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ABSTRACT: Using single molecule fluorescence microscopy, we study the dynamics of an electric-field-driven
DNA molecule colliding with a single stationary post. The radius of the obstacle is small compared to the contour
length of the molecules. Molecules that achieve hooked configurations which span the obstacle were chosen for
study. Four different types of hooked configurations were found: symmetric hairpins with constant extension
during unhooking, asymmetric hairpins with constant extension during unhooking, asymmetric hairpins with
increasing extension during unhooking, and rare multiply looped entangled configurations. The important physics
describing the unhooking dynamics for each classification differ and models are proposed to predict unhooking
times. Surprisingly, we find that most collisions do not follow classic rope-on-pulley motion but instead form
hairpins with increasing total extension during the unhooking process (called X collisions). Last, we show that
unraveling to form a hairpin and center-of-mass motion during unhooking affect the overall center of mass hold-
up time during a collision process.

Introduction E

The collision of a field-driven polymer molecule with a (@) &
stationary obstacle is a simply posed but nontrivial problem. o=
Although analogous to a classical rope-and-pulley problem, this .L M
microscale problem is complicated by the polymer’s elasticity ¢ g;'_j -
and fluctuating configuration. Collision studies have been \I« -
pursued to investigate polymepolymer interactions? and the —a T Ree=0.8 um
size separaticiof large DNA molecules (large DNA molecules t - \'%
in aqueous solvents are generally modeled using classical unhook LY
polymer physict ). For sufficiently strong impacts, a coiled —

polymer hooks around the obstacle and unwinds into a hairpin

configuration! A hooked molecule then unhooks from the — e
obstacle and recoils (Figure 1a). Previously, hooking dynamics

of DNA in gels was hypothesized to explain anomalous s———— g
experimental gel electrophoresis restit$ and then directly

observed by Song and Maestrédditionally, a DNA size- (d)
separation design of sparse microfabricated obstacles was
hypothesized by Austin and co-work&s4 from observations

of hook formation and rope-on-pulley modeling of the unhook-
ing time.

Using simulations, other groups tested this separation hy-
pothesis to determine length-dependent behavior of DNA
mobility through a group of pointlike obstacl&s2° These
studies began by looking at tlséngle obstacle collisioevent
of a Rouse-like beadspring chain at high fields. Geometric not analyzed

arguments were then used to scale these single collision resultsigyre 1. single obstacle hooking of DNA. (a) Schematic of a typical
to an obstacle course separation deo®ther innovations in hooking eventt,a,is the time it takes the DNA to unravel after impact.
single obstacle simulation work include study of the hooking tuneox is the time it takes a completely unraveled DNA hairpin
probability on a point obstacle as a function of impact offet, configuration to unhook from the obstacle. As we detail in the text,

inclusion of approximate hydrodynamic interactidfisand

unraveling ends and unhooking begins when the short arm reaches its
maximum extension. (b) SEM image of our PDMS obstacle array and

introduction of the notion of “roll-off” collisions on finite size an expanded view of a single post. (c) Length definitions of an
obstacles? Additionally, Patel and Shaqféhsimulated chains ~ unhooking DNA.x, is the short arm length, anx is the long arm
moving through arrays of multiple obstacles and investigated length; X, is the difference in arm lengths, arg is the total extension

the effect of obstacle ordering and density.

of the chain. (d) Region (shaded) where DNA molecules are chosen
for the impact ensemble (not to scale). Note that a collision zone a

The first experimental work to separadg10—100 kbp] DNA distance Ros + Ry from the obstacle center may be a better chéice;
by length using hooking collisions was by Doyle e# &ollow- however, the difference is unimportant here becaRige~ Ry.
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the obstacle density increases, the separation mode switchegnsembles (DNA distributed uniformly across the width of the
from unhooking to pore sieving characteristic of gels. Motivated channel before impact), use precise center-of-mass tracking
by these experiments, macroscale separation models werelgorithms, and include all hooking events, not just visually
proposed to explain the dependence of the average mobility andobvious hooks.

dispersivity in an obstacle array on the DNA length. Dorfman

and Viovy? first presented a Markovian model, and then Minc, Experimental and Analytical Procedures

Viovy, and Dorfman adjusted the model to include non-

Markovian transport through the post arf4y.o make quantita- Dimensionless Field StrengthFirst, we introduce the appropri-
tive predictions, they obtained data from a single obstacle in ate dimensionle_ss field strength. The Peclet num_ber Pg isa measure
an array to support their claim that the unhooking time o_f how the_ persistence length of tether_ed DNA orients in an elec_trlc
probability distribution could be modeled as a Poisson distribu- field, and it is the proper way to nondimensionalize the extension

tion25 Th that a better t - del . of a tethered polymer in a uniform flow or field E. For example,
lon. ey argue that a betier trapping model may Improve j, o,y the drag force on the chain &J (where( is the DNA

agreement with experimental observations. However, no one yraq coefficient), and in the low-force limif & KT J(Lly), with

has performed controlled microscopic experiments to extract persistence lengtl and thermal energiT), the fractional extension
the hold-up times for hooked DNA, and no one has cons- x./L scales as

tructed a comprehensive model that can predict the hold-up

times for the multitude of hooking dynamics observed experi- Xex o
mentally. T ke
Our group attempted the first systematic experimental analysis ul
of the collision problem by tracking a uniform ensemble of DNA =_F Q)

molecules distributed perpendicular to the field direction
impacting a small but finite size obsta@feUsing a logical but

?hmtplglcal dteflnltlon tf:at ta hQOkmgf(.:tOIHS'O? Waff any DI'I\I? electrohydrodynamic equivalenéewe define Pe as Pe uEly/D
athas, at some instant, a piece ol Its conniguration In alf our ;, electrophoretic fields. To keep the low-force fractional extension

quadrants of the obstacle-centered coordinate system, Wegnstant, Pe must be kept constant. However, since polymer
extracted the hooking probability @ DNA ensembles on 0.8 ynhooking involves a competition between stretched polymer arms,
um radius PDMS obstacles. We found that for a small but finite it is also natural to think of Pe as the proper way to investigate
size obstacle induced electric field gradients can greatly affect unhooking dynamics. For Pe 1, a DNA that collides with a small
the hooking probability. In addition to the size rafy,dRy, obstacle will then stretch into a hairpin hooked configuration.
the roll-off to hook transition is governed by a dynamic Alternate versions of this dimensionless field strength have been
parameter De= ¢Elz, the ratio of the rate of maximum DNA used in the past DNAobstacle work reviewed above. Note that

deformation to DNA relaxation in an obstacle-induced field i|:1 fersacfﬂﬁﬁ ggyee(:in;vz//it; l_d%psggingvh?ght?seahy(:g((iir)]/qgatlgic
gradient. It is well-known that hooking events result in order f Y ' P y

f itude | d size-d dent hold ; he length scaling Perkins et&lempirically determined to achieve
of magnitude longer and size-dependent hold-up imes compare family of universal extension curves of tethered DNA. Addition-

to roll-offs,* and here we will focus solely on hooking events. gy, the free draining versiony(= 1) of Pe was employed by Patel

In this paper we will experimentally investigate and model the et al2to collapse a family of Rouse beadpring chain unhooking
hold-up time for DNA hooking on small obstacles (Figure 1a). simulations onto one master collision time curve. Generally-Pe
Using fluorescence microscopy, we will experimentally extract O[10] in recent DNA separation devicés!

center-of-mass hold-up times for single DNA molecules col-  We stress that the governing dimensionless field strength (Pe)
liding with stationary obstacles. These hold-up times can be is very different from the Deborah number (De) used in our previous
modeled by two sequential processes: unraveling and unhook-PaPer that examined the transition between hooks and rolFoffs.

ing’® (Figure 1a). Unraveling occurs after the DNA impacts the D€ goverms deformation of polymers in field gradients, e.g., the
obstacle as its conformation unravels into hairpin-like configura- gradients induced by an insulating obstacle, and thus is useful when

. studying the DNA deforming around the obstacle. Because most
tions. Once unraveled, the DNA unhooks, as the longer arm o the hooked DNA studied here stretch into regions where the

pulls the shorter arm off of the obstacle. field is uniform, the electric field gradients induced by the obstacles
We investigate the unhooking dynamics in detail, decompos- are of sepondary importance in the unravellng/unhooklng analysis.
ing the conformations of hooked collisions into idealized  Experimental Procedure.We used a standard soft lithography
ropelike collisions and nonideal variable extension collisions. Procedure (described elsewhétéf to construct 25 mm long, 50
Simple rope-on-pulley models have been used in the past to#™ Wide, and 2um high PDMS (poly(dimethylsiloxane)) micro-
A A . . . channels with a sparse array of Qu8n radius obstacles. The
predict high field unhooking times of ideal ropelike collisiohs.

S . L ) obstacles were spaced [/ center-to-center in the field direction
However, when considering this entire impacting ensemble, 54 \vere staggered transverse to the field with amOcenter-to-

there are many DNA that do not completely unravel, and center spacing. Reservoirs (4 mm4 mm) were cut at each end
consequently, they do not behave like a rope-on-pulley. Their of the cured PDMS microchannel with a scalpel, and the channels
existence has been observed in single obstacle simulttiouts were soaked for 12 h at #& in 0.5 x TBE to eliminate permeation
never explored. We present collision models that can predict driven flow3? Figure 1b shows a SEM image of the obstacle array
unhooking times for both ropelike and variable extension and an isolated obstacle.

collisions. We also look at the unraveling mechanism for the ~ We usedl DNA and T4 DNA in this study. The DNA were
observed collision classes. Though unhooking can generally Stainéd with a fluorescent dye (TOTO-1, 4.7:1 bp:dye molecule)

. _ . . .~ and diluted in the following buffers: (1) 2.2« TBE, 3%
dominate the overall hold-up time for a collision event, we will B-mercaptoethanol, 0.07% PVRI, = 10°), and 0.07% ascorbic

show that the unraveling process can be important to consider.aciol (used for. DNA) or (2) 2.2 x TBE, 3% 3-mercaptoethanol,
Furthermore, this is the first study to investigate the importance 54 0.07% PVPNI, = 109 (used for T4 DNA). The additives
of the centerof-mass motioron hold-up time modeling, during  were chosen to dynamically eliminate electroosmotic flow and
both unraveling and unhooking. Our work improves on previous scavenge oxygen. The measured electrophoretic mobilityavas
experimental work!2272%hecause we examine uniform impact —1.74 0.2 (m/s)/(V/icm). As explained previousk},the dyedi

where D = KT/C is the DNA's diffusion coefficient. Using
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DNA has a contour length df = 21 um and a longest relaxation
time of r = 0.19 s. Using the same procedures, we determined T4
has a stained contour length of zéh andr = 1.7 s.

A typical experiment consisted of first gently rinsing and drying
the microchannel and then applying it to a clean glass slide (plasma
cleaned at 100 W for 5 min, charge equilibrated 1 day, soaked in
1 M NaOH for 15 min, and rinsed in ultrapure water (Milli-Q,
Millipore)). We then immediately filled the channel with DNA
solution and applied an electric field of 5:23.4 V/cm across the
reservoirs through platinum electrodes. We observed single DNA
molecule dynamics using an inverted fluorescence microscope
(Axiovert 200, Zeiss) with a 10& 1.4 NA objective fork DNA
and a 63x 1.4 NA objective for T4 DNA. Images were captured
at 30 frames/s Atiame = 0.0333 s) with an EB-CCD camera
(C7190-20, Hamamatsu) and NIH Image software. Digitized images
had 8 bit pixel intensity values which ranged from 0 to 255.

Analysis. To extract data, we first filtered the background noise
by subtracting the maximum pixel value of the perimeter of the
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Figure 2. A sample collision trajectory (T4 at Pe 8) along with
characteristic DNA configurations. The large circle data points mark

the beginning and ending of unhooking. The first large circle represents

first frame of a movie from all the pixels in that movie. The primary  when the short arm begins to retract, and the second large circle

observable from the captured images of a DNA collision was the
center-of-mass coordinate of the DNAdm Yeor). We adopted an
obstacle-centered coordinate system for each collision, with the
x-coordinate in the field direction and tlyecoordinate transverse

to the field (Figure 1d). The center of mass of a molecule was
computed by finding the first moment of the postfiltered image
intensity distributior?® This process was automated for multiple
frames of data, and it yielded the center-of-mass trajectoryt)

of the DNA. We also determined the extension of the shwt (
and long &) arms of an unhooking DNA by the distance between
the end of each arm and the center of the obstacle plus a geometri
term 7R,,d2 (Figure 1c). The total extensiony of the DNA is
thenxex = X; + Xo. Furthermore, we define the difference in arm
lengthsxy asxy = %, — x;. Refer to Figure 1c for a diagram of
these observable lengths.

We obtain obstacle positions for each 2000 frame movie of data
by averaging the pixel values of all frames. Obstacles are easily
observed as vacancies in the smeared DNA traces of the pixel
average. We then define the impact parambtgr a collision as

represents when the DNA leaves the obstacle.

Hooking Collision Classification

Figure 3 shows experimental images of different T4 molecules
hooking on a single obstacle at Pe8. We will classify hooking
collisions into four general categories named for their shape:
U, J, W, and X (for “extending”) collisions. U and J collisions
have a relatively constant extensiog«(= X1 + X, ~ constant)
during the unhooking process and behave like a rope on a

Grictionless pulley. This constant extension, which we tefin

depends on Pe. U and J collisions are the types of ideal collisions
described in previous studié$22527The main distinction is

that U collisions (Figure 3a) have nearly symmetric arms so
that arm length fluctuations are important to consider when

modeling the unhooking time. W collisions (Figure 3c) are
collisions that result in entangled configurations upon impact

with the obstacle (see Figure 3c, inset). Quite often they result

the y-offset between the impacting DNA's center of mass and the from the two ends of the DNA ending up on the same side of

obstacle center, taken at a distari®gs + 2R, from the obstacle
center (Figure 1d). This position was chosen to evalbdtecause

the DNA is far enough away from the obstacle to not experience
high obstacle-induced electric field gradients, yet close enough so
that Brownian drift does not significantly coarsen our analysis. For
this study, we only analyze collisions wifh| < Ryys + Rg. No
hooking collisions were observed for DNA with| > Ryps + Ry.

Using the center-of-mass trajectories of the colliding DNA, we
can compute the collision hold-up timg. For all collisions we
consider, the coiled DNA is moving from right to left, i.e., from
positive x to negativex. A typical X.on(t) trajectory (T4 DNA, Pe
= 8) is shown in Figure 2. A typical collision shows a decrease in
Xcom(t) until the DNA impacts the obstacle & 0). Impact is then
followed by a plateau in(t) when the molecule is hooked on
the obstacle. At this point the DNA configuration resembles a
hairpin (Figure 2, inset). Finally, when the molecule unhoss{t)
decreases again. The pre- and postimpact slopg.gft) should
be equal touE.>2 Within 10% experimental error, all molecules

the obstacle after impact. X collisions (Figure 3d) are those with

a long arm that is still extending while the short arm begins to
retract.

In this work we do not quantitatively distinguish between
U and J collisions. The main qualitative distinction is the
increased importance of fluctuation effects in the unhooking
dynamics for U collisions. We will return to this point later
when discussing unhooking models. We distinguish the U/J
collisions from the X collisions simply based on their total
extension when the short arm begins to retract; U/J collisions
havexex = ¢ whereas X collisions havwey < /. We determine

¢/ at a given Pe by taking the averagexgf for only hooking

events that result in symmetric arms. Obviously there will be
some spread in the extension data, so we empirically classify
molecules withxex within 10% of /”to be a U/J collision. This

is a good approximation since the distributiorkgfat the onset

if unhooking is bimodal with a minimum near 079 Also,

move atuE both before and after colliding with the obstacle. We _ is approximately equal to the extension derived from

extractty for each collision as the difference in time intercepts for
lines fit to the approach and release trajectories (Figure 2). The
linear fit for the approach data uses two fit parameters (slope and
intercept), whereas the linear fit for the release data uses just an
intercept because the slope is constrained to match the approac
slope. The approach data is fit from the first data point ugtih

< Rops t+ 2Rg. The release data is fit from whe®om < —Xex,mal2,
wherexex maxiS the maximum total extension of any DNA in a given
ensemble. One of the primary goals of this paper is to compare
experimental results foty to collision models that incorporate
effects from unhooking and unraveling.

iy

empirical master curves for tethered DNA at steady state in
uniform flows and fields in refs 30 and 34.

Figure 4 shows plots of the lengths of the short arm, long
rm, and total extension (nondimensionalized Byof U, J,

and X collisions during the unraveling and unhooking processes;
similar plots for the U collision were presented in refs 7 and
15. The solid lines beginning at the left axes are affine scalings.
Although we present only three examples of each collision
type’s arm length trajectory, we note some universal trends.
During unraveling, the arms extend approximately at a velocity
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Figure 3. Types of hooking collisions (T4 DNA at Pe 8): (a) U symmetric hooks, (b) J asymmetric hooks, (c) entangled W hooks, and (d)
continuously extending X collisions. Images in each series are separated by 1.33 s. The plots to the right of the DNA images correspond to the
x-component of each DNA's center-of-mass trajectory. The dashed lines show linear fits to approach and release data.

uE. Also, during unhooking (1) U and J collisions have a obstacle limit the simulations of ref 17 appear to show only a

relatively constant total extensioref ;" ~ 1) with exponen- small percentage(5%) of significantly observable (metastable)
tial growth/decay of the two arms and (2) X collisions have W collisions.
Xex” < 1 andXed " grows for the duration of the unhooking Like the “molecular individualism” behavior of polymers in

process. Furthermore, the long arm of X collisions tends to grow extensional field$®3”we anticipate these collision types to be
linearly, leading to the conclusion that the long arm of an X highly dependent on the impacting DNA's initial configuration.
hook is still extending in the uniform field even while the short  Similarly, classification of collision types is more powerful than
arm retracts. We will return to Figure 4 later to discuss model a qualitative observation, as it can lead to quantitative conclu-
predictions of the arm length dynamics. sions. Specifically, the resulting hold-up times will be different
For the T4 DNA at Pe= 8 (e.g., Figure 3), 60% of the for each class of collision types. The center-of-mass trajectories
hooking collisions were X collisions, 29% were U/J collisions, for each example collision in Figure 3 give a feel for this, as U
and 11% were W collisions. About half of the W collisions are collisions tend to have very long hold-up times, while X
metastable meaning that they eventually unravel into one of collisions can have very short times. The total hold-up time
the other collision classes before the molecule unhooks. Thecan be thought of as a sum of the time it takes the DNA to
other half quickly disengage from the obstacle. Similar dynamics unravel and then unhook from the obstatidhe unhooking
of multilooped hooks were hypothesized in the simulation work time will generally be much longer than the unraveling time,
of refs 17 and 18 and modeled in ref 35. Table 1 summarizes so we will begin our modeling discussion there. Knowledge of
our classification results for our three main studies. Note that how long it takes these hooked configurations to unravel and
the number of X collisions grows with Pe. At high Pe, tensions unhook can lead to useful predictive models of a macroscale
grow nonlinearly in the short arm that can lead to quick separation process.
retraction, whereas at low Pe, thermal energy has a greater effect ) )
on stabilizing asymmetric configurations. This result suggests Unhooking Time Models
that infinite-Pe rope-on-pulley models may not be as applicable In this section, we develop and test mathematical models for
to real polymer collisions since most collisions will be X the unhooking process. These models will only be for U, J, and
collisions. The number of W collisions grows with size and is X collisions and will not consider the more unpredictable but
presumably a function oR.dRg. This makes sense since at rare W collisions. Two unhooking time models will be
smallRondRy configuration folds are more likely to wrap around presented: a deterministic model for constant extension chains
both sides of the obstacle. We note, however, that in the point (J model) and a deterministic model for extending chains (X
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Figure 4. Arm length dynamics of (a&)(c) U, (d)—(f) J, and (g)-(i) X hooking collisions. The trajectories are ®i(t), Xx(t), andxext) = x1 + %2
scaled by the constant U/J extensioi 45 um for T4 DNA at Pe= 8. We normalize time to = 0 at the maximum value o&(t), i.e. when the

short arm begins to retract. (a), (d), and (g) correspond to the same DNA shown in Figure 3. Solid lines beginning at the left axis correspond to

affine movement at the ensemble average electrophoretic velocity. Solid lines beginnindatorrespond to the model predictions fa(t) and
X2(t) based on initial conditiong:(0) andx,(0) = "— x1(0) ((@)—(f) I model, (g)-(i) X model). In (a)-(c), an arbitrary alternate initial condition
was chosen at timewith x;(t) < 0.45 (dashed line J model). The dashed line is underneath the solid line in (c).

Table 1. Summary of Hooking Collision Classification Results

(DNA, Pe) Uil X W
(4, Pe=2) 83% 17% 0%
(A, Pe=8) 43% 57% 0%
(T4, Pe=8) 29% 60% 11% (5% metastable)

model). For the remainder of this paper, we will appropriately
normalize time tad = 0 at the end of unraveling and the onset
of unhooking. Empirically, this is when the short arm reaches
its maximum extension. Consequentlytat —tynaythe DNA

is first impacting the obstacle andtat t nnookthe DNA is just
leaving the obstacle. In the following analysis, we will use the
well-accepted assumptighthat friction on the obstacle is

and in fact we know that unhooking times are often longer than
the longest stress relaxation timinfook > 7). However this
picture may capture the important physics of the chain release.
In fact, the simulations of Sevick and Williams showed that
the position of maximum tension does shift onto the long arm
of the DNA during unhooking® Furthermore, even if the initial
tension distribution does relax during the unhooking process,
bead-rod simulations show that because of nonlinear elasticity,
very large changes in tension can result from very small shifts
in a stretched configuratiolf. Therefore, the first-order model
for an unhooking DNA is to consider an unhooking chain of
constant length; we will consider both complete extenslon (
and moderate extensiay). We will term a model with constant
extension the “J model” since it likely best describes J collisions.

negligible because thermal fluctuations in the solvent ensure The J model is analogous to previously proposed full extension

that the DNA is not atomically pinned against the solid surfdce.

Unhooking Physics At first glance, it is clear that unhooking
is driven by asymmetry in the arms; the longer arm will naturally

“rope-on-pulley” modeld;1*15however, we will later show the
benefit of formulating it in terms of the short arm length
J Model. Previously, a collision model based on rope-on-

pull the shorter arm around and off of the obstacle. To predict pulley dynamics was used to model highly stretched DNA

the unhooking dynamics, we need to know the forces at play.

unhooking at high field$:}* The unhooking driving force is

It is clear that the tension profiles along both arms are not at AEx, where/ is a phenomenological charge per length driving
steady state because the tension would then be discontinuou®NA unhooking andx, is the difference ircontour lengthof
at the obstacle pivot point. However, we do know that a subset the two arms. Choosing a linear driving force may seem

of hooking collisions achieve constant extensjonThis would

somewhat arbitrary at first glance given that DNA and other

be true if the molecule unhooks on a time scale much shorter polymers have nonlinear elasticity at full extension. Conse-
than the stress relaxation time, so that the tension profile in quently, we will go through a detailed derivation of the driving

each arm can be thought of as frozen likeaastant extension

force using a beaglspring picture and then more generally apply

ropel® As a consequence, the location of maximum tension at results to moderately extended chains.

the start of unhooking would move onto and then down the
long arm over time. This is obviously an oversimplification,

Figure 5a shows a schematic of the beagdring polymer
hooked on an obstacle. First, in agreement with previously
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proposed rope-on-pulley models, we will consider a chain (@) |J model 5
=1 n=j- &

stretched to its full contour length so that+ x, = L. At the — n=
small length scale of a DNA persistence length, inertia is ot —~—5 mf 0
- Ta—— w1 =

negligible so that the forces on a small piece of the DNA sum

to zero. Consequently, in the beaspring picture of polymer ::3 Detetn

dynamics, the velocity of one bead of a tethered chain in a

uniform electric field without intrachain hydrodynamic interac- Tl i
tions and without solvent-induced Brownian forces is (b)
= 0 ) nE a. t = []
ax, 1 : ‘@ S
_—n_ 4L k<=~ ==/
dt - CnT(Xn) +IME (2) 4_2 .Tz'wo < t < tunh{mk

el =1
. .. VSN BVEN SIS unhoo
whereg, is the bead drag coefficient, and for théh bead x, oo

is the position vectorT(x,) is the force due to gradients in ~ Figure 5. Model schematics at the onset of unhooking. (a) Schematic

. . . - for the constant-extension J model. (b) Schematic for the variable
tension along the polymer, aritlis the imposed electric field. extension X model with an extending long arm. The springs have been

Ignoring Brownian forces is a good approximation for-Pel drawn equal in length to remind the reader of our constant total
for asymmetric hooked configurations. Neglecting long-range extension assumption; however, as we show in the text, we do not

bead-bead hydrodynamic interactions is a good approximation need to assume this uniform tension distribution.
for a stretched polymer in a thin sfi¢;however, our 2um

channels only partially screen hydrodynamic interactins. ¢ = O 10 tunhook@ndx: = x(0) to 0:

Nevertheless, including preaveraged hydrodynamic interactions 2%,(0)
would only affect our analysis parametrically through the term t (%,(0)) = — L In(l _ 1 ) (6)
&n, Which eventually drops from the unhooking time equations. unhooR”t 2uE L

The net spring force at beadis T(x,) = T'n + Ty, whereT',

is the force from the spring connecting beatb beadn + 1
andT, is the force from the spring connecting beatb bead

n — 1. Note thafl', = —T,+1 except for the special case at the : . ) . . .
pivot springj whereT'; = Tj1. Also note thafly = T'y, = 0, this sgbstltutlon ineq5, one arrives with th_e_governlng equation
whereN, is the total number of bead&We can sum the force ~ USe€d inrefs 7, 14, and 15 with a linear driving forcex/dt =
balance equations (eq 2) for the short arm and long arm of the 2/EX/L = 2AEx/C where . is the phenomenological charge
hooked beagtspring chain. Assuming the chain moves “rope- P€r length and; is the molecule’s drag coefficient. We have
like”, i.e. all sections move at the same velocity{dt for the shown here that = u/L for a fully extended chain. We

short arm and xb/dt for the long arm), we compute (1) for the mentioned that previous work applied this model to Rouse
short arm simulations and ideal unhooking observations of U/J collisions

at high fields, generally with good agreement. However, it needs

j dx,, to be adjusted for our experiments because the DNA do not
Z’gn(_ —ﬂE) =T,+T, completely stretch, and some collisions (X collisions) do not
& dt have a constant extension. We will consider the modification

dx of finite-Pe moderate stretching first.
an(—l - uE) =_T (3) At moderate Pe, a tethered chain will not fully extend, and
dt ! consequently, we do not expect a fully extended hooked
configuration. At moderate fields, tethered polymers stretch into
configurations resembling “trumpets” and “stem and flowé#s”.
We stress that the scaling arguments in ref 42 are for a tethered

Assuming a uniform distribution of;(0), this model give®
funhood = L/(2uE), which scales aBl/E. At full extension, we
also know thak, — x; = Xp and d/dt = —2dx,/dt.2* By making

and (2) for the long arm

d ¢ % —uE|=T 4T chaip at steady state. Hoyvever, we know by the continuity of
n:JZ1 " dt n n tension at the obstacle pivot point that at least the long arm
will not have a steady-state tension distribution. Nevertheless,

B 029 , the configurations at moderate Pe will qualitatively resemble

(N, — J)Cn(a - ”E) =T (4) stem and flowers, and we will hypothesize below that a stem-

and-flower model may be a good way to envision the initial

We have moved to a 1D description whére= Tj+1 = —T'j&x tension distribution in the short arm. To study the unhooking

ande, = uE/|uE|. Recall that we have assumed a fully extended dynamics at constant Pe, we will first still consider constant
unhooking chain. However, if the chain is not fully extended, total extension of the unhooking chain. This model does not
it will have a nonuniform tension distribution. Note that the require the exact tension distribution in each arm, only that there
details of the tension distribution in each arm are not important is an average spring lengthvalid for both arms. The unhooking

at this point because the only surviving tension terms in these analysi$® is essentially the same as the fully stretched model
above two equations are from the pivot point sprin@hese derived above with the alternate average spring lethgtho
equations (egs 3 and 4) can be subtracted, and usiidt &= thatNpls = /) and altered boundary limits (8 x; < (72). A
—dxs/dt (constant velocity) ang/N, = xi/L, they yield the sum of bead forces on each arm will give equations equivalent

governing equation for unhooking: to egs 3 and 4, yielding the governing equation
ax, E(l 2xl) dx, E(l 2x1) ;
i T (5) e 7 (7)

The model unhooking time is found simply by integrating from To arrive at eq 7, we used the relatigiN, = x3//”. The
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Table 2. Summary of Hooking Collision Parameters and Results

DNA,Pe E(Vicm) wuE @um/is) (um) tc=/1uE)(s) @u(s)
A, Pe=2 5.2 8.8 6.6 0.75 1.2
A, Pe=8 23.4 40 13 0.33 0.22
T4,Pe=8 8.7 14.7 45 31 1.8
finite-Pe J model unhooking time is then

vz 2%,(0)
tunhool‘xl(o)) =- Z,LLE In(l - I
_ T 2X1(0))
= — E In(l - ﬂy} (8)

wheret, = _/1(uE). Also note thatil,,neodl = 742 for a uniform

x1(0) distribution, so that the average unhooking time scales as

N’/E wherey is the empirical power-law exponent for stretching
tethered chains at finite Pe (0.54y < 0.75)30
Like a chain at full extension, this model also predicts that
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sections of the long arm move at different velocities; the coll
moves at a velocityE whereas the tension bearing section
moves at a slower velocityixi/dt| (using the ropelike assump-
tion for unhooking). In this picture, the long arm increases in
length as fast as the field can move the coil so théf) =
x1(0) + Xeoit(0) + uEt.

Returning to eqs 3 and 4, we can sum the contribution from
tension-bearing springs (all springs not in the leading coil). For
the short arm

L faxg ,
Gl g ~HE|= T, )
and for the long arm
: Et),. (dX ,
0+ )l -g)=-T1 a0
S

Recallls is the average spring length of the beagbring model

the lengths of long and short arms respectively grow and decaysoj(0) + uEt/ls is the number of beads in the long arm under

exponentially with time. The general solutions ay@) = /72

+ (x(0) — [/12) exp(2/t;) for i = 1, 2. These J model
predictions are plotted by solid gray lines for U and J collisions
in Figure 4a-f with initial conditionsx;(0) = X1 max and xz(0)
"= Xa,max Whereximaxis the maximum extension of the
short arm. Note that for the highly symmetric U collisions the
model does not nicely fit actual experimental data; however, it
nicely describes the unhooking dynamics of the arms for J
collisions. However, we also apply secondary fits to the U
collision data using arbitrary alternate initial conditionsxg)/

< 0.45 (dashed gray lines) and find excellent agreement with

experimental observations.
The model does a poor job predicting the dynamics of U
arms because as/y” — 0.5 arm length fluctuations become

important, thereby making the dynamics stochastic instead of
deterministic. Consequently, it is clear that there is a transition

in xi//” space from collisions that behave deterministically and
collisions greatly affected by fluctuations. An unhooking model

with fluctuations has already been proposed in ref 14 and later
expanded in ref 41 using a diffusive noise model and a rope-

on-pulley first passage time approximatiéfor the unhooking
time. Analysis shows that fluctuations are important in a region

of size /Dty in x1(0)L/” space, whereD is the DNA’s

diffusion coefficient. In certain cases, this model nicely describes

the observed spread in experimental hold-up times/as —
0.5; however, U collisions are also fairly rare, particularly at
Pe = 8 (/Dr/s ~ 0.01). When looking at initially asym-
metric configurations (e.g., witk;(0)//” < 0.45), the J model
nicely predicts the motion of the DNA arms. In the few cases

tension if we assumexg/dt << dx,/dt. Using the relationf0)ls
= x1(0) andjls = x; and subtracting these two equations yields

d
(4(0) + UEt+ ) = —uE((0) + 1Bt — x) (11)

The governing equation of the X model (eq 11) is a nonlinear,
nonautonomous differential equation. This equation can be
nondimensionalized, using = xi/x1(0) andt = uEt/x;(0):

a%, —-1-t1+%
= (12)
dt 1+t+%,

In this nondimensional equation, all initial conditions map to
%1(0) = 1. % (1) falls ast increases, from a slope of 0 tel
until %(tunhoo) = 0. Note that now the conditiok(tunnoo) = O

is independent of the initial conditior;(0). Using Euler's
method, we numerically solve for whém(tunnoo) = 0 and find
that tunneok = 2.1. Converting back to dimensional variables,
we see that the X model trapping time is a linear function of
the initial short arm lengttx;(0):

o)) ~ 2.0 13
tunhook(xl( )) - e /,LE ( )
For this X model to be physically consistert(0)/;” < 0.3. If
this condition fails, the coil completely unwinds during unhook-
ing. We will see that very few X collisions havwg(0)//” >
0.3; however, we must stress that this model is most useful for

where the model is not perfect, the primary source of error is small short arms.
the variation of model parameters (model predictions are made We can apply the numerical solution(t) for eq 11 to the

with parameters” andt. obtained from the whole ensemble).
X Model. To model the unhooking time of an X collision,
we adopt a new model that is only valid for collisions with
smallx;(0) and a large arm which continues to grow in length
during a collision (Figure 5b). In these X collisions, we divide

the chain into two idealized sections: (1) a freely electrophores-

ing coil at the end of the long arm and (2) a chain unhooking
under tension. We assume the coil to begin a distaq®
from the start of the long arm a&t= 0, andXc is the size of
the coil. This coil lays down contour length as it moves, thereby

observed T4 DNA X collisions at P 8 in Figure 4g-i. We
plot this numerical solution along with the X model predic-
tion of xx(t) = x(0) + wuEt in solid gray in Figure 4gi
beginning at the maximum value of and using the same
experimentally measured values _¢f and uE. The X model
very nicely predicts the observed time dependence of both arms,
though asx;(0)/y” — 0.3, x; may slightly drop below the
idealized coil unwinding prediction of the model near the end
of the unhooking time (Figure 4i).

The Short Arm. Here we begin our attempt to determine

adding to the time-dependent length of the chain under tension;how these models can help predict the experimental center-of-

we denote the long arm length under tensioncg andxa(t)
= X,(t) + Xeoi(t). We have made this clear in Figure 5b by
labeling beads that are initially in the coil with gray. The two

mass hold-up times{). The hold-up time is more important
to study for hooking-based applications like DNA mapping
which require separation (i.e., center-of-mass displacement) of
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constanty” U and J collisions. The observed hold-up times are
dispersed around the model prediction, likely due to thermal
fluctuations of the arms. However, as expected, it is obvious
that the model cannot predict the hold-up time of the many X
(and possibly W) collisions. Since W events are rare, we neglect
them in the bulk of the remaining discussion. It is striking though
that Figure 6b shows that theonstant extensiod model
adequately describedl the X and UJ collisionswhen plotted
againstx;(0). The close agreement between the predicted
Y O unhooking time and all observed hold-up times suggests that
i 0 0.2 e 4 0.5 the short arm mediates the unhooking process. We can explain

" T(}(O)/ﬁ this result by examining the anticipated tension distribution of
-,

the hooked DNA chain.
(b) I J f J As mentioned above, we assara U or J DNAmolecule to

have a constant extension while unhooking. This implies the
tension distribution is more or less frozen during the unhooking
process. More likely there is a complex competition between
tension relaxation and the electrical driving force. However,
what is this tension distribution at the onset of unhooking?
During the unraveling, the short arm may eventually reach
steady extension even if the long arm is still extending.
Observation of single DNA configurations (both J's and X’s)
during unhooking supports this hypothesis. We can model the
short arm in both U/J and X collisions at the onset of unhooking
as an idealized tethered chain with a steady-state tension profile
Figure 6. (a) Plot of the collision time as a function of the difference N @ uniform field. However, the long arm will have an unsteady
in arm lengthsg (scaled by the constant U/J extension valQeat the tension profile. The slight imbalance in the growing tension of
onset of unhooking for T4 DNA at Pe 8. U/J collisions are shown  the long arm will then begin to pull the short arm around the
as solid circles, X collisions are shown as open squares, and WobstacIeConsequently, the magnitude of the “tethering force”

collisions are shown as stars. The line is the J model for a chain at —, . L . .
constant extension (eq 14). Characteristic error bars for long and shortTJ during unhooking is set by the size of the short arm, which

collision times are also shown. (b) Plot of the collision time as a function W€ hypothesize reaches a steady-state tension distribution at
of the short arm length at the onset of unhooking (scaled by the constantthe onset of unhookingThe main consequence is that a J
U/J extension valug’). The line is the rope-on-pullefianoocJ model collision and an X collision with the same short arm lengths
based on the short arm extension (eq 8). can be modeled to have approximately the same hold-up times.

individual molecules. We know that the unhooking time is the po|d-Up Time: Center-of-Mass and Unraveling Effects
primary component to the total hold-up time, so we will first

directly compare our unhooking time model predictions to . ) . .
y P g P shown that they nicely predict observed arm dynamics during

experimental hold-up time results. However, we shouild stress the unhooking process. Furthermore, we have noticed that when
beforehand that we knowy = t because of unravelin . o ’ .
4 = Lunhook 9 formulating the J model in terms of the short arm length, it

and other effects to be discussed below. Nevertheless, this q el dicts hold times f x collisi
comparison between experimental data and model predictionsa equately predicts hold-up timeg for even A COTisions.
However, we now look at this result from a single molecule

will provide some important physical insight and raise some . . . )
Wit pros S Imp Py 9 standpoint to determine why we observe this nearly universal
interesting questions. : "

agreement with the J model. Specifically, we must address how

We compare the J model to our experimental data in two these unhooking models can predict the experimentally observ-
ways: first plotting the measured hold-up tirevs x5(0) and able center-of-mass hold-up tine

lotti W icel [th i : .
second plottinds vs x,(0). We expect eq 8 to nicely model the Figure 7 shows a schematic of a typical center of mass

U/J collision unhooking time (and hence hold-up time) as a trajectory during a hooking collision. Recall thiatya is the

function 0fx(0). Similarly, using the relation” — 2x(0) = time between initial impact and the onset of unhooking and
0) for a constant-extension unhooking chain, eq 8 can be X . :
%(0) 9 q tunhookiS the time to unhook off of the obstacle after unraveling.

rewritten as ; - h .
Also recall thatty is the time offset between linear fits to the

We have just derived microscopic models fighookand have

- (0) approach and release ddtand has contributions from unravel-
0) = — 5| XO_ 14 ing and unhooking. However, it is clear from Figure 7 that
1:unhook(xo( )) n 2 ( ) .
2 J # tunhook+ tunravbecausehe center of mass mes during these

. . ) . o events As the DNA unravels, the center of mass moves from
which would predict unhooking times for U/J collisions as a tne gbstacle position at = 0 to a position downfield at the
function ofx(0). For comparison of the model to our data, we gnset of unhookingt(= 0). But as the DNA unhooks, the center
have split our ensemble into U/J collisions (solid circles), X of mass continues to move downfield. We define the distance
collisions (open boxes), and W collisions (stars). To obtgi0) the center of mass moves during unhooking/gen The

and x(0), we manually perform length measurements at the oyerall effect of the center-of-mass motion is that the hold-up
instant the short arm begins to retract. Figure 6a shows thetime pecomes equal to

experimental hold-up times wg(0), and Figure 6b shows the

same hold-up time data plotted agairgD). Figure 6a clearly ty = tunnook T Oty — O, (15)
shows that the J model for a moderately extended DNA (eq

14) does nicely predict the hold-up times of many observed wheredt; accounts for unraveling anit, accounts for center-
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Figure 7. A schematic of the typical center-of-mass trace for a hooking
collision.

of-mass motion during unhooking. We will now present
idealized models to predict; anddt, for the J and X models.
Below, we will then modify the J and X models to account for
ot; andoty, referring to these new models fpras “modified”.
Modified J Model. To model center-of-mass movement and
unraveling effects for U/J collisions, we will consider a constant
extension DNA with uniform mass density along its length, i.e.,
the ideal rope approximation. This is an oversimplication as
the ends of the DNA do generally appear brighter than the
stretched portions. However, this analysis is a satisfying first
approximation and even provides a worst-case limit for the
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Modified X Model. The anticipated perturbations to the
observed hold-up time can also be computed geometrically for
the X model. The increase from unraveling is now limited to
the time it takes to extend the short atay = X1(0)/uE, but
must likewise include the effects of center-of-mass motion
during unraveling. We approximate the center of mass of the
coil section of an X collision as residing at the end of the long
arm’s rope sectionxg). Consequently, the center of mass at
the onset of unhooking is

2
0] (1_

—»

Xeon{0) = jﬂ) 1(0>] (19)

Using geometric relations as in the modified J model, the
additional unraveling time for the modified X model is

X1(0)2
72

The lost hold-up time from center-of-mass motion during
unhooking for an X collision ifAXcon/1E, where Axcom is the
distance the center of mass moves downfield during unhooking.
Using x,(t) = uEt + x1(0) and eq 13, the center of mass at the
end of unhooking for an X collision is

o, =1, (20)

(21)

Xcom(tunhool) ’4 8_ +3. ]-Xl(o)(l 3.1— l( ))

Subtracting eq 19 from 21 givesXeom = 2.1x1(0) — 3.8x,%(0)/

. Consequently, the X model center-of-mass hold-up time due

magnitude of each of these effects because brighter ends wouldo center-of-mass motion during unhooking is

decrease the perturbation and ot,.

First we determine the hold-up time due to unraveling
for the ideal rope approximation. We know from the J model
thatXcom(0) = —/(1/4 + (x1(0)L7” — 1/,)?). We assume that the
ideal rope takes tim&nay = (¢ — x1(0))/(«E) to reach this
initial condition for unhooking from the onset of collision with
the obstacle ak.;m = 0. Consequently, we can use simple
graphical methods (Figure 7) to determine the additional hold-
up time for unraveling:

ot, =

2
Xy (0)) (16)

A similar geometric method can be used to determiaeAgain,

we know the initial center-of-mass positigg(0) of the ideal
unhooking rope; however, from the uniform mass density
assumption, we also know thab{tunhooy = — /2 for an ideal
rope. ConsequentiYAXeom = —¢72 + Xcon(0), and the hold-up
time lost due to center-of-mass motion for an ideal répes

x,(0)  %,%(0)
‘5t2:Tc( 7 2

17)

Finally, we can determine the hold-up tirpefor the modified
J model by adding egs 8 and 16 and subtracting eq 17:

[— In (1 - 2xi0)) +2— Xl(o)] (18)

Note that the experimentally observigdwill be slightly longer
thantynnook however, the two times will converge to the same
value asxi(0)[/” — 1/2.

2
o, (2 1X1(0) 3.8@) (22)
7

Finally, we can determine the hold-up tirefor the modified
X model by adding eqs 13 and 20 and subtracting eq 22:

X1(0)2

(23)

By comparing eq 23 to the unhooking time model eq 13, we
see that adding unraveling and center-of-mass effects changes
the functionality of the collision time with the short arm length
(from linear to quadratic).

Comparison to Experiments Because we have access to
the experimental center-of-mass trajectories of all impacting
DNA in an ensemble, we can compare some of the modified
hold-up time model predictions with actual experimental data.
Figure 8a,b shows the center-of-mass trajectories during a typical
J and X collision. The markers switch from closed to open when
a molecule completely unhooks. Obtaining precise center-of-
mass measurements requires a strong signal-to-noise ratio for
the entire DNA'’s fluorescent cloud. However, one limitation
of these experiments is that the signal-to-noise ratio drops when
the DNA is stretched. This can be seen in Figure 8c,d, which
shows the total integrated fluorescence cloud intensity of the
each of the DNA molecules in Figure 8a,b. As expected, the
intensity plateaus gradually drop from preimpact to post-
unhooking due to photobleaching. But notice that the intensity
signal drops significantly when the DNA is on the obstacle.
The low signal values of stretched sections of the DNA would
shift the calculated center of mass to the leading end of the
long arm because that is where the signal is generally the
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center-of-mass motion. We observe both the slight slowdown
of xcom during unraveling and the characteristic plateau during
unhooking. However, we also observe an anomalous secondary
plateau that begins after the DNA has left the obstacle. This
observation is general to the majority of U/J collisions; however,
there is no physical reason for the DNA’s center of mass to
slow down during relaxation. This secondary plateau is an
artifact of the low signal and stems from the increasing
fluorescence signal of the relaxing DNA molecule. The signal
increases as the DNA relaxes because the monomer density per
pixel is increasing. When accounting for the error in the center-
of-mass calculation of a hooked configuration, the observed
sk : center-of-mass dynamics nearly parallel the ideal rope model
o5 o0 05 10 1s except for a constant downfield displacement. Consequently,
?‘/'r(. there is hope that a simplified model like the modified J model
can accurately predict center-of-mass hold-up times.

In the same way, we look at a typical X collision center-of-

Figure 8. Experimental center-of-mass trajectories gfda collision mass trajectory in Figure 8b. An 'deahzed X,COH'S'on would

and (b) an X collision. The solid gray lines are model predictions approach the obstacle at constant velocity, slightly slow down
(we connect initial and final center-of-mass coordinates during un- during unraveling and unhooking, and then move away from
raveling; during unhooking we use eq 24 for the J model and a the obstacle at constant velocity. As for the modified J model,

numerical solution to eqs 12 and 25 for the X model). Unidirectional - -
error bars correspond to the horizontal distance between the actual cente e can consider the average velocity of the center of mass

of mass and the middle of the DNA fluorescence cloud. (c, d) The during unraveling and how the center of mass will move during
integrated intensity of the DNA’s fluorescence cloud (after noise unhooking by using the numerical solution to the modified X
filtering) as a function of time scaled hy for (c) a J collision and (d) model (eq 12) and arrive at

an X collision.

Teom/ L

Pixel intensity (x 10°)

strongest. Consequently, a limitation of these experiments is Xeom) =
that the uncertainty in the center-of-mass calculation grows when
the molecule is extended. Therefore, we add unidirectional error

bars to the center-of-mass plots as the difference between thd" comparison with the J model, we see closer agreement
calculated center of mass and the middle of the DNA's Petween the experimental data and model predictions. The closer

fluorescence cloud. These error bars serve as a maximum2dreement stems from the better signal-to-noise ratio of X
estimate of error in the low-signal center-of-mass calculation. cllisions and from the more accurate depiction of the mass
Despite the moderate uncertainty in the center-of-mass positiond€nsity distribution in the modified X model. But like the
of hairpin-shaped configurations, the center of mass of DNA Medified J model, the modified X model also nicely predicts
coils moving away from the obstacle is very precise. Recall the timing of the different stages of the center-of-mass trajectory.
that it is this more precise data (approach and release trajectories) To continue our single molecule analysis and experimental
that we use to computg,. verification of the hold-up time model, we extragthook Ot1,
Returning to Figure 8a,b, we can compare the observedand ot directly from each collision in the experimental
center-of-mass trajectories with those predicted from the ideal ensemble. To determirighoox We manually determine the total
rope J model and the X model. First we look at the J collision time each hooking DNA molecule remains on the obstacle from
in Figure 8a. According to the ideal rope approximation (gray the onset of unhooking (when reaches a maximum) until the
line), the center of mass will move at constant velogiBuntil DNA leaves the obstacle. Figure 9a compares experimentally
the DNA impacts the obstacle. Then it will slow down as the determined center-of-mass hold-up times for T4 at=Pe
DNA unravels. Knowing the initial and final points for againstthe manually determined experimental unhooking time.
unraveling, we will simply connect these points with a line in W collisons are not included, and again X collisions are

2 12 ¢
SO (12 P o

-

Figure 8a. Then the ideal rope will unhook as represented as open boxes and U/J collisions are filled circles.
The black line is the equatiop = tunnook @nd the gray line is
xlz(t) + x22(t) the modified X model (substituting eq 13 into eq 23). Note the
ool =55 — (24) apparent switch in power-law functionality between t§ ¢

tﬁnhoog and J {4 ~ tunnooy hold-up times which supports our

which will depend the initial symmetr{(0)) of the unhooking models. Furthermore, using both the manually determined
configuration. Note that for the shown example this corresponds beginning and ending frames of a collision and the line fits for
to a slowly decreasing plateau ¥g,m followed by a sharply the approach and release center-of-mass data, we then used
decreasing section at the end of unhooking. After this drop, the automated code to extraét; and ot,. These calculations do
center of mass will then move away from the obstacle at constantnot rely on any of the “low signal” center-of-mass data often
velocity uE. seen in some highly extended U/J configurations. Figure 9b

By comparing this anticipated motion for an ideal rope to compares the experimental hold-up times to the experimentally
actual data in Figure 8a, we see that the observed center of masgerivedt,nnook+ Ot1 — Oto. The black line is the equatidn =
is generally further downfield (lower on plot) than predicted tunnookt+ Ot1 — Ot2. The satisfactory agreement of this line with
by the ideal rope approximation. This is due to the “stem-and- the data verifies both our data analysis techniques and the
flower-like”#2 configuration of the unhooking arms. However, importance of center-of-mass motion and unraveling perturba-
the ideal rope model does capture the important aspects of thetions, particularly for X collisions.
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Figure 9. (a) Experimental comparison &f andtumneokfor T4 DNA at Pe= 8. The solid black line iy = tunmoo @and the solid gray line is the

modified X model (egs 23 and 13). Filled circles correspond to U/J collisions whereas open boxes correspond to X collisions. (b) Experimental
comparison oty andtuneok + Ot1 — Oto. The solid black line igy = tunhook + Ot1 — dt.

4

Hold-Up Times for Variable DNA Size and Field
Strength

The preceding single molecule collision case study for T4
DNA at Pe= 8 showed how the unhooking dynamics relate to 5
center-of-mass hold-up times. T4 was chosen because it is long
enough to easily resolve and track the arm motion. Here we
will use the models and insight developed in the example above
to study the center-of-mass hold-up times for smaller DNA at
alternate fle|dS;( DNA at Pe= 2 and 8) %‘_0 ) 0.1 0.2 0.3 = 0.4 0.5

Figure 10a-c shows experimentd}; data as a function of
the initial short arm length foi-DNA at Pe= 2 and 8 as well
as T4 DNA at Pe= 8. Recall from Figure 6 that plottinty
against the short arm length collapses these data, which we
attributed to the fact that the short arm governs the tension at
the obstacle pivot. In Figure 10—& we include the J un-
hooking time model (eq 8, thick black line), the modified J hold-
up time model (eq 18, thick dashed curve), the X unhooking
time model (eq 13, thin red line), and the modified X hold-up
time model (eq 23, thin red dashed curve). These models have
different regimes of validity, and we would expect most X
collisions to follow the lower thin red dashed curves whereas
most J collisions would follow the black dashed line. However,
the J unhooking time model adequately fits both types of
collision data for all three data sets. As we saw with our in
depth analysis of the T4 data, this agreement is mostly a
coincidence because the actual center-of-mass hold-up time
depends on the unraveling and center-of-mass motion perturba-
tions. However, these perturbations nearly cancel for most U/J
collisions and yield a function close to the J model for X
collisions.

It is interesting to note that no U/J collisions were classified
with x;(0)/y” < 0.25, presumably due to the large difference in Figure 10. Experimental test of collision time models for multiple

time it takes for the long arm (as opposed to the short arm) to PNA sizes and field strengths. Plots of the collision time as a function

; o of the short arm length at the onset of unhooking (scaled by the constant
completely “T‘.ra"e'- In the regime(0)L7” > .0'25’ the J model U/J extension valug”) for (a) A-DNA at Pe= 2, (b) 1-DNA at Pe=
and the modified J model are nearly equivalent. Furthermore, g and (c) T4 DNA at Pe- 8. U/J collisions are shown as solid circles,

note the spread of the U/J hold-up times around the model X collisions are shown as open squares, and W collisions are shown
prediction grows as Pe is reduced from 8 to 2. This is likely as stars. The black line in each plot is thooJ model based on the
due to the increased importance of Brownian fluctuations on short arm extension (eq 8), and the dashed line is the modified J model

hooki fi i t = d b lored b (eq 18) that includes corrections from unraveling and center-of-mass
unhooking configurations at low Fe and may be explored bY mgtion. The thin red line is the X model prediction fafnoo(*:(0))

incorporating a noise term in the governing equation for (eq 13), and the red dashed line is the modified X model prediction
unhooking (eq 2§41 for ty(x1(0)) (eq 23).
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DNA Polymer-Small Obstacle Collision 7745

(17) Sevick, E. M.; Williams, D. R. MPhys. Re. Lett. 1996 76, 2595.
(18) Andre P.; Long, D.; Ajdari, A.Eur. Phys. J. BL998§ 4, 307.

In this study, we systematically analyzed the dynamics of (19) saville, P. M.; Sevick, E. MMacromolecule€999 32, 892.

single DNA molecules driven by an electric field and hooking

(20) Patel, P. D.; Shaqgfeh, E. S. G.Chem. Phys2003 118 2941.

on a small microfabricated post. Hooking collisions can lead (21) Minc, N.; Fitterer, C.; Dorfman, K. D.; Bancaud, A; Gosse, C.;

to size-dependent DNA separations, so we examined the
unhooking dynamics which dominate the total hold-up time

Goubault, C.; Viovy, J.-LAnal. Chem2004 76, 3770.
(22) Kaji, N.; Tezuka, Y.; Takamura, Y.; Ueda, M.; Nishimoto, T;
Nakanishi, H.; Horiike, Y.; Baba, YAnal. Chem2004 76, 15.

during a collision. We classified the collisions and developed (23) Dorfman, K. D.; Viovy, J.-LPhys. Re. E 2004 69, 011901.
models to predict the unhooking dynamics and ensuing collision (24) Minc, N.; Viovy, J.-L.; Dorfman, K. DPhys. Re. Lett. 2005 94,

times. The most striking result from our work is that we

determined that a new type of collision, which we called an X

198105.
(25) Minc, N.; Bokov, P.; Zeldovich, K. B.; Rterer, C.; Viovy, J.-L.;
Dorfman, K. D.Electrophoresi2005 26, 362.

(extending) collision, is statistically very probable and behaves (26) Randall, G. C.; Doyle, P. $hys. Re. Lett. 2004 93, 058102.

very differently than a classic rope-on-a-pulley. From collapse (27)
of the data and our models, we introduced the notion that the (28)

Olson, D. J.; Johnson, J. M.; Patel, P. D.; Shagfeh, E. S. G.; Boxer,
S. G.; Fuller, G. GLangmuir2001, 17, 7396.
Randall, G. C.; Doyle, P. $4acromolecule®005 38, 2410.

short arm of a hooked DNA generally governs the release (29) Long, D.; Viovy, J.-L.; Ajdari, A.J. Chem. Phys2003 118, 2941.
dynamics. Consequently, X collisions and J collisions with the (30) Perkins, T. T.; Smith, D. E.; Larson, R. G.; Chu, Riencel995

same short arm length have similar unhooking times. This
equivalence was explicitly demonstrated in single molecule
observations and using simplified models for perturbations to
the hold-up time for unraveling and center-of-mass motion.
Therefore, a rope-on-pulley model based on the short arm lengt
dynamics of a constant extension chain can nicely predict the

observed collision time data for a majority of the impact
ensemble.
While here we only considered DNA collision with a single

post, the various classes of collisions we found should still be (40)

present when examining post arr&y34254and be considered
in future modeling effort33-2% In a broader context, similar

disentanglement processes occur in polymers flowing over a

polymer brusH? DNA separations using dilute neutral polymers
as a sieving mediurtf,and flows of polymer solution§.Finally,

in direct linear analysié*°DNA collisions with posts may be
a useful way of preconditioning DNA configurations before
attempting to completely stretch DNA in an elongational
flow*8-50 or electric field?851
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