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ABSTRACT: Using single molecule fluorescence microscopy, we study the dynamics of an electric-field-driven
DNA molecule colliding with a single stationary post. The radius of the obstacle is small compared to the contour
length of the molecules. Molecules that achieve hooked configurations which span the obstacle were chosen for
study. Four different types of hooked configurations were found: symmetric hairpins with constant extension
during unhooking, asymmetric hairpins with constant extension during unhooking, asymmetric hairpins with
increasing extension during unhooking, and rare multiply looped entangled configurations. The important physics
describing the unhooking dynamics for each classification differ and models are proposed to predict unhooking
times. Surprisingly, we find that most collisions do not follow classic rope-on-pulley motion but instead form
hairpins with increasing total extension during the unhooking process (called X collisions). Last, we show that
unraveling to form a hairpin and center-of-mass motion during unhooking affect the overall center of mass hold-
up time during a collision process.

Introduction

The collision of a field-driven polymer molecule with a
stationary obstacle is a simply posed but nontrivial problem.
Although analogous to a classical rope-and-pulley problem, this
microscale problem is complicated by the polymer’s elasticity
and fluctuating configuration. Collision studies have been
pursued to investigate polymer-polymer interactions1,2 and the
size separation3 of large DNA molecules (large DNA molecules
in aqueous solvents are generally modeled using classical
polymer physics4-6). For sufficiently strong impacts, a coiled
polymer hooks around the obstacle and unwinds into a hairpin
configuration.7 A hooked molecule then unhooks from the
obstacle and recoils (Figure 1a). Previously, hooking dynamics
of DNA in gels was hypothesized to explain anomalous
experimental gel electrophoresis results8-11 and then directly
observed by Song and Maestre.7 Additionally, a DNA size-
separation design of sparse microfabricated obstacles was
hypothesized by Austin and co-workers12-14 from observations
of hook formation and rope-on-pulley modeling of the unhook-
ing time.

Using simulations, other groups tested this separation hy-
pothesis to determine length-dependent behavior of DNA
mobility through a group of pointlike obstacles.15-20 These
studies began by looking at thesingle obstacle collisionevent
of a Rouse-like bead-spring chain at high fields. Geometric
arguments were then used to scale these single collision results
to an obstacle course separation device.17 Other innovations in
single obstacle simulation work include study of the hooking
probability on a point obstacle as a function of impact offset,17

inclusion of approximate hydrodynamic interactions,18 and
introduction of the notion of “roll-off” collisions on finite size
obstacles.19 Additionally, Patel and Shaqfeh20 simulated chains
moving through arrays of multiple obstacles and investigated
the effect of obstacle ordering and density.

The first experimental work to separateO[10-100 kbp] DNA
by length using hooking collisions was by Doyle et al.3 Follow-

up work was performed in slightly more dense obstacle courses
at higher fields21 and in extremely dense courses,22 though as

* Corresponding author: Ph (617) 253-4534, fax (617) 258-5042,
e-mail: pdoyle@mit.edu.

Figure 1. Single obstacle hooking of DNA. (a) Schematic of a typical
hooking event.tunrav is the time it takes the DNA to unravel after impact.
tunhook is the time it takes a completely unraveled DNA hairpin
configuration to unhook from the obstacle. As we detail in the text,
unraveling ends and unhooking begins when the short arm reaches its
maximum extension. (b) SEM image of our PDMS obstacle array and
an expanded view of a single post. (c) Length definitions of an
unhooking DNA.x1 is the short arm length, andx2 is the long arm
length;x0 is the difference in arm lengths, andxex is the total extension
of the chain. (d) Region (shaded) where DNA molecules are chosen
for the impact ensemble (not to scale). Note that a collision zone a
distance 2Robs + Rg from the obstacle center may be a better choice;28

however, the difference is unimportant here becauseRobs ∼ Rg.
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the obstacle density increases, the separation mode switches
from unhooking to pore sieving characteristic of gels. Motivated
by these experiments, macroscale separation models were
proposed to explain the dependence of the average mobility and
dispersivity in an obstacle array on the DNA length. Dorfman
and Viovy23 first presented a Markovian model, and then Minc,
Viovy, and Dorfman adjusted the model to include non-
Markovian transport through the post array.24 To make quantita-
tive predictions, they obtained data from a single obstacle in
an array to support their claim that the unhooking time
probability distribution could be modeled as a Poisson distribu-
tion.25 They argue that a better trapping model may improve
agreement with experimental observations. However, no one
has performed controlled microscopic experiments to extract
the hold-up times for hooked DNA, and no one has cons-
tructed a comprehensive model that can predict the hold-up
times for the multitude of hooking dynamics observed experi-
mentally.

Our group attempted the first systematic experimental analysis
of the collision problem by tracking a uniform ensemble of DNA
molecules distributed perpendicular to the field direction
impacting a small but finite size obstacle.26 Using a logical but
empirical definition that a “hooking collision” was any DNA
that has, at some instant, a piece of its configuration in all four
quadrants of the obstacle-centered coordinate system, we
extracted the hooking probability ofλ DNA ensembles on 0.8
µm radius PDMS obstacles. We found that for a small but finite
size obstacle induced electric field gradients can greatly affect
the hooking probability. In addition to the size ratioRobs/Rg,
the roll-off to hook transition is governed by a dynamic
parameter De) ε̆ELτ, the ratio of the rate of maximum DNA
deformation to DNA relaxation in an obstacle-induced field
gradient. It is well-known that hooking events result in order
of magnitude longer and size-dependent hold-up times compared
to roll-offs,19 and here we will focus solely on hooking events.
In this paper we will experimentally investigate and model the
hold-up time for DNA hooking on small obstacles (Figure 1a).
Using fluorescence microscopy, we will experimentally extract
center-of-mass hold-up times for single DNA molecules col-
liding with stationary obstacles. These hold-up times can be
modeled by two sequential processes: unraveling and unhook-
ing16 (Figure 1a). Unraveling occurs after the DNA impacts the
obstacle as its conformation unravels into hairpin-like configura-
tions. Once unraveled, the DNA unhooks, as the longer arm
pulls the shorter arm off of the obstacle.

We investigate the unhooking dynamics in detail, decompos-
ing the conformations of hooked collisions into idealized
ropelike collisions and nonideal variable extension collisions.
Simple rope-on-pulley models have been used in the past to
predict high field unhooking times of ideal ropelike collisions.7

However, when considering this entire impacting ensemble,
there are many DNA that do not completely unravel, and
consequently, they do not behave like a rope-on-pulley. Their
existence has been observed in single obstacle simulations16 but
never explored. We present collision models that can predict
unhooking times for both ropelike and variable extension
collisions. We also look at the unraveling mechanism for the
observed collision classes. Though unhooking can generally
dominate the overall hold-up time for a collision event, we will
show that the unraveling process can be important to consider.
Furthermore, this is the first study to investigate the importance
of thecenter-of-mass motionon hold-up time modeling, during
both unraveling and unhooking. Our work improves on previous
experimental work7,12,27,25because we examine uniform impact

ensembles (DNA distributed uniformly across the width of the
channel before impact), use precise center-of-mass tracking
algorithms, and include all hooking events, not just visually
obvious hooks.

Experimental and Analytical Procedures

Dimensionless Field Strength. First, we introduce the appropri-
ate dimensionless field strength. The Peclet number Pe is a measure
of how the persistence length of tethered DNA orients in an electric
field, and it is the proper way to nondimensionalize the extension
of a tethered polymer in a uniform flowU or field E. For example,
in flow, the drag force on the chain isúU (whereú is the DNA
drag coefficient), and in the low-force limit (f ∼ kTxex/(Llp), with
persistence lengthlp and thermal energykT), the fractional extension
xex/L scales as

where D ) kT/ú is the DNA’s diffusion coefficient. Using
electrohydrodynamic equivalence,29 we define Pe as Pe) µElp/D
in electrophoretic fields. To keep the low-force fractional extension
constant, Pe must be kept constant. However, since polymer
unhooking involves a competition between stretched polymer arms,
it is also natural to think of Pe as the proper way to investigate
unhooking dynamics. For Pe> 1, a DNA that collides with a small
obstacle will then stretch into a hairpin hooked configuration.
Alternate versions of this dimensionless field strength have been
used in the past DNA-obstacle work reviewed above. Note that
Pe scales asNγ (ν < γ < 1 depending on the hydrodynamic
interaction screening,4 with ν ) 0.589), which is approximately
the length scaling Perkins et al.30 empirically determined to achieve
a family of universal extension curves of tethered DNA. Addition-
ally, the free draining version (γ ) 1) of Pe was employed by Patel
et al.20 to collapse a family of Rouse bead-spring chain unhooking
simulations onto one master collision time curve. Generally Pe∼
O[10] in recent DNA separation devices.3,21

We stress that the governing dimensionless field strength (Pe)
is very different from the Deborah number (De) used in our previous
paper that examined the transition between hooks and roll-offs.26

De governs deformation of polymers in field gradients, e.g., the
gradients induced by an insulating obstacle, and thus is useful when
studying the DNA deforming around the obstacle. Because most
of the hooked DNA studied here stretch into regions where the
field is uniform, the electric field gradients induced by the obstacles
are of secondary importance in the unraveling/unhooking analysis.

Experimental Procedure.We used a standard soft lithography
procedure (described elsewhere)31,32 to construct 25 mm long, 50
µm wide, and 2µm high PDMS (poly(dimethylsiloxane)) micro-
channels with a sparse array of 0.8µm radius obstacles. The
obstacles were spaced 70µm center-to-center in the field direction
and were staggered transverse to the field with a 10µm center-to-
center spacing. Reservoirs (4 mm× 4 mm) were cut at each end
of the cured PDMS microchannel with a scalpel, and the channels
were soaked for 12 h at 45°C in 0.5× TBE to eliminate permeation
driven flow.32 Figure 1b shows a SEM image of the obstacle array
and an isolated obstacle.

We usedλ DNA and T4 DNA in this study. The DNA were
stained with a fluorescent dye (TOTO-1, 4.7:1 bp:dye molecule)
and diluted in the following buffers: (1) 2.2× TBE, 3%
â-mercaptoethanol, 0.07% PVP (Mw ) 106), and 0.07% ascorbic
acid (used forλ DNA) or (2) 2.2× TBE, 3%â-mercaptoethanol,
and 0.07% PVP (Mw ) 104) (used for T4 DNA). The additives
were chosen to dynamically eliminate electroosmotic flow and
scavenge oxygen. The measured electrophoretic mobility wasµ )
-1.7 ( 0.2 (µm/s)/(V/cm). As explained previously,28 the dyedλ

xex

L
∼ lp

kT
Uú

)
Ulp
D

(1)
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DNA has a contour length ofL ) 21 µm and a longest relaxation
time of τ ) 0.19 s. Using the same procedures, we determined T4
has a stained contour length of 70µm andτ ) 1.7 s.

A typical experiment consisted of first gently rinsing and drying
the microchannel and then applying it to a clean glass slide (plasma
cleaned at 100 W for 5 min, charge equilibrated 1 day, soaked in
1 M NaOH for 15 min, and rinsed in ultrapure water (Milli-Q,
Millipore)). We then immediately filled the channel with DNA
solution and applied an electric field of 5.2-23.4 V/cm across the
reservoirs through platinum electrodes. We observed single DNA
molecule dynamics using an inverted fluorescence microscope
(Axiovert 200, Zeiss) with a 100× 1.4 NA objective forλ DNA
and a 63× 1.4 NA objective for T4 DNA. Images were captured
at 30 frames/s (∆tframe ) 0.0333 s) with an EB-CCD camera
(C7190-20, Hamamatsu) and NIH Image software. Digitized images
had 8 bit pixel intensity values which ranged from 0 to 255.

Analysis. To extract data, we first filtered the background noise
by subtracting the maximum pixel value of the perimeter of the
first frame of a movie from all the pixels in that movie. The primary
observable from the captured images of a DNA collision was the
center-of-mass coordinate of the DNA (xcom, ycom). We adopted an
obstacle-centered coordinate system for each collision, with the
x-coordinate in the field direction and they-coordinate transverse
to the field (Figure 1d). The center of mass of a molecule was
computed by finding the first moment of the postfiltered image
intensity distribution.33 This process was automated for multiple
frames of data, and it yielded the center-of-mass trajectoryxcom(t)
of the DNA. We also determined the extension of the short (x1)
and long (x2) arms of an unhooking DNA by the distance between
the end of each arm and the center of the obstacle plus a geometric
term πRobs/2 (Figure 1c). The total extensionxex of the DNA is
thenxex ) x1 + x2. Furthermore, we define the difference in arm
lengthsx0 as x0 ) x2 - x1. Refer to Figure 1c for a diagram of
these observable lengths.

We obtain obstacle positions for each 2000 frame movie of data
by averaging the pixel values of all frames. Obstacles are easily
observed as vacancies in the smeared DNA traces of the pixel
average. We then define the impact parameterb for a collision as
they-offset between the impacting DNA’s center of mass and the
obstacle center, taken at a distanceRobs + 2Rg from the obstacle
center (Figure 1d). This position was chosen to evaluateb because
the DNA is far enough away from the obstacle to not experience
high obstacle-induced electric field gradients, yet close enough so
that Brownian drift does not significantly coarsen our analysis. For
this study, we only analyze collisions with|b| < Robs + Rg. No
hooking collisions were observed for DNA with|b| > Robs + Rg.

Using the center-of-mass trajectories of the colliding DNA, we
can compute the collision hold-up timetH. For all collisions we
consider, the coiled DNA is moving from right to left, i.e., from
positivex to negativex. A typical xcom(t) trajectory (T4 DNA, Pe
) 8) is shown in Figure 2. A typical collision shows a decrease in
xcom(t) until the DNA impacts the obstacle (x ) 0). Impact is then
followed by a plateau inxcom(t) when the molecule is hooked on
the obstacle. At this point the DNA configuration resembles a
hairpin (Figure 2, inset). Finally, when the molecule unhooks,xcom(t)
decreases again. The pre- and postimpact slope ofxcom(t) should
be equal toµE.52 Within 10% experimental error, all molecules
move atµE both before and after colliding with the obstacle. We
extracttH for each collision as the difference in time intercepts for
lines fit to the approach and release trajectories (Figure 2). The
linear fit for the approach data uses two fit parameters (slope and
intercept), whereas the linear fit for the release data uses just an
intercept because the slope is constrained to match the approach
slope. The approach data is fit from the first data point untilxcom

< Robs + 2Rg. The release data is fit from whenxcom < -xex,max/2,
wherexex,maxis the maximum total extension of any DNA in a given
ensemble. One of the primary goals of this paper is to compare
experimental results fortH to collision models that incorporate
effects from unhooking and unraveling.

Hooking Collision Classification

Figure 3 shows experimental images of different T4 molecules
hooking on a single obstacle at Pe) 8. We will classify hooking
collisions into four general categories named for their shape:
U, J, W, and X (for “extending”) collisions. U and J collisions
have a relatively constant extension (xex ) x1 + x2 ∼ constant)
during the unhooking process and behave like a rope on a
frictionless pulley. This constant extension, which we termL ,
depends on Pe. U and J collisions are the types of ideal collisions
described in previous studies.7,12,25,27The main distinction is
that U collisions (Figure 3a) have nearly symmetric arms so
that arm length fluctuations are important to consider when
modeling the unhooking time. W collisions (Figure 3c) are
collisions that result in entangled configurations upon impact
with the obstacle (see Figure 3c, inset). Quite often they result
from the two ends of the DNA ending up on the same side of
the obstacle after impact. X collisions (Figure 3d) are those with
a long arm that is still extending while the short arm begins to
retract.

In this work we do not quantitatively distinguish between
U and J collisions. The main qualitative distinction is the
increased importance of fluctuation effects in the unhooking
dynamics for U collisions. We will return to this point later
when discussing unhooking models. We distinguish the U/J
collisions from the X collisions simply based on their total
extension when the short arm begins to retract; U/J collisions
havexex ) L whereas X collisions havexex < L . We determine
L at a given Pe by taking the average ofxex for only hooking
events that result in symmetric arms. Obviously there will be
some spread in the extension data, so we empirically classify
molecules withxex within 10% ofL to be a U/J collision. This
is a good approximation since the distribution ofxex at the onset
if unhooking is bimodal with a minimum near 0.9L . Also,
L is approximately equal to the extension derived from
empirical master curves for tethered DNA at steady state in
uniform flows and fields in refs 30 and 34.

Figure 4 shows plots of the lengths of the short arm, long
arm, and total extension (nondimensionalized byL ) of U, J,
and X collisions during the unraveling and unhooking processes;
similar plots for the U collision were presented in refs 7 and
15. The solid lines beginning at the left axes are affine scalings.
Although we present only three examples of each collision
type’s arm length trajectory, we note some universal trends.
During unraveling, the arms extend approximately at a velocity

Figure 2. A sample collision trajectory (T4 at Pe) 8) along with
characteristic DNA configurations. The large circle data points mark
the beginning and ending of unhooking. The first large circle represents
when the short arm begins to retract, and the second large circle
represents when the DNA leaves the obstacle.
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µE. Also, during unhooking (1) U and J collisions have a
relatively constant total extension (xex/L ∼ 1) with exponen-
tial growth/decay of the two arms and (2) X collisions have
xex/L < 1 andxex/L grows for the duration of the unhooking
process. Furthermore, the long arm of X collisions tends to grow
linearly, leading to the conclusion that the long arm of an X
hook is still extending in the uniform field even while the short
arm retracts. We will return to Figure 4 later to discuss model
predictions of the arm length dynamics.

For the T4 DNA at Pe) 8 (e.g., Figure 3), 60% of the
hooking collisions were X collisions, 29% were U/J collisions,
and 11% were W collisions. About half of the W collisions are
metastable, meaning that they eventually unravel into one of
the other collision classes before the molecule unhooks. The
other half quickly disengage from the obstacle. Similar dynamics
of multilooped hooks were hypothesized in the simulation work
of refs 17 and 18 and modeled in ref 35. Table 1 summarizes
our classification results for our three main studies. Note that
the number of X collisions grows with Pe. At high Pe, tensions
grow nonlinearly in the short arm that can lead to quick
retraction, whereas at low Pe, thermal energy has a greater effect
on stabilizing asymmetric configurations. This result suggests
that infinite-Pe rope-on-pulley models may not be as applicable
to real polymer collisions since most collisions will be X
collisions. The number of W collisions grows with size and is
presumably a function ofRobs/Rg. This makes sense since at
smallRobs/Rg configuration folds are more likely to wrap around
both sides of the obstacle. We note, however, that in the point

obstacle limit the simulations of ref 17 appear to show only a
small percentage (<5%) of significantly observable (metastable)
W collisions.

Like the “molecular individualism” behavior of polymers in
extensional fields,36,37we anticipate these collision types to be
highly dependent on the impacting DNA’s initial configuration.
Similarly, classification of collision types is more powerful than
a qualitative observation, as it can lead to quantitative conclu-
sions. Specifically, the resulting hold-up times will be different
for each class of collision types. The center-of-mass trajectories
for each example collision in Figure 3 give a feel for this, as U
collisions tend to have very long hold-up times, while X
collisions can have very short times. The total hold-up time
can be thought of as a sum of the time it takes the DNA to
unravel and then unhook from the obstacle.16 The unhooking
time will generally be much longer than the unraveling time,
so we will begin our modeling discussion there. Knowledge of
how long it takes these hooked configurations to unravel and
unhook can lead to useful predictive models of a macroscale
separation process.

Unhooking Time Models

In this section, we develop and test mathematical models for
the unhooking process. These models will only be for U, J, and
X collisions and will not consider the more unpredictable but
rare W collisions. Two unhooking time models will be
presented: a deterministic model for constant extension chains
(J model) and a deterministic model for extending chains (X

Figure 3. Types of hooking collisions (T4 DNA at Pe) 8): (a) U symmetric hooks, (b) J asymmetric hooks, (c) entangled W hooks, and (d)
continuously extending X collisions. Images in each series are separated by 1.33 s. The plots to the right of the DNA images correspond to the
x-component of each DNA’s center-of-mass trajectory. The dashed lines show linear fits to approach and release data.

Macromolecules, Vol. 39, No. 22, 2006 DNA Polymer-Small Obstacle Collision 7737



model). For the remainder of this paper, we will appropriately
normalize time tot ) 0 at the end of unraveling and the onset
of unhooking. Empirically, this is when the short arm reaches
its maximum extension. Consequently, att ) -tunrav the DNA
is first impacting the obstacle and att ) tunhookthe DNA is just
leaving the obstacle. In the following analysis, we will use the
well-accepted assumption14 that friction on the obstacle is
negligible because thermal fluctuations in the solvent ensure
that the DNA is not atomically pinned against the solid surface.38

Unhooking Physics. At first glance, it is clear that unhooking
is driven by asymmetry in the arms; the longer arm will naturally
pull the shorter arm around and off of the obstacle. To predict
the unhooking dynamics, we need to know the forces at play.
It is clear that the tension profiles along both arms are not at
steady state because the tension would then be discontinuous
at the obstacle pivot point. However, we do know that a subset
of hooking collisions achieve constant extensionL . This would
be true if the molecule unhooks on a time scale much shorter
than the stress relaxation time, so that the tension profile in
each arm can be thought of as frozen like aconstant extension
rope.15 As a consequence, the location of maximum tension at
the start of unhooking would move onto and then down the
long arm over time. This is obviously an oversimplification,

and in fact we know that unhooking times are often longer than
the longest stress relaxation time (tunhook > τ). However this
picture may capture the important physics of the chain release.
In fact, the simulations of Sevick and Williams showed that
the position of maximum tension does shift onto the long arm
of the DNA during unhooking.15 Furthermore, even if the initial
tension distribution does relax during the unhooking process,
bead-rod simulations show that because of nonlinear elasticity,
very large changes in tension can result from very small shifts
in a stretched configuration.39 Therefore, the first-order model
for an unhooking DNA is to consider an unhooking chain of
constant length; we will consider both complete extension (L)
and moderate extension (L ). We will term a model with constant
extension the “J model” since it likely best describes J collisions.
The J model is analogous to previously proposed full extension
“rope-on-pulley” models;7,14,15however, we will later show the
benefit of formulating it in terms of the short arm lengthx1.

J Model. Previously, a collision model based on rope-on-
pulley dynamics was used to model highly stretched DNA
unhooking at high fields.7,14 The unhooking driving force is
λEx0, whereλ is a phenomenological charge per length driving
DNA unhooking andx0 is the difference incontour lengthof
the two arms. Choosing a linear driving force may seem
somewhat arbitrary at first glance given that DNA and other
polymers have nonlinear elasticity at full extension. Conse-
quently, we will go through a detailed derivation of the driving
force using a bead-spring picture and then more generally apply
results to moderately extended chains.

Figure 5a shows a schematic of the bead-spring polymer
hooked on an obstacle. First, in agreement with previously

Figure 4. Arm length dynamics of (a)-(c) U, (d)-(f) J, and (g)-(i) X hooking collisions. The trajectories are ofx1(t), x2(t), andxex(t) ) x1 + x2

scaled by the constant U/J extensionL ) 45 µm for T4 DNA at Pe) 8. We normalize time tot ) 0 at the maximum value ofx1(t), i.e. when the
short arm begins to retract. (a), (d), and (g) correspond to the same DNA shown in Figure 3. Solid lines beginning at the left axis correspond to
affine movement at the ensemble average electrophoretic velocity. Solid lines beginning att ) 0 correspond to the model predictions forx1(t) and
x2(t) based on initial conditionsx1(0) andx2(0) ) L - x1(0) ((a)-(f) J model, (g)-(i) X model). In (a)-(c), an arbitrary alternate initial condition
was chosen at timet with x1(t) < 0.45 (dashed line J model). The dashed line is underneath the solid line in (c).

Table 1. Summary of Hooking Collision Classification Results

(DNA, Pe) U/J X W

(λ, Pe) 2) 83% 17% 0%
(λ, Pe) 8) 43% 57% 0%
(T4, Pe) 8) 29% 60% 11% (5% metastable)
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proposed rope-on-pulley models, we will consider a chain
stretched to its full contour length so thatx1 + x2 ) L. At the
small length scale of a DNA persistence length, inertia is
negligible so that the forces on a small piece of the DNA sum
to zero. Consequently, in the bead-spring picture of polymer
dynamics, the velocity of one bead of a tethered chain in a
uniform electric field without intrachain hydrodynamic interac-
tions and without solvent-induced Brownian forces is

whereún is the bead drag coefficient, and for thenth bead,xn

is the position vector,T(xn) is the force due to gradients in
tension along the polymer, andE is the imposed electric field.
Ignoring Brownian forces is a good approximation for Pe. 1
for asymmetric hooked configurations. Neglecting long-range
bead-bead hydrodynamic interactions is a good approximation
for a stretched polymer in a thin slit;40 however, our 2µm
channels only partially screen hydrodynamic interactions.41

Nevertheless, including preaveraged hydrodynamic interactions
would only affect our analysis parametrically through the term
ún, which eventually drops from the unhooking time equations.
The net spring force at beadn is T(xn) ) T′n + Tn, whereT′n
is the force from the spring connecting beadn to beadn + 1
andTn is the force from the spring connecting beadn to bead
n - 1. Note thatT′n ) -Tn+1 except for the special case at the
pivot springj whereT′j ) T j+1. Also note thatT1 ) T′Nb ) 0,
whereNb is the total number of beads.53 We can sum the force
balance equations (eq 2) for the short arm and long arm of the
hooked bead-spring chain. Assuming the chain moves “rope-
like”, i.e. all sections move at the same velocity (dx1/dt for the
short arm and dx2/dt for the long arm), we compute (1) for the
short arm

and (2) for the long arm

We have moved to a 1D description whereT′j ) T j+1 ) -T′jex

andex ) µE/|µE|. Recall that we have assumed a fully extended
unhooking chain. However, if the chain is not fully extended,
it will have a nonuniform tension distribution. Note that the
details of the tension distribution in each arm are not important
at this point because the only surviving tension terms in these
above two equations are from the pivot point springj. These
equations (eqs 3 and 4) can be subtracted, and using dx2/dt )
-dx1/dt (constant velocity) andj/Nb ) x1/L, they yield the
governing equation for unhooking:

The model unhooking time is found simply by integrating from

t ) 0 to tunhook andx1 ) x1(0) to 0:

Assuming a uniform distribution ofx1(0), this model gives54

〈tunhook〉 ) L/(2µE), which scales asN/E. At full extension, we
also know thatx2 - x1 ) x0 and dxo/dt ) -2dx1/dt.14 By making
this substitution in eq 5, one arrives with the governing equation
used in refs 7, 14, and 15 with a linear driving force: dx0/dt )
2µEx0/L ) 2λEx0/ú whereλ is the phenomenological charge
per length andú is the molecule’s drag coefficient. We have
shown here thatλ ) µú/L for a fully extended chain. We
mentioned that previous work applied this model to Rouse
simulations and ideal unhooking observations of U/J collisions
at high fields, generally with good agreement. However, it needs
to be adjusted for our experiments because the DNA do not
completely stretch, and some collisions (X collisions) do not
have a constant extension. We will consider the modification
of finite-Pe moderate stretching first.

At moderate Pe, a tethered chain will not fully extend, and
consequently, we do not expect a fully extended hooked
configuration. At moderate fields, tethered polymers stretch into
configurations resembling “trumpets” and “stem and flowers”.42

We stress that the scaling arguments in ref 42 are for a tethered
chain at steady state. However, we know by the continuity of
tension at the obstacle pivot point that at least the long arm
will not have a steady-state tension distribution. Nevertheless,
the configurations at moderate Pe will qualitatively resemble
stem and flowers, and we will hypothesize below that a stem-
and-flower model may be a good way to envision the initial
tension distribution in the short arm. To study the unhooking
dynamics at constant Pe, we will first still consider constant
total extension of the unhooking chain. This model does not
require the exact tension distribution in each arm, only that there
is an average spring lengthls valid for both arms. The unhooking
analysis15 is essentially the same as the fully stretched model
derived above with the alternate average spring lengthls (so
that Nbls ) L ) and altered boundary limits (0< x1 < L /2). A
sum of bead forces on each arm will give equations equivalent
to eqs 3 and 4, yielding the governing equation

To arrive at eq 7, we used the relationj/Nb ) x1/L . The

dxn

dt
) 1

ún
T(xn) + µE (2)

∑
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j [ún(dxn
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Figure 5. Model schematics at the onset of unhooking. (a) Schematic
for the constant-extension J model. (b) Schematic for the variable
extension X model with an extending long arm. The springs have been
drawn equal in length to remind the reader of our constant total
extension assumption; however, as we show in the text, we do not
need to assume this uniform tension distribution.
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finite-Pe J model unhooking time is then

whereτc ) L /(µE). Also note that〈tunhook〉 ) τc/2 for a uniform
x1(0) distribution, so that the average unhooking time scales as
Nγ/E whereγ is the empirical power-law exponent for stretching
tethered chains at finite Pe (0.54< γ < 0.75).30

Like a chain at full extension, this model also predicts that
the lengths of long and short arms respectively grow and decay
exponentially with time. The general solutions arexi(t) ) L /2
+ (xi(0) - L /2) exp(2t/τc) for i ) 1, 2. These J model
predictions are plotted by solid gray lines for U and J collisions
in Figure 4a-f with initial conditionsx1(0) ) x1,max andx2(0)
) L - x1,max, wherex1,max is the maximum extension of the
short arm. Note that for the highly symmetric U collisions the
model does not nicely fit actual experimental data; however, it
nicely describes the unhooking dynamics of the arms for J
collisions. However, we also apply secondary fits to the U
collision data using arbitrary alternate initial conditions ofx1(0)/
L < 0.45 (dashed gray lines) and find excellent agreement with
experimental observations.

The model does a poor job predicting the dynamics of U
arms because asx1/L f 0.5 arm length fluctuations become
important, thereby making the dynamics stochastic instead of
deterministic. Consequently, it is clear that there is a transition
in x1/L space from collisions that behave deterministically and
collisions greatly affected by fluctuations. An unhooking model
with fluctuations has already been proposed in ref 14 and later
expanded in ref 41 using a diffusive noise model and a rope-
on-pulley first passage time approximation43 for the unhooking
time. Analysis shows that fluctuations are important in a region
of size xDτc/L in x1(0)/L space, whereD is the DNA’s
diffusion coefficient. In certain cases, this model nicely describes
the observed spread in experimental hold-up times asx1/L f
0.5; however, U collisions are also fairly rare, particularly at
Pe ) 8 (xDτc/L ∼ 0.01). When looking at initially asym-
metric configurations (e.g., withx1(0)/L < 0.45), the J model
nicely predicts the motion of the DNA arms. In the few cases
where the model is not perfect, the primary source of error is
the variation of model parameters (model predictions are made
with parametersL andτc obtained from the whole ensemble).

X Model. To model the unhooking time of an X collision,
we adopt a new model that is only valid for collisions with
smallx1(0) and a large arm which continues to grow in length
during a collision (Figure 5b). In these X collisions, we divide
the chain into two idealized sections: (1) a freely electrophores-
ing coil at the end of the long arm and (2) a chain unhooking
under tension. We assume the coil to begin a distancex1(0)
from the start of the long arm att ) 0, andxcoil is the size of
the coil. This coil lays down contour length as it moves, thereby
adding to the time-dependent length of the chain under tension;
we denote the long arm length under tension asx′2(t) andx2(t)
) x′2(t) + xcoil(t). We have made this clear in Figure 5b by
labeling beads that are initially in the coil with gray. The two

sections of the long arm move at different velocities; the coil
moves at a velocityµE whereas the tension bearing section
moves at a slower velocity|dx1/dt| (using the ropelike assump-
tion for unhooking). In this picture, the long arm increases in
length as fast as the field can move the coil so thatx2(t) )
x1(0) + xcoil(0) + µEt.

Returning to eqs 3 and 4, we can sum the contribution from
tension-bearing springs (all springs not in the leading coil). For
the short arm

and for the long arm

Recallls is the average spring length of the bead-spring model
so j(0) + µEt/ls is the number of beads in the long arm under
tension if we assume dxcoil/dt , dx2/dt. Using the relationsj(0)ls
) x1(0) andjl s ) x1 and subtracting these two equations yields

The governing equation of the X model (eq 11) is a nonlinear,
nonautonomous differential equation. This equation can be
nondimensionalized, usingx̃1 ) x1/x1(0) and t̃ ) µEt/x1(0):

In this nondimensional equation, all initial conditions map to
x̃1(0) ) 1. x̃1(t̃) falls as t̃ increases, from a slope of 0 to-1
until x̃1(t̃unhook) ) 0. Note that now the conditionx̃1(t̃unhook) ) 0
is independent of the initial conditionx1(0). Using Euler’s
method, we numerically solve for whenx̃1(t̃unhook) ) 0 and find
that t̃unhook = 2.1. Converting back to dimensional variables,
we see that the X model trapping time is a linear function of
the initial short arm lengthx1(0):

For this X model to be physically consistent,x1(0)/L < 0.3. If
this condition fails, the coil completely unwinds during unhook-
ing. We will see that very few X collisions havex1(0)/L >
0.3; however, we must stress that this model is most useful for
small short arms.

We can apply the numerical solutionx1(t) for eq 11 to the
observed T4 DNA X collisions at Pe) 8 in Figure 4g-i. We
plot this numerical solution along with the X model predic-
tion of x2(t) ) x2(0) + µEt in solid gray in Figure 4g-i
beginning at the maximum value ofx1 and using the same
experimentally measured values ofL and µE. The X model
very nicely predicts the observed time dependence of both arms,
though asx1(0)/L f 0.3, x2 may slightly drop below the
idealized coil unwinding prediction of the model near the end
of the unhooking time (Figure 4i).

The Short Arm . Here we begin our attempt to determine
how these models can help predict the experimental center-of-
mass hold-up times (tH). The hold-up time is more important
to study for hooking-based applications like DNA mapping
which require separation (i.e., center-of-mass displacement) of

Table 2. Summary of Hooking Collision Parameters and Results

DNA, Pe E (V/cm) µE (µm/s) L (µm) τc ) L /(µE) (s) 〈tH〉 (s)

λ, Pe) 2 5.2 8.8 6.6 0.75 1.2
λ, Pe) 8 23.4 40 13 0.33 0.22
T4, Pe) 8 8.7 14.7 45 3.1 1.8

tunhook(x1(0)) ) - L
2µE

ln(1 -
2x1(0)

L )
) -

τc

2
ln(1 -

2x1(0)

L ) (8)
jún(dx1

dt
- µE) ) - T ′j (9)

(j(0) + µEt
ls )ún(dx1

dt
- µE) ) -T ′j (10)

(x1(0) + µEt + x1)
dx1

dt
) -µE(x1(0) + µEt - x1) (11)

dx̃1

dt̃
)

-1 - t̃ + x̃1

1 + t̃ + x̃1

(12)

tunhook(x1(0)) = 2.1
x1(0)

µE
(13)

7740 Randall and Doyle Macromolecules, Vol. 39, No. 22, 2006



individual molecules. We know that the unhooking time is the
primary component to the total hold-up time, so we will first
directly compare our unhooking time model predictions to
experimental hold-up time results. However, we should stress
beforehand that we knowtH * tunhook because of unraveling
and other effects to be discussed below. Nevertheless, this
comparison between experimental data and model predictions
will provide some important physical insight and raise some
interesting questions.

We compare the J model to our experimental data in two
ways: first plotting the measured hold-up timetH vs x0(0) and
second plottingtH vs x1(0). We expect eq 8 to nicely model the
U/J collision unhooking time (and hence hold-up time) as a
function of x1(0). Similarly, using the relationL - 2x1(0) )
x0(0) for a constant-extension unhooking chain, eq 8 can be
rewritten as

which would predict unhooking times for U/J collisions as a
function ofx0(0). For comparison of the model to our data, we
have split our ensemble into U/J collisions (solid circles), X
collisions (open boxes), and W collisions (stars). To obtainx0(0)
and x1(0), we manually perform length measurements at the
instant the short arm begins to retract. Figure 6a shows the
experimental hold-up times vsx0(0), and Figure 6b shows the
same hold-up time data plotted againstx1(0). Figure 6a clearly
shows that the J model for a moderately extended DNA (eq
14) does nicely predict the hold-up times of many observed

constant-L U and J collisions. The observed hold-up times are
dispersed around the model prediction, likely due to thermal
fluctuations of the arms. However, as expected, it is obvious
that the model cannot predict the hold-up time of the many X
(and possibly W) collisions. Since W events are rare, we neglect
them in the bulk of the remaining discussion. It is striking though
that Figure 6b shows that theconstant extensionJ model
adequately describesall the X and U/J collisionswhen plotted
against x1(0). The close agreement between the predicted
unhooking time and all observed hold-up times suggests that
the short arm mediates the unhooking process. We can explain
this result by examining the anticipated tension distribution of
the hooked DNA chain.

As mentioned above, we assume a U or J DNAmolecule to
have a constant extension while unhooking. This implies the
tension distribution is more or less frozen during the unhooking
process. More likely there is a complex competition between
tension relaxation and the electrical driving force. However,
what is this tension distribution at the onset of unhooking?
During the unraveling, the short arm may eventually reach
steady extension even if the long arm is still extending.
Observation of single DNA configurations (both J’s and X’s)
during unhooking supports this hypothesis. We can model the
short arm in both U/J and X collisions at the onset of unhooking
as an idealized tethered chain with a steady-state tension profile
in a uniform field. However, the long arm will have an unsteady
tension profile. The slight imbalance in the growing tension of
the long arm will then begin to pull the short arm around the
obstacle.Consequently, the magnitude of the “tethering force”
T′j during unhooking is set by the size of the short arm, which
we hypothesize reaches a steady-state tension distribution at
the onset of unhooking. The main consequence is that a J
collision and an X collision with the same short arm lengths
can be modeled to have approximately the same hold-up times.

Hold-Up Time: Center-of-Mass and Unraveling Effects

We have just derived microscopic models fortunhookand have
shown that they nicely predict observed arm dynamics during
the unhooking process. Furthermore, we have noticed that when
formulating the J model in terms of the short arm length, it
adequately predicts hold-up timestH for even X collisions.
However, we now look at this result from a single molecule
standpoint to determine why we observe this nearly universal
agreement with the J model. Specifically, we must address how
these unhooking models can predict the experimentally observ-
able center-of-mass hold-up timetH.

Figure 7 shows a schematic of a typical center of mass
trajectory during a hooking collision. Recall thattunrav is the
time between initial impact and the onset of unhooking and
tunhookis the time to unhook off of the obstacle after unraveling.
Also recall thattH is the time offset between linear fits to the
approach and release data19 and has contributions from unravel-
ing and unhooking. However, it is clear from Figure 7 thattH
* tunhook+ tunravbecausethe center of mass moVes during these
eVents. As the DNA unravels, the center of mass moves from
the obstacle position atx ) 0 to a position downfield at the
onset of unhooking (t ) 0). But as the DNA unhooks, the center
of mass continues to move downfield. We define the distance
the center of mass moves during unhooking as∆xcom. The
overall effect of the center-of-mass motion is that the hold-up
time becomes equal to

whereδt1 accounts for unraveling andδt2 accounts for center-

Figure 6. (a) Plot of the collision time as a function of the difference
in arm lengthsx0 (scaled by the constant U/J extension valueL ) at the
onset of unhooking for T4 DNA at Pe) 8. U/J collisions are shown
as solid circles, X collisions are shown as open squares, and W
collisions are shown as stars. The line is the J model for a chain at
constant extension (eq 14). Characteristic error bars for long and short
collision times are also shown. (b) Plot of the collision time as a function
of the short arm length at the onset of unhooking (scaled by the constant
U/J extension valueL ). The line is the rope-on-pulleytunhook J model
based on the short arm extension (eq 8).
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of-mass motion during unhooking. We will now present
idealized models to predictδt1 andδt2 for the J and X models.
Below, we will then modify the J and X models to account for
δt1 andδt2, referring to these new models fortH as “modified”.

Modified J Model . To model center-of-mass movement and
unraveling effects for U/J collisions, we will consider a constant
extension DNA with uniform mass density along its length, i.e.,
the ideal rope approximation. This is an oversimplication as
the ends of the DNA do generally appear brighter than the
stretched portions. However, this analysis is a satisfying first
approximation and even provides a worst-case limit for the
magnitude of each of these effects because brighter ends would
decrease the perturbationsδt1 andδt2.

First we determine the hold-up time due to unravelingδt1
for the ideal rope approximation. We know from the J model
thatxcom(0) ) -L (1/4 + (x1(0)/L - 1/2)2). We assume that the
ideal rope takes timetunrav ) (L - x1(0))/(µE) to reach this
initial condition for unhooking from the onset of collision with
the obstacle atxcom ) 0. Consequently, we can use simple
graphical methods (Figure 7) to determine the additional hold-
up time for unraveling:

A similar geometric method can be used to determineδt2. Again,
we know the initial center-of-mass positionxcom(0) of the ideal
unhooking rope; however, from the uniform mass density
assumption, we also know thatxcom(tunhook) ) -L /2 for an ideal
rope. Consequently,∆xcom ) -L /2 + xcom(0), and the hold-up
time lost due to center-of-mass motion for an ideal ropeδt2 is

Finally, we can determine the hold-up timetH for the modified
J model by adding eqs 8 and 16 and subtracting eq 17:

Note that the experimentally observedtH will be slightly longer
than tunhook; however, the two times will converge to the same
value asx1(0)/L f 1/2.

Modified X Model . The anticipated perturbations to the
observed hold-up time can also be computed geometrically for
the X model. The increase from unraveling is now limited to
the time it takes to extend the short arm,tunrav ) x1(0)/µE, but
must likewise include the effects of center-of-mass motion
during unraveling. We approximate the center of mass of the
coil section of an X collision as residing at the end of the long
arm’s rope section (x′2). Consequently, the center of mass at
the onset of unhooking is

Using geometric relations as in the modified J model, the
additional unraveling time for the modified X model is

The lost hold-up time from center-of-mass motion during
unhooking for an X collision is∆xcom/µE, where∆xcom is the
distance the center of mass moves downfield during unhooking.
Usingx′2(t) = µEt + x1(0) and eq 13, the center of mass at the
end of unhooking for an X collision is

Subtracting eq 19 from 21 gives∆xcom = 2.1x1(0) - 3.8x1
2(0)/

L . Consequently, the X model center-of-mass hold-up time due
to center-of-mass motion during unhooking is

Finally, we can determine the hold-up timetH for the modified
X model by adding eqs 13 and 20 and subtracting eq 22:

By comparing eq 23 to the unhooking time model eq 13, we
see that adding unraveling and center-of-mass effects changes
the functionality of the collision time with the short arm length
(from linear to quadratic).

Comparison to Experiments. Because we have access to
the experimental center-of-mass trajectories of all impacting
DNA in an ensemble, we can compare some of the modified
hold-up time model predictions with actual experimental data.
Figure 8a,b shows the center-of-mass trajectories during a typical
J and X collision. The markers switch from closed to open when
a molecule completely unhooks. Obtaining precise center-of-
mass measurements requires a strong signal-to-noise ratio for
the entire DNA’s fluorescent cloud. However, one limitation
of these experiments is that the signal-to-noise ratio drops when
the DNA is stretched. This can be seen in Figure 8c,d, which
shows the total integrated fluorescence cloud intensity of the
each of the DNA molecules in Figure 8a,b. As expected, the
intensity plateaus gradually drop from preimpact to post-
unhooking due to photobleaching. But notice that the intensity
signal drops significantly when the DNA is on the obstacle.
The low signal values of stretched sections of the DNA would
shift the calculated center of mass to the leading end of the
long arm because that is where the signal is generally the

Figure 7. A schematic of the typical center-of-mass trace for a hooking
collision.
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strongest. Consequently, a limitation of these experiments is
that the uncertainty in the center-of-mass calculation grows when
the molecule is extended. Therefore, we add unidirectional error
bars to the center-of-mass plots as the difference between the
calculated center of mass and the middle of the DNA’s
fluorescence cloud. These error bars serve as a maximum
estimate of error in the low-signal center-of-mass calculation.
Despite the moderate uncertainty in the center-of-mass position
of hairpin-shaped configurations, the center of mass of DNA
coils moving away from the obstacle is very precise. Recall
that it is this more precise data (approach and release trajectories)
that we use to computetH.

Returning to Figure 8a,b, we can compare the observed
center-of-mass trajectories with those predicted from the ideal
rope J model and the X model. First we look at the J collision
in Figure 8a. According to the ideal rope approximation (gray
line), the center of mass will move at constant velocityµE until
the DNA impacts the obstacle. Then it will slow down as the
DNA unravels. Knowing the initial and final points for
unraveling, we will simply connect these points with a line in
Figure 8a. Then the ideal rope will unhook as

which will depend the initial symmetry (x1(0)) of the unhooking
configuration. Note that for the shown example this corresponds
to a slowly decreasing plateau inxcom followed by a sharply
decreasing section at the end of unhooking. After this drop, the
center of mass will then move away from the obstacle at constant
velocity µE.

By comparing this anticipated motion for an ideal rope to
actual data in Figure 8a, we see that the observed center of mass
is generally further downfield (lower on plot) than predicted
by the ideal rope approximation. This is due to the “stem-and-
flower-like”42 configuration of the unhooking arms. However,
the ideal rope model does capture the important aspects of the

center-of-mass motion. We observe both the slight slowdown
of xcom during unraveling and the characteristic plateau during
unhooking. However, we also observe an anomalous secondary
plateau that begins after the DNA has left the obstacle. This
observation is general to the majority of U/J collisions; however,
there is no physical reason for the DNA’s center of mass to
slow down during relaxation. This secondary plateau is an
artifact of the low signal and stems from the increasing
fluorescence signal of the relaxing DNA molecule. The signal
increases as the DNA relaxes because the monomer density per
pixel is increasing. When accounting for the error in the center-
of-mass calculation of a hooked configuration, the observed
center-of-mass dynamics nearly parallel the ideal rope model
except for a constant downfield displacement. Consequently,
there is hope that a simplified model like the modified J model
can accurately predict center-of-mass hold-up times.

In the same way, we look at a typical X collision center-of-
mass trajectory in Figure 8b. An idealized X collision would
approach the obstacle at constant velocity, slightly slow down
during unraveling and unhooking, and then move away from
the obstacle at constant velocity. As for the modified J model,
we can consider the average velocity of the center of mass
during unraveling and how the center of mass will move during
unhooking by using the numerical solution to the modified X
model (eq 12) and arrive at

In comparison with the J model, we see closer agreement
between the experimental data and model predictions. The closer
agreement stems from the better signal-to-noise ratio of X
collisions and from the more accurate depiction of the mass
density distribution in the modified X model. But like the
modified J model, the modified X model also nicely predicts
the timing of the different stages of the center-of-mass trajectory.

To continue our single molecule analysis and experimental
verification of the hold-up time model, we extracttunhook, δt1,
and δt2 directly from each collision in the experimental
ensemble. To determinetunhook, we manually determine the total
time each hooking DNA molecule remains on the obstacle from
the onset of unhooking (whenx1 reaches a maximum) until the
DNA leaves the obstacle. Figure 9a compares experimentally
determined center-of-mass hold-up times for T4 at Pe) 8
against the manually determined experimental unhooking time.
W collisons are not included, and again X collisions are
represented as open boxes and U/J collisions are filled circles.
The black line is the equationtH ) tunhook, and the gray line is
the modified X model (substituting eq 13 into eq 23). Note the
apparent switch in power-law functionality between X (tH ∼
tunhook
2 ) and J (tH ∼ tunhook) hold-up times which supports our

models. Furthermore, using both the manually determined
beginning and ending frames of a collision and the line fits for
the approach and release center-of-mass data, we then used
automated code to extractδt1 and δt2. These calculations do
not rely on any of the “low signal” center-of-mass data often
seen in some highly extended U/J configurations. Figure 9b
compares the experimental hold-up times to the experimentally
derivedtunhook+ δt1 - δt2. The black line is the equationtH )
tunhook+ δt1 - δt2. The satisfactory agreement of this line with
the data verifies both our data analysis techniques and the
importance of center-of-mass motion and unraveling perturba-
tions, particularly for X collisions.

Figure 8. Experimental center-of-mass trajectories of (a) a J collision
and (b) an X collision. The solid gray lines are model predictions
(we connect initial and final center-of-mass coordinates during un-
raveling; during unhooking we use eq 24 for the J model and a
numerical solution to eqs 12 and 25 for the X model). Unidirectional
error bars correspond to the horizontal distance between the actual center
of mass and the middle of the DNA fluorescence cloud. (c, d) The
integrated intensity of the DNA’s fluorescence cloud (after noise
filtering) as a function of time scaled byτc for (c) a J collision and (d)
an X collision.
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Hold-Up Times for Variable DNA Size and Field
Strength

The preceding single molecule collision case study for T4
DNA at Pe) 8 showed how the unhooking dynamics relate to
center-of-mass hold-up times. T4 was chosen because it is long
enough to easily resolve and track the arm motion. Here we
will use the models and insight developed in the example above
to study the center-of-mass hold-up times for smaller DNA at
alternate fields (λ DNA at Pe) 2 and 8).

Figure 10a-c shows experimentaltH data as a function of
the initial short arm length forλ-DNA at Pe) 2 and 8 as well
as T4 DNA at Pe) 8. Recall from Figure 6 that plottingtH
against the short arm length collapses these data, which we
attributed to the fact that the short arm governs the tension at
the obstacle pivot. In Figure 10 a-c we include the J un-
hooking time model (eq 8, thick black line), the modified J hold-
up time model (eq 18, thick dashed curve), the X unhooking
time model (eq 13, thin red line), and the modified X hold-up
time model (eq 23, thin red dashed curve). These models have
different regimes of validity, and we would expect most X
collisions to follow the lower thin red dashed curves whereas
most J collisions would follow the black dashed line. However,
the J unhooking time model adequately fits both types of
collision data for all three data sets. As we saw with our in
depth analysis of the T4 data, this agreement is mostly a
coincidence because the actual center-of-mass hold-up time
depends on the unraveling and center-of-mass motion perturba-
tions. However, these perturbations nearly cancel for most U/J
collisions and yield a function close to the J model for X
collisions.

It is interesting to note that no U/J collisions were classified
with x1(0)/L < 0.25, presumably due to the large difference in
time it takes for the long arm (as opposed to the short arm) to
completely unravel. In the regimex1(0)/L > 0.25, the J model
and the modified J model are nearly equivalent. Furthermore,
note the spread of the U/J hold-up times around the model
prediction grows as Pe is reduced from 8 to 2. This is likely
due to the increased importance of Brownian fluctuations on
unhooking configurations at low Pe and may be explored by
incorporating a noise term in the governing equation for
unhooking (eq 2).14,41

Figure 9. (a) Experimental comparison oftH and tunhook for T4 DNA at Pe) 8. The solid black line istH ) tunhook, and the solid gray line is the
modified X model (eqs 23 and 13). Filled circles correspond to U/J collisions whereas open boxes correspond to X collisions. (b) Experimental
comparison oftH and tunhook + δt1 - δt2. The solid black line istH ) tunhook + δt1 - δt2.

Figure 10. Experimental test of collision time models for multiple
DNA sizes and field strengths. Plots of the collision time as a function
of the short arm length at the onset of unhooking (scaled by the constant
U/J extension valueL ) for (a) λ-DNA at Pe) 2, (b) λ-DNA at Pe)
8, and (c) T4 DNA at Pe) 8. U/J collisions are shown as solid circles,
X collisions are shown as open squares, and W collisions are shown
as stars. The black line in each plot is thetunhookJ model based on the
short arm extension (eq 8), and the dashed line is the modified J model
(eq 18) that includes corrections from unraveling and center-of-mass
motion. The thin red line is the X model prediction fortunhook(x1(0))
(eq 13), and the red dashed line is the modified X model prediction
for tH(x1(0)) (eq 23).

7744 Randall and Doyle Macromolecules, Vol. 39, No. 22, 2006



Conclusions and Outlook

In this study, we systematically analyzed the dynamics of
single DNA molecules driven by an electric field and hooking
on a small microfabricated post. Hooking collisions can lead
to size-dependent DNA separations, so we examined the
unhooking dynamics which dominate the total hold-up time
during a collision. We classified the collisions and developed
models to predict the unhooking dynamics and ensuing collision
times. The most striking result from our work is that we
determined that a new type of collision, which we called an X
(extending) collision, is statistically very probable and behaves
very differently than a classic rope-on-a-pulley. From collapse
of the data and our models, we introduced the notion that the
short arm of a hooked DNA generally governs the release
dynamics. Consequently, X collisions and J collisions with the
same short arm length have similar unhooking times. This
equivalence was explicitly demonstrated in single molecule
observations and using simplified models for perturbations to
the hold-up time for unraveling and center-of-mass motion.
Therefore, a rope-on-pulley model based on the short arm length
dynamics of a constant extension chain can nicely predict the
observed collision time data for a majority of the impact
ensemble.

While here we only considered DNA collision with a single
post, the various classes of collisions we found should still be
present when examining post arrays12-14,25,44and be considered
in future modeling efforts.23-25 In a broader context, similar
disentanglement processes occur in polymers flowing over a
polymer brush,45 DNA separations using dilute neutral polymers
as a sieving medium,46 and flows of polymer solutions.47 Finally,
in direct linear analysis,48,49DNA collisions with posts may be
a useful way of preconditioning DNA configurations before
attempting to completely stretch DNA in an elongational
flow48-50 or electric field.28,51
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