaling behavior of the latter
model. Results for tension propagation in Rouse and wormlike
chains are presented in section 5. Section 6 contains a summary
of our findings.

2. Problem Definition and Methodology

In this study, we employ the bead-spring model of the
polymer chain, whereby the chain is discretized intoN beads,
indexed from 0 toN - 1, with each pair of adjacent beads
connected by a spring. The first bead of the chain is held
tethered. The chain is initially in an equilibrium, coiled
configuration, and at timet ) 0, a uniform flow of solvent is
imposed, withv ) Vx̂ denoting the unperturbed solvent velocity
and x̂ the unit vector in the flow direction. Under the free

draining assumption, the set of Langevin equations governing
the evolution of the chain is

wherer i, i ) 0, ...,N - 1, denotes the position vector of bead
i relative to the origin, chosen here to lie at the location of the
tethered bead (r0 ) 0), andFj refers to the net deterministic
force acting on beadj. In the absence of excluded volume
interactions and external forces, the latter is identical to the
spring force exerted on beadj by the adjoining springs. The
drag coefficient for a single bead, given by Stokes’ law, is
denoted byú, andkBT denotes the thermal energy. The term
W j represents a three-dimensional Wiener process, with
〈dW j(t)〉 ) 0 and〈dW j(t) dWk(t′)〉 ) dt δjkδ(t - t′)δ, wherek
) 1, ...,N - 1 andδ is the identity tensor.

We consider DNA molecules of five lengths, namely,λ-DNA
(having a contour length of 21µm when stained with YOYO
dye in the ratio of 4 base pairs of DNA per molecule of dye),
2λ-DNA, 4λ-DNA, 6λ-DNA, and 10λ-DNA. The persistence
length of DNA, assumed unchanged on staining, is known to
be 53 nm. We maintain a constant level of discretization in our
study and vary the number of beadsN in the bead-spring model
to accommodate chains of different lengths. As a compromise
between achieving satisfactory resolution of the chain into
springs while concurrently ensuring an acceptable computational
speed, we select a discretization ofNk,s ) 19.8 Kuhn lengths
per spring, with the Kuhn lengthbk being equivalent to two
persistence lengths, i.e.,bk ) 0.106µm.

The elasticity of DNA is characterized by the wormlike chain
model, the force-extension behavior of which is commonly
described by an interpolation formula due to Marko and Siggia.30

However, Underhill and Doyle31 have noticed that errors result
from the formulation of a bead-spring model with the use of
the Marko-Siggia interpolation formula (which describes the
global force-extension behavior of the polymer molecule
stretched at constant force) to determine the force-extension
behavior of each spring. These errors may be compensated in
part by replacing the true persistence length with an effective
persistence length in the Marko-Siggia force law. We adopt
the ratioλ ) 1.1 of the effective persistence length to the true
persistence length, found by Underhill and Doyle to eliminate
errors at 50% mean fractional chain extension. The resulting
force law is

whereFspr denotes the spring tension,Q the spring vector of
magnitudeQ, and Q0 ) Nk,sbk the maximum spring length.
Consequently, the contour lengthL is equal to (N - 1)Q0. In
the linear regime corresponding toQ , Q0, the Marko-Siggia
force law reduces to Hooke’s law with a spring constant ofH
) 3kBT/(λbk

2Nk,s), employed in our solution of the Rouse model.
We characterize the strength of the solvent flow by means

of a Peclet number, defined as Pe) VNú/(kBT/bk), physically
equivalent to the dimensionless drag force acting on a chain of
N beads. The diffusivity underlying our definition of Pe is,
therefore, that of an unconstrained, free draining chain ofN
beads as given byD ) kBT/(Nú). (However, in the limit of large
N, the difference between the use ofN or N - 1 in the definition
of the Peclet number and elsewhere is immaterial. Such

dr0 ) 0 (1)

dr j ) (v + 1
ú
Fj) dt + x2kBT

ú
dW j, j ) 1, ...,N - 1 (2)

Fspr(Q) )
kBT

2λbk[(1 - Q
Q0

)-2
- 1 + 4

Q
Q0]QQ (3)
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differences will be ignored throughout this study.) This defini-
tion of the Peclet number is motivated by the observation that
the fractional chain extension at steady state is a universal
function of the drag force acting on the chain, regardless of
chain length.16,17,21 Furthermore, steady-state results for a
tethered freely jointed chain are known to reduce to the
corresponding results for a Gaussian chain in situations wherein
Pe, 1.21 Therefore, we may expect a crossover from the linear,
near-equilibrium regime to a regime of strong chain stretching
dominated by finite extensibility at a Peclet number of the order
of 1. In the present investigation, we consider a range of Peclet
numbers from 1 to 100. Assuming a temperature of 298 K, a
Peclet number of 100 corresponds to a drag force of 4 pN on
a DNA chain, which falls significantly below the value of 65
pN at which the stretching phase transition occurs. The Marko-
Siggia law remains valid for DNA molecules stretched to an
extension of up to 97% or up to a Peclet number of Pe) 600.30

Equations 1 and 2, with the spring force law given by Hooke’s
law in the Rouse model, reduce to a linear set of Langevin
equations and are amenable to an analysis into normal modes.
The wormlike chain model is treated via Brownian dynamics
simulations. Initial equilibrium configurations are generated by
employing the Marko-Siggia force law to simulate the evolution
to equilibrium of Gaussian coils. The radius of gyration of an
initially Gaussian configuration converges to its steady, equi-
librium value within 5 relaxation times for all the simulated
chain lengths, and the resulting configuration is subsequently
sampled at intervals of 1 relaxation time to obtain starting
configurations for our simulations. We adopt the semiimplicit
predictor-corrector scheme described in ref 32 for the integra-
tion of eq 2. A time step of 5× 10-4úQ0

2/(kBT) is used. The
equilibrium radius of gyration and chain stretch ofλ-DNA in
the absence of flow were found to vary by less than 2% upon
reducing the time step by a factor of 5. Averages are performed
over an ensemble of 100 chains. Upon doubling the ensemble
size to 200 chains, the equilibrium radius of gyration and chain
stretch were found to differ by less than 1% from the
corresponding values obtained from an ensemble of 100 chains
for λ-DNA in the absence of flow, with thermal noise being
further attenuated in the presence of flow. However, in order
to facilitate an accurate determination of the instantaneous chain
length under tension in flow, the results presented for a 61-
bead wormlike chain at Pe) 10 and Pe) 30 derive from
ensemble sizes of 10 000 and 1000, respectively.

Except where dimensional notation proves convenient, non-
dimensional variables will be employed in the remainder of this
study and will be denoted by the symbol “∼” surmounting the
corresponding dimensional variable. We utilize a length scale
of Q0 and a time scale ofúQ0

2/(kBT). Consequently, the unit of
force employed by us iskBT/Q0, with the spring constant
expressed in units ofkBT/Q0

2.

3. The Rouse Model

Below, we summarize our results for the end-to-end distance
and the tension distribution in a Rouse chain and highlight their
relevant features. The details of the normal mode solution are
relegated to the Appendix. We obtain

and

whereL̃e and F̃sprk, x denote respectively the mean end-to-end
distance and spring tension in springk in the flow direction,
with the indexk ) 1, ..., N - 1 measured from the tethered
end. The end-to-end distance is measured by thex-coordinate
of the bead at the free end of the chain. The elements of the
matrix Ω, composed of the normalized eigenvectors of the
Rouse matrix, are given by26

corresponding to the eigenvalues

It is evident from eqs 4-8 that the relaxation times of a tethered
Rouse chain may be identified with

Equations 4-6 may be simplified by means of elementary
trigonometric identities, and the summations∑jΩjm and the term
ΩN-1,m approximated in the limit of largeN, yielding

and

The scaling behavior of Rouse chains is manifest in eqs 10
and 11. Owing to the linearity of the Rouse model, the
dependence on Pe is trivial. The behavior of the chain extension
and tension distribution asN is varied may be gauged from the
fact that the slow modes dominate the dynamics, except very
close tot̃ ) 0. This is true particularly as the dependence on
am, which rapidly increases withm, approaching a value of 4
asmapproachesN - 1, arises not only in the decaying exponent
but also in the form of inverse powers ofam in eqs 10 and 11.
Similar to the case of an unconstrained Rouse chain,am ∼ 1/N2

and, consequently,τm ∝ N2 for the slow modes (m , N) and
for long chains (N . 1). It then follows that the chain extension
expressed as a fraction of the contour length, namely,L̃e/N, and
the tension in the first spring,F̃spr 1,x, which balances the drag
acting on the chain at steady state and is equivalent to the
restoring force experienced at the tethered chain end, are
universal functions of the rescaled time coordinatet̃/N2 at fixed
Pe. Similarly, the tension distributions for chains of varying
lengths, compared at fixed Pe and at equal values oft̃/N2,

L̃e )
Pe

H̃

Nk,s

N
∑

m,j)1

N-1

ΩN-1,mΩjm

1 - exp(-H̃amt̃)

am

(4)

F̃spr 1,x ) Pe
Nk,s

N
∑

m,j)1

N-1

Ω1mΩjm

1 - exp(-H̃amt̃)

am

(5)

F̃sprk, x ) Pe
Nk,s

N
∑

m,j)1

N-1

(Ωkm - Ωk-1,m)Ωjm

1 - exp(-H̃amt̃)

am

k ) 2, ...,N - 1 (6)

Ωjm ) 1

xN
2

- 1
4

sin(2m - 1
2N - 1

πj) (7)

am ) 4 sin2(2m - 1
2N - 1

π
2) (8)

τ̃m ) 1

H̃am

(9)

L̃e )
Pe

H̃

Nk,s

4N2
∑
m)1

N-1

(-1)m+1
1 - exp(- t̃/τ̃m)

sin3(2m - 1

2N - 1

π

2)
(10)

F̃sprk, x ) Pe
Nk,s

2N2
∑
m)1

N-1

cos(2m - 1

2N - 1
(2k - 1)

π

2)1 - exp(- t̃/τ̃m)

sin2(2m - 1

2N - 1

π

2)
k ) 1, ...,N - 1 (11)
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collapse when plotted as functions of (2k - 1)/(2N - 1). This
behavior is demonstrated in Figures 1 and 2.

Equation 10 reveals that the contributions from the various
modes to the chain extension alternate in sign, with the
dominant, positive contribution being that of the slowest mode,
m) 1. As a result, eq 10 may be well-approximated by a single-
exponential relaxation to steady state with time constantτ̃1, an
approximation that marginally overestimates the chain extension
(resulting in a maximum error of about 5% for a chain of 61
beads at Pe) 1). The same approximation predicts the spring
tensions with varying degrees of accuracy ask is varied, owing
to the fact that the cosine term in eq 11 varies in sign as its
argument varies fork > 1, resulting in a maximum error of
about 20% for the casek ) 1 andN ) 61 at Pe) 1. Several
modes are required to yield accurate tension profiles, with the
use of the first 10 modes being found to adequately capture the
shape of the transient tension profiles for the caseN ) 61.

Equations 4-6 lead to simplified predictions in the short time
limit of t̃ , τ̃m for all values ofm, yielding the convective

behaviorLe ) Vt andFspr 1,x ) HVt in dimensional units. An
initial region of vanishing tension is predicted for the remaining
springs, indexedk > 1. The assumptiont̃ , τ̃N-1 is, however,
valid only in an extremely narrow time window. WithN ) 61,
we obtainτ̃N-1 = 5 × 10-3, leading to a time interval barely
discernible in Figure 1. The chain extension measured by the
end-to-end distance does, however, show convective behavior.
This behavior arises from the fact that the bead at the free
end of the chain is initially convected by the flow, until the
preceding spring begins to deform. This issue is discussed
further in section 5.

Single-exponential relaxation is predicted by eqs 4-6 in
the long time limit of t̃ . τ̃2, while simultaneouslyt̃ g τ̃1.
Owing to the existence of almost an order of magnitude
difference between the relaxation times of the two slowest
modes, the range of validity of this approximation is reasonably
large. For instance, for a chain of 61 beads,τ̃2 = 3, whereas
τ̃1 = 28.

4. The Wormlike Chain Model

The approximation of a wormlike spring by a Gaussian spring
is valid for spring extensions below∼30% , i.e., under near-
equilibrium conditions.30 A comparison between the fractional
chain extension and the tension in the first spring predicted by
the Rouse and wormlike chain models forN ) 61 at Peclet
numbers of 1 and 100 is presented in Figures 3 and 4. The Rouse
model is seen to provide a reasonable approximation of a
wormlike chain at a Peclet number of 1, but as the Peclet number
is increased, deviations from Gaussian behavior are apparent.
The seeming agreement between the two models in predicting
the chain end-to-end extension, as shown by Figure 3, arises

Figure 1. Fractional extension (a) and tension in the first spring (b)
as functions of the rescaled time coordinatet̃/N2 for Rouse chains of
several lengthsN at a Peclet number of 1.

Figure 2. Tension profiles for Rouse chains of 41 and 61 beads as
functions of the rescaled spring index (2k - 1)/(2N - 1) at a Peclet
number of 1 at several points in time, compared att̃/N2 ) 6.0× 10-5,
6.7 × 10-4, 1.3 × 10-3, 5.4 × 10-3, 1.1 × 10-2, and 1.6× 10-2 for
both chain sizes.

Figure 3. Fractional extension as a function of time for 61-bead Rouse
chains and wormlike chains (abbreviated WLC) at Peclet numbers of
(a) 1 and (b) 100. Also shown is the fractional extension predicted in
the affine deformation limit, namely,Le ) Vt.

4304 Mohan and Doyle Macromolecules, Vol. 40, No. 12, 2007



due to the convective transport of the free chain end at high
Peclet numbers. In particular, at a Peclet number of 100, the
affine movement of the chain end of a wormlike chain, leading
to the behaviorLe ) Vt, is seen to occur almost until steady
state is reached.

Figure 5 shows the evolution of the fractional chain extension
as a function of time nondimensionalized by the convective time
scale, i.e.,tV/L, for a wormlike chain of 61 beads at several
flow strengths. The curves initially show affine behavior,
corresponding to a line of unit slope passing through the origin.
The duration of affine deformation increases with the Peclet
number, and in the limit Pef ∞, affine deformation is expected
to occur until steady state. The steady chain extension of a
strongly stretched wormlike chain acted upon by a stretching
force f may be estimated from the large force limit of the
Marko-Siggia law, given in dimensional form by the expression

With the neglect of the nonuniformity in tension along the chain,
f may be replaced by the drag force acting on the chain,VNú,
to yield

The components of the spring vectors in the flow direction
are plotted against time for several springs of a wormlike chain
with N ) 61 at Pe) 10 and 100 in Figure 6. At a moderate
Peclet number of 10, the simultaneous, nonlinear deformation
of several springs contributes to the chain extension once the
spring at the free end of the chain, withk ) 60, begins to
deform. On the other hand, at a high Peclet number of 100,
spring 60 does not deform almost until steady state is reached.
As a result, bead 61 is freely convected, and the chain extension
shows affine deformation almost until steady state. The region
where nonlinear behavior is manifest in Figure 5 shrinks as Pe
is increased.

These features point to the inherent differences between
Gaussian and finitely extensible springs. The Gaussian springs
close to the tether point of a Rouse chain can continue to extend
until steady state. On the other hand, the springs of a wormlike
chain close to the tether point, where the drag force exerted by
flow is maximum, are quickly stretched close to their steady
values, after which they exhibit little deformation. These issues
also arise in the qualitatively different nature of tension
propagation in Rouse and wormlike chains.

Motivated by the scaling behavior of Rouse chains, we next
investigate the collapse of data for wormlike chains of different
chain lengths. Figures 7 and 8 demonstrate the collapse of the
fractional chain extension and the tension in the first spring,
respectively, when plotted as functions oft̃/N2 for several chain
lengths at three values of the Peclet number. The tension profiles
are found to collapse when compared at equal values oft̃/N2

for different values ofN on replacing the discrete spring index
k with a continuous measure of distance along the chain,k/N.
This behavior is depicted in Figure 9 at Pe) 10 and 100.

5. Tension Propagation

A strongly stretched wormlike chain exhibits linear tension
profiles at all times after an initial period of Gaussian stretching,

Figure 4. Tension in the first spring as a function of time for 61-bead
Rouse and wormlike chains at Peclet numbers of (a) 1 and (b) 100.

Figure 5. Fractional extension as a function of time nondimension-
alized by the convective time scaleL/V for a 61-bead wormlike chain
at several values of the Peclet number.

Figure 6. Spring extension in the flow direction,Q̃sprk, x, plotted against
time for several springs of a 61-bead wormlike chain at Peclet numbers
of (a) 10 and (b) 100. The labelk refers to the spring index measured
from the tether point.

1 -
Le

L
) (2Pe)-1/2 (13)

fbk

kBT
=

1

2(1 - Le/L)2
(12)
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and a clear demarcation exists between the portion of the chain
under tension and the remainder of the chain up to the free end.
This moving front remains well-defined with time. Such
behavior is clearly manifest in Figure 9b at a Peclet number of
100. The behavior of the Rouse chain at the same Peclet number
may be inferred by exploiting the linearity of the Rouse model
to amplify the scale of they-axis of Figure 2 by a factor of
100. A subsequent comparison with Figure 9b reveals that
tension propagates more gradually in a Rouse chain, as
evidenced by its curved tension profiles. The Rouse chain takes
longer than the wormlike chain to attain a steady, linear profile.
At steady state, the tension in each spring balances the drag on
the remainder of the chain up to the free end, and force balance
implies that a linear tension profile exists regardless of the spring
force law selected. Note that the linearity of the tension profiles
at intermediate times indicates that the portion of a wormlike
chain under tension at any instant behaves like a shorter, tethered
chain at steady state whose length is identical to that of the

tension-bearing segment and that the remainder of the chain
not under tension is freely convected by the flow, consequently
experiencing no drag.

A further comparison between Rouse and wormlike chains
is provided in Figure 10. At early time points, the tension
profiles of Rouse and wormlike chains are similar, although
the springs of a wormlike chain very close to the tether point
become highly stretched even at short times at a high Peclet
number. Moreover, tension propagates very quickly in a
wormlike chain, and the steady, linear tension profile is evident
in a wormlike chain even as the Rouse chain continues to
deform.

We next investigate the evolution of the chain length under
tension with time. For the sake of definiteness, we associate
the number of springs under tension, as illustrated in Figure
11, with the intercept made by the tangent to the tension profile
at the tether point on thex-axis. Thus, the symbolnt denotes

Figure 7. Fractional extension as a function oft̃/N2 for wormlike chains
of several lengths at Peclet numbers of (a) 1, (b) 10, and (c) 100.

Figure 8. Tension in the first spring as a function oft̃/N2 for wormlike
chains of several lengths at Peclet numbers of (a) 1, (b) 10, and (c)
100.
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the number of springs under tension at timet and is determined
in a like manner for Rouse and wormlike chains. We allownt

to be nonintegral.
Figure 12 shows the evolution ofnt with time for Rouse

chains of several lengths. Because of the linearity of the Rouse
model, nt is independent of the Peclet number, although the
spring tensions themselves grow linearly with the Peclet number.
The collapse of data for different chain lengths at early time
points reveals that while the deformation of the chain starts at
the tether point, the springs closer to the free end continue to
be convected by the flow for a longer duration. At longer times,
a collapse of data is achieved by a rescaling of the axes, as
discussed in section 3.

As a simplified model of tension propagation in a Rouse
chain, we consider a semi-infinite chain of beads connected by
identical linear springs, lying along the positivex-axis and held
fixed atx ) 0. We further assume that the beads are constrained

to move only along thex-axis and that the random thermal forces
acting on the beads are negligible. These assumptions are
justified upon the imposition of a solvent flow at an unperturbed
velocity of V in the positivex-direction att ) 0.

Upon going to the continuous limit,33 we obtain the inho-
mogeneous diffusion equation

governing the beadx-displacementss(n,t), wheren, denoting
the bead index, is now treated as a continuous variable analogous
to x. The variables in eq 14 is analogous to the temperature of
a one-dimensional, semi-infinite, heat conducting rod with a
constant heat production rate per unit length and with the
temperature atx ) 0 being held fixed at the uniform initial
temperature of the rod. Equation 14 may be solved subject to
the boundary conditions(n)0,t) ) 0 and the initial condition
s(n,t)0) ) 0, yielding34

Figure 9. Tension profiles for wormlike chains of 41 and 61 beads as
functions of the rescaled spring indexk/N at several points in time,
compared at equal values of the rescaled time coordinatet̃/N2 for both
chain sizes at two values of the Peclet number. (a) Pe) 10, t̃/N2 ) 1.2
× 10-5, 1.3 × 10-4, 4.0 × 10-4, 1.3 × 10-3, and 3.4× 10-3. (b) Pe
) 100, t̃/N2 ) 1.2× 10-5, 1.1× 10-4, 2.1× 10-4, 3.0× 10-4, 4.0×
10-4, and 5.4× 10-4.

Figure 10. Spring tension as a function of spring indexk for 61-bead
Rouse and wormlike chains at a Peclet number of 100 at times (a)t̃ )
0.05 and (b)t̃ ) 2.

Figure 11. Spring tension as a function of spring indexk for a 61-
bead Rouse chain at a Peclet number of 100 and at timet̃ ) 2. The
dashed line represents the tangent to the tension profile at the tether
point of k ) 1. The intercept made by the tangent on thex-axis is
denoted bynt, and is interpreted as the number of springs under tension
at time t̃.

Figure 12. Tension propagation in Rouse chains at a Peclet number
of 1. (a) nt as a function of time for chains of several lengths (open
symbols) and that predicted by eq 18 in the continuous limit of a semi-
infinite Rouse chain (solid line). (b) Consequent to the rescaling of
both axes, a collapse of data for several chain lengths occurs at long
time scales.

∂s
∂t

) H
ú

∂
2s

∂n2
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xúV2n2t
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exp(- ún2

4Ht) - úVn2

2H
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The growth of s(n,t), given by eq 15, is suggestive of the
diffusive scalingnt ∼ t0.5.

Furthermore, eq 15 enables a comparison between the tension
profiles obtained from the normal-mode analysis of a finite
Rouse chain and those following from the continuous ap-
proximation of a semi-infinite chain. The tension in springn in
the continuous limit of the chain is given by the expression
F̃sprn, x ) H̃ ∂s̃/∂n in nondimensional form. Hence, use of eq 15
yields the expression

for the spring tensions. A comparison between the tension
profiles predicted by eq 16 and those obtained for a chain of
101 beads from eqs 5 and 6 is illustrated in Figure 13 at three
time points. The tension profiles predicted in the two cases agree
when the finite chain is far from steady state. However, as the
finite Rouse chain approaches steady state, it is no longer well-
approximated by a semi-infinite chain. As expected, the failure
of the approximation at later time points is most evident near
the free end of the finite chain.

The tangentTn(t̃) to the instantaneous tension profile
F̃sprn, x(t̃) from eq 16 at the tethered endn ) 0 is of the form

and consequently

Equation 18 establishes that tension propagation in a semi-
infinite Rouse chain obeys diffusive scaling.

The existence of a power law dependence ofnt on time for
Rouse chains over intermediate time scales is evident from
Figure 12a. For chains of lengthsN ) 41, 61, and 101, the
linear region of Figure 12a exhibits the scaling behaviornt ∼
t̃R over 2 decades in time, withR ) 0.43, 0.45, and 0.46,
respectively. Also shown in Figure 12a is the diffusive behavior
predicted by eq 18 in the continuous limit of a semi-infinite
Rouse chain. We attribute the deviations from diffusive behavior
to errors originating from discretization at early time points until
the spring closest to the tether point is stretched significantly
(beyond its equilibrium root-mean-square length). As steady
state is approached, the finiteness of the chain length causes
deviations from the behavior expected of a semi-infinite chain.

Finally, we test the hypothesis of the X model proposed by
Randall and Doyle4 that the length of a tethered DNA chain
under tension, denoted here bylt, grows linearly in time at a
rate equal to the velocity of flow, i.e.,lt ) Vt. We hereafter
refer to this model as the convective model of tension propaga-
tion. While our simulations of wormlike chains provide us with
data on the evolution ofnt with time, the deduction of the
corresponding chain length under tension requires an estimate
of the spring extensions. We obtain such an estimate by first
assuming that the lengths of all springs in the tension-bearing
segment of the chain at any instant are identical. While this
assumption may be justified at a high Peclet number (of the
order of 100), we expect it to prove less satisfactory at moderate
Peclet numbers of the order of 10.

We are now in a position to estimate the number of springs
under tension from the convective model. For this purpose, we
employ the large force limit of the Marko-Siggia interpolation
formula (eqs 12 and 13, again with the neglect of the tension
variation along the chain), in whichLe/L is replaced by the
fractional spring extensionls/Q0, in conjunction with the
hypothesis thatlt () ntls) ) Vt. We thereby obtain the following
estimate for the number of springs under tension from the
convective model:

Figure 14 provides a comparison between the prediction of
nt obtained from the convective model and that obtained from
simulation at a Peclet number of 100 for a 61-bead wormlike
chain. The convective model predicts a slope of 34.9 fornt as
a function of t̃ at Pe) 100, while a slope of 34.4 with 95%
confidence limits of (34.0, 34.8) is obtained from a linear fit to
19 points from simulation. The agreement between the two is
impressive, particularly given the assumption of equal spring
extensions estimated from the large force limit of the Marko-
Siggia law. The correspondingnt vs t̃ curve for a Rouse chain,
shown for comparison, emphasizes the relatively rapid propaga-
tion of tension in a wormlike chain.

The transient behavior of the tension in the first spring of
the wormlike chain is also illustrated in Figure 14. At a high
Peclet number of 100, the tension at the tether point rises linearly
from an initial value of zero to its steady value equal to the
steady-state drag on the chain, corresponding toF̃spr 1,x )
Nk,sPe. Steady state is reached once tension propagates up to
the free chain end, corresponding to a time oft = Nls/V. The

Figure 13. Rescaled spring forceF̃sprk, xN/(Nk,sPe) as a function of the
spring indexk for a 101-bead Rouse chain, and that predicted by taking
the continuous limit of a semi-infinite Rouse chain at times (a)t̃ )
2.5, (b) t̃ ) 25, and (c)t̃ ) 100.
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close accord betweennt/N and F̃spr 1,x/(Nk,sPe), where both
quantities have been rescaled to attain a value of unity at steady
state, reinforces our conclusion that the tension-bearing segment
of a wormlike chain instantaneously acts like a shorter, tethered
chain at steady state, and the drag it experiences is balanced by
the tension at the tether point.

The prediction of the convective model is also tested under
moderate conditions of Pe) 10 and Pe) 30. The results are
presented in Figure 15, again for a 61-bead chain. At early times,
the evolution ofnt in a wormlike chain closely mimics the
behavior of a Rouse chain, as expected for stretching in the
linear regime. As tension propagates up to the free end of the
chain, the springs near the free end, where the drag force is
minimum, tend to be weakly stretched in comparison with the
springs close to the tether point. Therefore, at moderate flow
strengths and at long times, the assumption of equal spring
extensions in the portion of the chain under tension and the use
of the large force limit of the Marko-Siggia law become
increasingly likely to fail. (This feature is also apparent in Figure
6, providing a comparison between the spring extensions at Pe
) 10 and Pe) 100.) Consequently, deviations from the

prediction of the convective model are again manifest as steady
state is approached. There is, however, an intermediate region
during whichnt grows linearly in time, and a comparison with
the prediction of the convective model may be made in this
region. At Pe) 10, the convective model predicts a slope of
4.18 fornt vs t̃. A slope of 4.11 with 95% confidence limits of
(3.91, 4.32) is obtained from a linear fit to the 10 points con-
stituting the linear region obtained from simulation. At Pe)
30, the slope of 11.2 predicted by the convective model com-
pares well to the value of 10.6 with 95% confidence limits of
(10.4, 10.7) obtained via simulation from a linear fit to 11 points.

The time point at which the crossover occurs from Rouse to
convective behavior may be estimated by imposing the equality
of the slope dnt/dt̃ for a semi-infinite Rouse chain, derived from
eq 18, and that predicted by the convective model, obtained
from eq 19. We thereby obtain the expression

for the nondimensional crossover timet̃c. A crossover time of
t̃c ) 1.1 is predicted by eq 20 at a Peclet number of 10, which
is close to the valuet̃c ) 1.0 obtained from the simulation data
of Figure 15a. At a Peclet number of 30, the predictions of eq
20 and the simulation data of Figure 15b are respectivelyt̃c )
0.15 andt̃c ) 0.24. At a Peclet number of 100, eq 20 yieldst̃c
) 0.015. However, the prediction oft̃c from the simulation data
of Figure 14 is hindered by the nonavailability of data points
very close tot̃ ) 0, owing to the discretization error.

Figure 15 reveals that the rescaled tension in the first spring,
F̃spr 1,x/(Nk,sPe), scaled to reach unity at steady state, closely
mirrors the evolution ofnt/N with time at Peclet numbers of 10
and 30. This is consistent with the existence of a similar trend
at Pe) 100. However, such a correspondence betweennt and
the tension in the first spring is not observed in a Rouse chain,
where the rescaled tension in the first spring falls significantly
below thent/N vs t̃ curve at intermediate time points before
steady state is reached. These observations suggest that the
tension-bearing segment of a wormlike chain, but not of a Rouse
chain, behaves instantaneously like a shorter, tethered chain of
identical length at steady state.

6. Discussion

The present investigation provides an analysis of transient
chain stretching in a uniform flow field for a free draining
polymer chain modeled as a Rouse chain or as a wormlike chain.
The Rouse model is found to provide a satisfactory approxima-
tion of a finitely extensible DNA chain at Peclet numbers of
the order of 1 or smaller, under which conditions the chain has
not been significantly perturbed from the linear, near-equilibrium
stretching regime. The dynamic scaling behavior of the Rouse
model is readily inferred from the analytical solution of the set
of linear Langevin equations governing Rouse dynamics.

As the Peclet number is increased, finite extensibility is found
to play a dominant role in determining chain dynamics and in
controlling the propagation of tension in the chain. For wormlike
chains, as for Rouse chains, the transient fractional extension
and spring tensions are found to be universal functions oft/N2

for different chain lengthsN at a fixed value of the Peclet
number. The wormlike chain model, unlike the Rouse model,
exhibits a nonlinear dependence on the Peclet number, with the
chain extension being determined by the cooperative stretching
of strongly stretched springs governed by the nonlinear Marko-
Siggia force law.

Figure 14. Tension propagation in a 61-bead wormlike chain at a
Peclet number of 100. The circles representnt/N as a function oft̃ for
a wormlike chain and are found to superimpose on the rescaled tension
in the first springF̃spr 1,x/(Nk,sPe), scaled to reach a value of unity at
steady state (shown by the solid line). Also shown for comparison are
the correspondingnt/N vs t̃ curve for a Rouse chain of identical length
(diamonds) and that predicted by the convective model of tension
propagation (dashed line).

Figure 15. Tension propagation in a 61-bead wormlike chain at Peclet
numbers of (a) 10 and (b) 30. The circles representnt/N vs t̃ for a
wormlike chain. Each dashed line represents the best-fit line passing
through the linear region of the corresponding curve for a wormlike
chain. Also shown for comparison are the results for a Rouse chain
under identical conditions (diamonds). Each solid line is the tension in
the first spring rescaled to reach a value of unity at steady state, given
by F̃spr 1,x/(Nk,sPe).

t̃c ) H̃
π[1 - (2Pe)-1/2

Nk,sPe/N ]2

(20)
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Our results for the time evolution of the chain length under
tension indicate a diffusive propagation of tension in Rouse
chains. For a wormlike chain, a comparison with the predictions
of the convective model of tension propagation is effected by
assuming that the springs in the tension-bearing section of the
chain have identical extensions, derived from the large force
limit of the Marko-Siggia force law. Our results for the tension
propagation in a wormlike chain at high Peclet numbers of the
order of 100 corroborate the convective model proposed by
Randall and Doyle.4 At a moderate Peclet number of the order
of 10, our results suggest a transition from Rouse behavior at
early times to convective tension propagation at later times, and
an estimate of the time at which the transition occurs is provided.
At still longer times, deviations from convective behavior are
observed, possibly because the weak stretching of the springs
near the free chain end induces errors in our estimate of the
spring lengths. Furthermore, the linearity of the tension profiles
and the close agreement between the tension in the first spring
and the number of springs under tension at any given point in
time suggest that the portion of a wormlike chain under tension
acts instantaneously like a steady chain of length identical to
that of the tension-bearing section.

A comparison may be made with the scaling arguments of
Brochard-Wyart and co-workers,20,23 derived for nondraining
blobs in a good solvent. Our results for the short time behavior
of the chain extension agree with the convective behavior
predicted by those authors. This, however, has been interpreted
by us as arising from the affine movement of the free chain
end, especially at high Peclet numbers. The long time behavior
of chain extension is predicted by Brochard-Wyart et al. from
the trumpet picture23 to be an exponential relaxation to steady
state with a time constant that is inversely proportional to the
flow velocity. In the stem-and-flower regime, Brochard-Wyart’s
arguments for the long time limit of chain stretching20 imply
an exponential relaxation of the chain extension to its steady
value with a time constant that is inversely proportional to the
square of the flow velocity. These predictions are not reproduced
in our results. The linearity of the Rouse model imposes a
decoupling of the relaxation times from the solvent velocity.
The wormlike chain model predicts a nonlinear dependence of
the chain extension on the Peclet number different from that
predicted by Brochard-Wyart and co-workers, resulting from
the simultaneous stretching of strongly extended wormlike
springs. Furthermore, the results of these researchers predict a
steady fractional extension proportional to 1- f -1, in accord
with the behavior of a freely jointed chain acted upon by a drag
force of f.35 The steady fractional extension of a strongly
stretched wormlike chain is, on the other hand, proportional to
1 - f -1/2.30 A reformulation of the blob model in aΘ solvent
under free draining conditions leads to results in accord with
the predictions of the Rouse model.

As previously stated in section 1, hydrodynamic interactions
have been neglected in the present work. Experimental studies
of DNA dynamics are typically carried out in microchannels
whose heights are far exceeded by the chain contour lengths.
For example, the experiments of ref 4 employingλ-DNA and
T4-DNA having contour lengths of 21 and 70µm, respectively,
were conducted in a microchannel of height 2µm. Hydrody-
namic interactions among chain segments are screened under
such conditions, thus partially justifying the free draining
assumption.

Our results elucidate the mechanism of transient chain
unraveling in uniform flow, relevant to disentanglement pro-
cesses occurring in post arrays subsequent to a DNA chain-

obstacle collision,1,5 in dilute solution capillary electrophoresis,7-10

and in flows of polymer solutions.36
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Appendix

In this section, we present the solution of the Langevin
equations, given by eqs 1 and 2, for a Rouse chain. For
convenience, we use dimensional notation in the following
analysis. The force acting on beadj is given by Hooke’s law:

Sincer0(t) ) 0 ∀ t, it follows thatF1 ) H(r2 - 2r1). Therefore,
we obtain the equations

whereAjk (j, k ) 1, ...,N - 1) are the matrix elements of the
(N - 1) × (N - 1) Rouse matrix

A, being a real, symmetric, positive definite matrix, possesses
real, positive eigenvalues and a complete set of orthonormal
eigenvectors. Consequently,A is diagonalized by the similarity
transformation [Ω-1AΩ] jk ) akδjk, whereak > 0 (k ) 1, ...,
N - 1) are the eigenvalues ofA, while Ω is the unitary matrix
whose columns are the eigenvectors ofA. The unitarity ofΩ
leads to the equality

We now make use of eq 24 to introduce the transformations

By means of the above transformations, eq 22 may be expressed
in terms of the variablesr ′k. A subsequent multiplication by
Ωjm and a summation over the indexj, followed by an
application of eq 24 and the similarity transformation, finally
yield the set of equations

where we have introduced the independent vector Wiener
processesW′m via

Fj ) H(r j+1 - 2r j + r j-1), j ) 1, ...,N - 2

) -H(rN-1 - rN-2), j ) N - 1 (21)

dr j ) (v -
H

ú
∑
k)1

N-1

Ajkr k) dt + x2kBT

ú
dW j,

j ) 1, ...,N - 1 (22)

A ) [2 -1 ‚ ‚
-1 2 -1 ‚
‚ ‚ ‚ ‚
‚ ‚ -1 1

] (23)

∑
j)1

N-1

ΩjiΩjk ) δik, i, k ) 1, ...,N - 1 (24)

r j ) ∑
k)1

N-1

Ωjkr ′k (25)

r ′k ) ∑
j)1

N-1

Ωjkr j (26)

dr ′m ) (∑
j)1

N-1

Ωjmv -
H

ú
amr ′m) dt + x2kBT

ú
dW′m,

m ) 1, ...,N - 1 (27)
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It is readily verified that〈dW′m(t)〉 ) 0 and〈dW′m(t)dW′n(t′)〉 )
dt δmnδ(t - t′)δ, with m, n ) 1, ...,N - 1. The solution of the
decoupled, linear stochastic differential equations represented
by eq 27 may be effected37 to yield

where the stochastic integral on the right-hand side of the above
equation is a Gaussian random variable having vanishing mean.
An application of eqs 25 and 26 to eq 29 finally yields the
expression

Since our initial configuration corresponds to an equilibrium
Gaussian coil with vanishing mean spring vectors, the mean
initial bead positions must also vanish. We now employ eq 30
to derive the mean bead positions at timet:

The mean end-to-end distance in the flow direction readily
follows from eq 31:

The mean spring tension in springk (k ) 1, ...,N - 1) in the
flow direction is given by the expressions

and

Equations 32-34 are expressed in the dimensionless notation
introduced in section 2 by eqs 4-6.

The eigenvalues and eigenvectors of the Rouse matrix remain
to be specified. In our study, we make use of the solution
provided by Rzehak and Zimmermann,26 given by eqs 7 and 8.

In the continuous limit of the bead-spring chain, the
eigenvalues and eigenvectors are given by the expressions

and

with the superscript “c” denoting the continuous approximation.
With the exception of the tension in the spring at the free chain
end (which becomes negative at very early times), the solution
obtained by means of the continuous approximation is found
to be indistinguishable from that obtained using the eigenmodes
of Rzehak and Zimmermann for a chain of 61 beads, thus
reinforcing the scaling of the relaxation times for the slow modes
with N2 for N . 1.
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