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ABSTRACT: We present a kinematic analysis and experimental study of DNA deformation in electric
field gradients. Specifically, we investigate deformation near a large insulating cylinder with single
molecule fluorescence videomicroscopy. Because the electrophoretic velocity field is a potential field, a
kinematic analysis shows that local deformation of DNA in any electric field gradient is pure elongation,
quantified by a strain rate and orthogonal axes of extension and compression. From the kinematics, we
construct the electrophoretic Deborah number relating the competing effects of deformation in the field
and the polymer elasticity. We report highly configuration-sensitive stretching at the front of the obstacle
and affine compression in the region near the back stagnation point. Furthermore, the DNA also can
extend both “pre-impact” and “post-impact” in this inhomogeneous extensional field. We find that field
gradient induced deformation offers a simple way to extend and quickly compress DNA near surfaces in
microdevices.

Introduction

There is a large incentive to both fundamentally
understand methods of DNA deformation and to devise
ways to stretch and compress DNA in microdevices at
will. For example, studying DNA deformation is crucial
to understand biomolecular processes that require
conformation flexibility, such as the transport of viral
DNA into cells.1 Furthermore, stretching and compres-
sion of DNA can be useful unit operations for lab-on-
chip devices; e.g., researchers are currently trying to
scan and sequence a single fully stretched DNA strand
basepair-by-basepair.2

Flexible polymers like DNA deform from their native
coil configurations in a solvent by applying forces either
mechanically, with a hydrodynamic flow, or because
DNA is negatively charged, with an electric field. For
example, researchers have stretched tethered DNA with
optical tweezers,3 uniform flows,4 and uniform electric
fields.5 From the perspective of engineering continuous
processes, it can be more interesting to study how free
DNA deforms in a force field gradient. For example, in
a hydrodynamic flow, any obstacle or channel contrac-
tion/expansion induces velocity gradients that deform
a flexible polymer. Single polymer deformation in
hydrodynamic flows (like uniform extensional flow,6,7

shear,8 or mixed flow9,10) has previously been observed
and characterized. Similarly, electric field gradients
created by obstacles or by a channel contraction/expan-
sion presumably will deform DNA. There have been
many studies of DNA electrophoresis through barriers
and obstacles in microchannels11-18 where electro-
phoretic DNA stretching and compression may play an
important but generally overlooked role. For example,
our group has shown that the performance of a hooking
hairpin DNA separation mechanism is highly dependent
on electrophoretic stretching from obstacle induced
gradients.17,18 In addition, simulation work has shown

that DNA can deform electrophoretically in entropic
traps, i.e., nanosized channel contractions, if the real-
istic curved electric field lines are incorporated.19

This recent work suggests that DNA deform from
electric field gradients created in microfluidic devices,
however no studies have addressed the details of how
these charged polymers electrophoretically deform. In
this paper, we focus on the dynamics of DNA deforma-
tion in electric field gradients, developing a kinematic
model with experimental verification. As a case study,
we choose the problem of electrophoretic deformation
induced by a large nonconducting, cylindrical obstacle
(Figure 1a).
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Figure 1. (a) Schematic of a DNA molecule electrically driven
into an insulating obstacle (moving right to left). (b) Axes of
extension (black) and compression (gray) along the centerline
trajectory with magnitude scaled by the local electrophoretic
strain rate ε̆EL(r).
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Theoretical Background

We consider large double-stranded DNA fragments,
typically of size 50-1000 kbp (∼0.01-1% of a typical
human chromosome), and free of all in vivo proteins.
The DNA molecule is primarily characterized by its
persistence length lp, contour length L, diffusivity D, and
longest relaxation time τ. The large DNA considered
here have L . lp so that they adopt coiled configurations
(with radius of gyration Rg) at equilibrium in aqueous
solvents. Backbone phosphate groups render DNA a
uniformly negatively charged polymer at moderate pH.
In the presence of a uniform electric field E, DNA coils
move through solution at a size-independent velocity µE
where µ is the electrophoretic mobility.20 Just as velocity
gradients deform polymers in hydrodynamic flows,
electric field gradients can deform polyelectrolytes dur-
ing electrophoresis. Before we introduce electrophoretic
deformation, we first review some basic aspects of
hydrodynamic deformation that can be found in polymer
fluids textbooks.21

Polymer deformation in hydrodynamic flows has been
classified by kinematic models of the gradient in the
flow field ∇u∞. We gain some physical insight by
decomposing the velocity gradient tensor into its sym-
metric and antisymmetric parts, e.g. ∇u∞ ) Γ + Ω,
where Γ is the symmetric rate-of-strain tensor and Ω is
the antisymmetric vorticity tensor. It can be shown that
Γ solely governs the local deformation of fluid elements
whereas Ω controls the local rotation of fluid elements.22

For comparison with electrophoretic stretching, we are
primarily concerned with strong deformation and specif-
ically, 2-dimensional (2D) extensional flows with Ω )
0. The local deformation in 2D extensional flows can be
represented by a 2 × 2 symmetric matrix with (recalling
the properties of symmetric matrices) eigenvalues (ε̆
and orthogonal eigenvectors p+ and p-. When intro-
duced to a 2D extensional flow field, an ideal flexible
object will exponentially extend along the axis of exten-
sion p+ and exponentially compress along the axis of
compression p- at a rate governed by the strain rate ε̆.
This ideal deformation is known as “affine deformation”.
Hence, deformation of polymers is analyzed with exten-
sion-strain plots where strain ε is the accumulated
strain rate over a polymer’s trajectory x(t), ε ) ∫ ε̆[x(t)]
dt. Most previous work has been for homogeneous
extensional flows so that ε ) ε̆tres where tres is the
residence time in the flow. An affinely deforming object
with initial size xi will stretch to a length xieε after
experiencing a strain of ε. A flexible polymer in a strong
extensional flow may initially deform affinely, but it
generally deforms nonideally because of elasticity and
the complexities of a coil configuration.6 A dimensionless
parameter termed the Deborah number, defined as De
) ε̆τ, governs the competition between the diverging
fluid elements dragging pieces of the polymer apart and
the polymer’s elasticity tending to recoil the chain. At
a critical Deborah number of De ) 1/2, these competing
effects exactly cancel and steady-state polymer configu-
rations transition from coiled (De < 1/2) to stretched (De
> 1/2).23 Both experiments6 and simulations24 have
confirmed that the dynamic deformation of single
polymers in extensional flows with De > 1/2 is highly
sensitive to the polymer’s initial configuration.

To examine how a charged polymer like DNA de-
forms in electric field gradients we must determine the
dominant electric and hydrodynamic forces during elec-
trophoretic stretching. Long et al.25 have previously

addressed the simultaneous action of electric and hydro-
dynamic forces on polyelectrolytes. In their model, they
discretize the polyelectrolyte as a bead-spring chain
and linearly superimpose electric, hydrodynamic, and
Brownian forces so that the velocity of one bead of the
bead-spring model is

where ê is the bead drag coefficient, and for the nth
bead, xn is the position vector, T(xn) is the force due to
gradients in tension along the polymer, g(xn) is the
Brownian force, u∞(xn) is the imposed flow field, E(xn)
is the imposed electric field, and uHI(xn) is the induced
velocity from hydrodynamic interactions from all other
beads of the polyelectrolyte. Note that the pure hydro-
dynamic deformation discussed above occurs when E )
0 and both u∞ and ∇u∞ are nonzero. In our study we
will address electrophoretic deformation with u∞ ) 0
and both E and ∇E nonzero. A general form for uHI(xn)
is:25

where qm is the charge of the mth bead, Hnm mediates
flow disturbances due to nonelectric forces from bead
m on bead n (which is the Oseen tensor in the far-field
limit), and Hnm

EL mediates similar flow disturbances due
to electrophoresis of a charged bead. The flow distur-
bance for the electrophoresis of a point charge is26

where I is the identity tensor, rnm is the distance
between beads n and m, η is the solvent viscosity, and
κ-1 is the solvent Debye length. Note the exponential
decays on the length scale of the Debye length. There-
fore, for very thin Debye layers (κ-1 , lp, generally the
case for DNA electrophoresis buffers), Hnm

EL ∼ 0. Physi-
cally, the hydrodynamic interactions are screened by the
mobile counterions in the Debye layer moving in the
opposite direction to the polyelectrolyte. Consequently,
we see what Long et al. term “electrohydrodynamic
equivalence”, i.e., the hydrodynamic interactions are
mediated by the Oseen tensor if the tension is generated
by either electric or hydrodynamic deformation. With
Hnm

EL ∼ 0, eq 1 is like the Langevin equation for the
Zimm model,27 so the governing polyelectrolyte dynamic
parameters (D and τ) are also independent of whether
tensions are generated by electric or hydrodynamic
forces. Therefore, a chain relaxing in a uniform E is
equivalent to that in a uniform u∞. Recall that this
model is based on a bead-spring discretization of the
polyelectrolyte. A different approach has been pursued
numerically to account for the anisotropy of the elec-
trophoretic mobility of a slender body by discretizing
the polyelectrolyte as freely rotating ellipsoids.28 This
alternative detailed model treats ê and µ as tensors
which have slightly different forms for slender bodies.
Such a discretization implies hydrodynamic stretch is
slightly longer than an equivalent electrophoretic stretch
near full extension. However experimental results5 for

dxn

dt
) 1

ê
[T(xn) + g(xn)] + u∞(xn) + µE(xn) + uHI(xn)

(1)

uHI(xn) ) ∑
m

Hnm[T(xm) + g(xm)] + ∑
m

Hnm
EL[qmE(xm)]

(2)

Hnm
EL ) (I +

xnxm

rnm
2 ) e-κrnm

8πηrnm
(3)
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tethered λ- to 3λ-DNA suggest that “electrohydrody-
namic equivalence” persists even near 75% extension.
In summary, no matter how tensions are created in the
chain, either due to ∇u∞ or ∇E, they generate long-range
hydrodynamic interactions. To analyze deformation of
the chain in an electric field gradient, we invoke
electrohydrodynamic equivalence to interrogate µE in
the same fashion as the velocity field in hydrodynamic
flows.

Although electrohydrodynamic equivalence dictates
that local deformation of DNA is nearly identical from
both ∇u∞ or ∇E effects, the fields u∞ and E are quite
different in identical geometries. Recall that the primary
sources of both flow and field gradients in microchannels
are obstacles and channel contractions. The main dif-
ference between hydrodynamic and electric fields gener-
ated in these devices is the no-slip boundary condition
required at all surfaces in hydrodynamic flows. Conse-
quently, near a wall or obstacle surface, a flow field is
locally “shear-like” with both extensional and rotational
components. On the other hand, in the absence of time
dependent magnetic fields, electrophoretic deformation
is always locally pure elongation because the electro-
phoretic velocity gradient is symmetric (without a local
rotational component) for a potential field (∇ × µE )
0). Of secondary importance, an electric field is a
harmonic field in which field disturbances from ob-
stacles with radius Robs decay as Robs

2/r2, whereas a low-
Reynolds number hydrodynamic flow induces a creeping
(biharmonic) flow in which disturbances to the flow from
obstacles decay more slowly as Robs/r.

Theoretical Framework
As a case study, we investigate DNA deformation in

the electric field near a large (Robs . Rg) insulating
cylinder. This problem serves as a prime example for
many lab-on-chip applications which often contain
obstacles, and the same analysis can be used for other
geometries that create electric field gradients, such as
a contraction or an expansion. The electrophoretic
velocity of a charged object with mobility µ around an
insulating cylinder in an obstacle-centered coordinate
system is

To avoid confusion between the DNA migration direc-
tion and the standard electric field convention (op-
posite), we explicitly denote the location of the (
terminals on our electric field arrows, which point in
the direction of DNA motion (Figure 1a). In all cases,
we consider molecules impacting the cylinder from the
right along the centerline (θ ) 0).

We seek to study the deformation of DNA in this field
in the limit Robs . Rg. The electrophoretic velocity field
gradient of eq 4 (in polar coordinates) is

We can extract the electrophoretic strain rate ε̆EL(r) by

determining the eigenvalues:

and the axes of extension and compression by determin-
ing the eigenvectors:

Figure 1b shows the axes of extension and compression
(with magnitudes scaled by ε̆EL(r)) for a centerline
impact from the right. Note that both the strain rate
and axes of extension and compression induced by an
insulating cylinder are spatially inhomogeneous. The
maximum value of the radial-dependent strain rate is
2µE/Robs at the obstacle surface and it falls off steeply
away from the obstacle (∼Robs

3/r3). Thus, the strongest
DNA deformation will occur near the obstacle surface.
The axis of extension begins in the y-direction for an
approaching molecule, however it rotates around the
obstacle, finally ending in the x-direction at the back-
side. Thus, we may imagine that a flexible polyelectro-
lyte will extend perpendicular to the field on the front
side of the obstacle, compress on the backside, and then
extend in the field direction as it leaves the obstacle.
Recall that the Deborah number De ) ε̆τ governs
polymer deformation in flow gradients. Since ε̆EL(r) is
inhomogeneous, we define De based on the maximum
strain rate so that De ) 2µEτ/Robs, which makes
intuitive sense since ε̆EL(r) falls off rapidly away from
the obstacle. However, it is important to remember that
deformation can occur away from the obstacle, either
before or after impact. Thus, we also define the local
r-dependent Deborah number Delocal(r) ) ε̆EL(r)τ.

The inhomogeneous nature of the field requires
special attention. Other groups have studied polymers
deforming in inhomogeneous flows (for example, see refs
29-33). In particular, Panwar and Kumar33 observed
that deformation is lower than in homogeneous flows
and it is highly sensitive to the polymer’s Brownian
trajectory. Szeri, Wiggins, and Leal30 have theoretically
addressed deformation kinematics in 2D inhomogeneous
fluid flows. They represent a deformable object’s orien-
tation and length by a state vector, and show that the
deformation of the state vector depends on the object’s
history because its equations of motion are nonautono-
mous. Consequently the strong stretching condition is
not necessarily (using our variables) Delocal(r) > 1/2. More
generally, in an inhomogeneous field this strong stretch-
ing condition depends on the history of deformation, i.e.,
the object’s initial orientation and path interval. Our
case study of deformation near an insulating cylinder
is an “open” problem as opposed to a time periodic
problem, which means that it is not obvious what time
to choose to evaluate the strong stretching condition.30

However, the problem simplifies along the obstacle
centerline. On the centerline, the equilibrium orienta-
tion p+ is constant which means that Delocal(r) > 1/2
again satisfies the strong stretching condition. Our
analysis only pertains to these centerline collisions.
However, we do remark that off-center collisions can
stretch, but these DNA will experience lower strain and
the adverse effects of an inhomogeneous field. To
summarize, a DNA molecule approaching the cylinder
along the centerline experiences a pseudo-homogeneous

(ε̆
EL(r) ) (

2µERobs
2

r3
(6)

p( (θ) ) 1
x2 - 2 cos θ

((cos θ - 1)er + sin θ eθ) (7)

µE(r,θ) )

µE cosθ(Robs
2

r2
- 1)er + µE sin θ(Robs

2

r2
+ 1)eθ (4)

µ∇E(r,θ) ) [-2µE cos θ Robs
2

r3

-2µE sin θ Robs
2

r3

-2µE sin θ Robs
2

r3

2µE cos θ Robs
2

r3
] (5)
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extensional field, which we can envision as an exten-
sional field quickly ramping to its maximal value at the
obstacle surface with the local strain rate governing the
strong stretching criterion.

We adopt a local analysis to address deformation
away from the obstacle in the inhomogeneous field
gradient. For this inhomogeneous field εEL ) ∫0

tres ε̆EL-
[x(t)] dt. We will present two options to compute
electrophoretic strain for our study of centerline colli-
sions: (1) assume r ) ∞ at t ) 0 or 2) assume r ) r0 at
t ) 0, where r0 is the location where Delocal(r) > 1/2. The
first choice amounts to accumulating strain throughout
the molecule’s entire history whereas the second choice
applies a De-dependent cutoff that initiates strain
accumulation as soon as the electrophoretic strain rate
is strong enough to induce a coil-stretch transition. We
will term the accumulated strain as εEL for the first
option and εeff

EL for the second. Using both definitions,
we can quantify the pre-impact deformation on the front
of the obstacle by computing the accumulated strain felt
by a molecule before impact (neglecting diffusion). The
accumulated molecular strain εEL for centerline impacts
(θ ) 0) approaching the front stagnation point is

The same calculation can be performed by assuming
that a molecule will not appreciably deform until Delocal-
(ro) > 1/2:

Note that εEL ) εeff
EL in the limit De f ∞ so that these

two measures of strain only differ at low De. This is
evident in Figure 2 which shows the expected ac-
cumulated strain εeff

EL as a function of De and distance
from the obstacle. Note that molecules impacting the
obstacle experience the same εEL independent of De.
However, Figure 2 shows that the amount of effective
strain experienced in the strong part of the extensional
field varies with De. As De decreases the effective strain
before impact becomes more and more like a step
function. For small De, an impacting molecule experi-
ences a rapid transition from a negligible to a strong
extensional field, whereas at higher De, pre-straining
deforms the molecule as it approaches the obstacle. This

is the important distinction between εEL and εeff
EL and

the primary reason we have defined εeff
EL. DNA defor-

mation in the inhomogeneous field can be stronger at
larger De due to both the larger electrophoretic strain
rate and a larger εeff

EL. Note that because of the Robs
3/r3

dependence of ε̆EL, the effective pre-impact strain is not
large (εEL ∼ 1-1.5). However, the stretching of polymers
in extensional flows is very sensitive to the initial
configuration of the chain,6 so this pre-straining should
not be dismissed.

With the above formalism, we seek to experimentally
study DNA deformation in the electric field gradients
induced by an insulating cylinder. Specifically, we will
investigate single molecule extension-strain dynamics,
the stretch-compress-stretch dynamics that arise from
rotation of the axis of extension and compression, and
the pre-strain effect.

Experimental Section
We used soft lithography34 to construct 5-10 mm-long, 100

µm-wide, and 2 µm-high PDMS (poly(dimethylsiloxane)) mi-
crochannels with an isolated 10 µm-radius obstacle. A 10:1
PDMS: cross-linking agent (Sylgard 184, Dow) was degassed
for 60 min at 15 in. of Hg vacuum pressure. The PDMS was
then poured onto a Si master wafer with the negative of the
microchannel geometry embedded in a layer of AZ 5214 image
reversal photoresist (Clariant). The Si wafer was pretreated
with a fluorinated silane monolayer (United Chemical Tech-
nologies) to prevent cured PDMS from sticking to the Si
master. After pouring, the PDMS was allowed to degas for an
additional hour at 15 in. of Hg. The PDMS was then cured at
65 °C for 24 h. Reservoirs (4 mm × 4 mm) were cut at each
end of the cured PDMS microchannel with a scalpel and the
channels were soaked for 12 h at 50 °C in 0.5 × TBE to
eliminate permeation driven flow.35 Figure 3a shows a SEM
image of an isolated obstacle.

Monodisperse λ-DNA were stained with a fluorescent dye
(TOTO-1, 4.7:1 bp:dye molecule) and diluted in one of two
buffers: (1) 2.2 × TBE, 3% â-mercaptoethanol, 0.07% PVP (Mw

) 106, c* ∼ 1%), and 0.07% ascorbic acid (viscosity η ) 1.3 cP,
pH ) 8.4) or (2) 2.2 × TBE, 3% â-mercaptoethanol, 0.07% PVP,
0.07% ascorbic acid, and 31% sucrose (η ) 6 cP, pH ) 7.9).
The viscosities were measured by bead tracking.36 We chose
the high viscosity buffer to slow the dynamics to experimen-
tally observable speeds. The additives were chosen to dynami-
cally eliminate electroosmotic flow and scavenge oxygen. The
measured electrophoretic mobility was µ ) 1.7 ( 0.2 (µm/s)/
(V/cm) in the 1.3 cP buffer and µ ) 0.25 ( 0.03 (µm/s)/(V/cm)
in the 6 cP buffer. With the Debye approximation of the zeta
potential, µ ) κ-1σDNA/(4πη) where σDNA is the DNA surface
charge density.37 Thus, the observed decrease in mobility for
the 6 cP solvent is in the expected range given its higher
viscosity (η2/η1 ∼ 4.6), lower dielectric constant38 (so that κ1

-1/
κ2

-1 ∼ 1.1), and lower pH (we calculate σDNA,1/σDNA,2 ∼ 1.2 using
pKa values for H3PO4 along the DNA backbone). We acknowl-
edge that this is a simplified check of how the mobility changes
in different solvents and that other complex effects, specifically
those from the dye interactions, may also be important to
consider.

A typical experiment consisted of first gently rinsing and
drying the microchannel and then applying it to a clean glass
slide (plasma cleaned at 100 W for 5 min, charge equilibrated
1 day, soaked in 1 M NaOH for 15 min and rinsed in ultrapure
water (Milli-Q, Millipore)). We then immediately filled the
channel with DNA solution and applied an electric field across
the reservoirs through platinum electrodes. We observed single
DNA molecule dynamics using an inverted fluorescence mi-
croscope (Axiovert 200, Zeiss) with a 63 × 1.4 NA objective.
Images were captured at 30 frames per second with an EB-
CCD camera (C7190-20, Hamamatsu) and NIH Image soft-
ware. Digitized images had 8-bit pixel intensity values which
ranged from 0 to 255.

Figure 2. Effective integrated strain for a pointlike molecule
approaching the obstacle stagnation point along the centerline
(θ ) 0). This assumes no stretching occurs unless Delocal(r) >
1/2. Note that εEL ) limDef∞ εeff

EL.

ε
EL(r) ) ∫∞

rε̆
EL(r) dr
µE(r)

) ln[ (r/Robs)
2

(r/Robs)
2 - 1] (8)

εeff
EL(r) ) ln[ (r/Robs)

2

(r/Robs)
2 - 1

(ro/Robs)
2 - 1

(ro/Robs)
2 ] (9)
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Figure 3b shows a cartoon of a typical digitized λ-DNA
image from the 63 × lens. At this magnification, the digitized
image has a pixel size of 0.21 µm square. For analysis, we filter
the background by subtracting the maximum pixel value of
the perimeter of the first frame of a movie from all the pixels
in that movie. We extracted two observables from the captured
images of a DNA molecule: the center of mass coordinate of
the DNA (x,y)COM and the DNA’s longest extension xex. The
center of mass of a molecule was computed by finding the first
moment of the post-filtered image intensity distribution.39 This
process was automated for multiple frames of data and it
yielded the center-of-mass trajectory x(t) of the DNA (cf. Figure
3c). To determine the extension, we first located the coordi-
nates of the left-most, right-most, top, and bottom pixels of
the DNA image with an intensity value of at least 8 (after
background filtering). The extension xex is then defined as the
length of the longest line connecting any two of these points
(Figure 3b). For extreme extensions on the obstacle (i.e., if xex

> 7 µm), we manually locate the two end points of the chain
and xex is the end-to-end arc length (Figure 3b). We define the
impact parameter b as the y-offset between the impacting
DNA’s center of mass and the obstacle center, taken at a
distance 2Robs + Rg from the obstacle center (Figure 3b). This
position was chosen to evaluate b because the DNA is far
enough away from the obstacle to not experience high electric
field gradients, yet close enough so that Brownian drift does
not significantly coarsen our analysis. For this study, we only
analyze centerline collisions with |b| < 1 µm. We can compute
εEL for a single DNA impact using its center-of-mass trajectory
and the relation εEL[x(t)] ) ∑framesε̆EL(xframe)∆tframe where the
sum is over all frames in a movie, xframe ) (x,y)COM is the center
of mass in a given frame, and the frame rate ∆tframe ) 1/30 s.
For different De, we begin data accumulation at a slightly
different initial position x(0) based on limitations on our field
of view and need for post-impact data. Therefore, we renor-
malize our εEL data by adding in a small deterministic
correction that is the molecular strain experienced before
observation εEL[x(0)]. Note that this correction is small (εEL-
[x(0)] < 1/2). Therefore, our presented strain values are εEL )
εEL[x(t)] + εEL[x(0)].

For analysis, we require L and τ of stained λ-DNA. L of
unstained λ-DNA is 16.3 µm, however the intercalating
TOTO-1 dye slightly unwinds the double helix and thereby
increases its contour length. Using the results of Marko and
Siggia,40 the high-force extension of a tethered wormlike chain
scales with the force f as f-0.5. By plotting the equilibrium
extension vs (µE)-0.5 for DNA over 50% extended hooked on
small obstacles (Robs ) 0.8 µm), we were able to extrapolate L
) 21 µm for (µE)-0.5 f 0 for this staining ratio. This agrees
with other researchers who have found that using TOTO - 1

increases a DNA’s contour length anywhere from 4.1 to 4.8
Å/dye molecule, which for us would correspond to L ) 20.5-
21.3 µm.4,41,42 Furthermore, we used molecular combing43 to
verify that the our fully stretched λ-DNA are on the order of
20-21 µm. The relaxation time τ for DNA has previously been
determined to be 0.1 η s in an aqueous buffer of viscosity η
with units of cP.6 Specifically, this was done by examining
chain relaxation in the linear force regime:

where xi is the initial stretch (about 30% extended for linear
regime) and 〈x2

ex〉0 corresponds to the mean square coil size at
equilibrium. However, the confinement of our thin channels
will increase τ.27,44 Therefore, we experimentally determined
τ inside these 2 µm-high channels by obtaining xex(t) data for
stretched DNA (away from any obstacles or sidewalls). To
stretch the DNA, we electrophoretically drive DNA into small
obstacles17 to form symmetric hooked configurations. These
DNA then unhook and advect in the field away from the
obstacle in this strongly stretched state (xex/L > 0.6). We track
xex(t) for these relaxing DNA beginning when xex ) xi ) 0.30.
We then fit the relaxation data to eq 10 with τ as the only
free parameter. In these 2 µm-high channels, we obtain τ )
0.19 for the 1.3 cP buffer and τ ) 0.9 s for the 6 cP buffer.
These increases in τ from confinement are consistent with
simulations of DNA in confined channels.44

Results and Discussion
For DNA electrophoretically driven into a large

insulating obstacle (Robs ) 10 µm) along its centerline
(|b| < 1 µm), we investigate the pre-impact deformation,
single molecule extension-strain dynamics, and the
stretch-compress-stretch dynamics that arise from
rotation of the axis of extension and compression. This
kinematic analysis is based on deformable objects much
smaller than the obstacle size. Using different size
obstacles and field strengths, we have already confirmed
and reported elsewhere17 that the PDMS obstacles are
insulating and the observed critical coil-stretch transi-
tion occurs at De ∼ 0.5.

To quantify deformation it is first helpful to know how
extended a DNA coil is in the absence of any electric
field gradients. Diffraction of light will tend to smear
and slightly enlarge our images of DNA coils. Figure 4
shows the experimentally measured probability distri-
bution P(xex/L) of the equilibrium coil fractional exten-

Figure 3. (a) SEM image of a 2 µm high cylindrical PDMS post (Robs ) 10 µm). (b) Experimentally observable variables for an
impact. (c) An example of a λ-DNA center of mass trajectory at De ) 2 in the 1.3 cP buffer. The time between each symbol is
1/30 s.

〈xex(t)xex(t)〉 ) (xi
2 - 〈x2

ex〉0) exp(-t/τ) + 〈x2
ex〉0 (10)
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sion for 1000 frames of images of λ-DNA using the 63
× lens. The mean of the distribution, denoted 〈xex〉0/L is
0.13. Because of blooming,45 this distribution is depend-
ent on the camera, light source, lens, and dye ratio.
Although we do not expect much more than a 10%
departure from our measured 〈xex〉0/L with large adjust-
ments of the image capture settings, care was taken to
keep all of these settings constant in all experiments.

In our examination of electrophoretic deformation, we
first address the effect of the inhomogeneous electric
field deforming the DNA molecules before impacting the
large obstacle. The definition of “impact” is subtle since,
in the absence of large normal forces, no DNA molecule
is ever completely in direct contact with the obstacle
because of a lubricating layer of solvent molecules. We
empirically define “impact” with the obstacle when the
leading edge of a DNA’s fluorescent cloud has stopped
moving toward the obstacle center. For λ-DNA in this
study, impact typically occurs when the center of mass
is at about r/Robs ∼ 1.1, although it can occur near r/Robs
∼ 1 for molecules with a high degree of pre-impact
deformation. Figure 5 shows the average fractional
extension of DNA molecules approaching the obstacle
along its centerline at De ) 1, 2, and 9. As De increases,
the degree of pre-impact deformation increases because
of the combined effects of larger De and larger εeff

EL.
However, as we presumed, this effect is small because
these molecules only experience εEL ∼ 1 before they
impact the obstacle.

We now turn to single molecule extension-strain
dynamics. Parts a-c of Figure 6 shows the fractional
extension xex/L of single λ-DNA molecules colliding into
the obstacle as a function of accumulated strain over
each molecule’s center of mass trajectory at De ) 1, 2,

and 9. Because of the small numerical difference
between εeff

EL and εEL after impacting the obstacle, we
chose to plot the data in terms of εEL. The transition
from solid lines to dashed lines indicates that some
portion of the molecule has crossed the bisecting plane
x ) 0. By comparing the trajectories to the affine scaling
(∼eεEL), we see an approach to affine deformation as De
increases. We also note that the ensemble average
fractional extension as a function of strain at De ) 2 is
in close agreement with the results from uniform
extensional flow,7 a result not completely evident be-
forehand due to the inhomogeneity of this field and the
electrophoretic deformation. This close similarity stems
from electrohydrodynamic equivalence and the ex-
tremely fast decay of ε̆EL(r) which gives a pseudo-
homogeneous extensional field. The diversity in exten-
sion-strain dynamics is reminiscent of hydrodynamic
extensional flow studies,6,7 which show that the unrav-
eling of an individual polymer is highly sensitive to its
initial configuration. Perkins et al.6,7 have previously
observed that some polymer configurations (like a tight
coil or a “folded” molecule) are more resistant to
extensional deformation. Figure 7a, which shows an
impact at De ) 2, provides a visual example of a
molecule that experiences significant strain (εEL > 3)
near the front stagnation point, yet never appreciably
stretches. For comparison, Figure 7b shows a different
molecule at the same De and comparable accumulated
strain that significantly stretches.

Returning to Figure 6, parts a-c, note that the DNA
begins to compress as it passes the x ) 0 plane. This
was predicted by our previous kinematic arguments
because the axes of extension and compression rotate
along a given field line, and as a DNA molecule passes
x ) 0, it becomes more closely aligned with the axis of
compression. It is very interesting that almost every

Figure 4. Equilibrium probability distribution of the DNA
fractional extension.

Figure 5. Average fractional extension of λ-DNA molecules
approaching a large insulating cylinder (ensemble size ) 30).
The upper axes give the effective accumulated strain and the
horizontal baseline is the equilibrium average extension
(〈xex〉0/L ) 0.13). The De ) 9 data is slowly approaching this
baseline but our field of view did not allow observation beyond
r/Robs ∼ 1.6.

Figure 6. Extension-strain curves for 30 λ-DNA molecules
colliding into a large (Robs ) 10 µm) insulating cylinder at (a)
De ) 1, (b) De ) 2, and (c) De ) 9 along the centerline. Each
curve represents the trajectory of a single molecule. Curves
switch from solid black to dashed gray when a piece of the
DNA crosses the plane x ) 0. Affine extension (∼eεEL, solid line)
and compression (∼e-εEL, dashed line) scalings are shown for
reference.
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molecule compresses at the affine limit (∼e-εEL). Fur-
thermore, note that some molecules stretch again after
this compression. This trend grows stronger as De
increases from 2 to 9 and can be easily visualized in
Figure 7, parts b and c.

We now look more closely at the compression and
post-impact stretch of DNA on the backside of the
obstacle. Parts a and b of Figure 8 show xex vs t/τ of
λ-DNA molecules deforming on the backside of the large
obstacle at De ) 2 and 9. The time has been renormal-
ized so that t ) 0 is when a stretched molecule has
compressed to xex/L ) 0.3. We provide the equilibrium

fractional extension as a baseline and scalings for affine
compression (〈xex〉/L ∼ e-ε̆ELt) and thermal relaxation
(〈xex〉/L ∼ e-t/(2τ)). Parts a and b of Figure 8 verify that
the DNA molecules compressing at the obstacle backside
recoil at the affine limit, faster than thermal relaxation.
For example, at De ) 9, the DNA returns from stretched
to coil configurations in ∼0.2 τ. Affine compression is
expected because a stretched DNA on the backside is
more closely aligned with the primary axis of compres-
sion, and when stretched out, there is little resistance
to the compressive forces for such a flexible polymers
the DNA easily buckles and crumples into a compact
configuration. Notice in parts a and b of Figure 8 that
after ample compression on the obstacle backside, some
molecules then extend along the axis of extension
oriented in the x-direction (cf. Figure 7c). This effect is
more prominent at high De, which we explain below by
considering the details of the DNA configuration and
the inhomogeneous strain rate.

To explain the stretching on the backside of the
obstacle, or “post-impact stretch”, it is helpful to high-
light the differences between DNA molecules stretching
at the front and at the back of the obstacle. We have
already noted that the primary direction of post-impact
stretch is in the x-direction whereas it is in the y-
direction in the front. Deformation at the backside
further differs from that at the front because the
starting DNA conformation is not an equilibrium coil.
For example, molecules which significantly stretch on
the front of the obstacle are then compressed into
“crumpled” configurations as they round the obstacle
and do not have time return to an equilibrium config-
uration. Figure 9 shows the post-impact stretch data
renormalized so that εEL ) 0 when the chain stretch xex
takes its minimum value near the rear stagnation point.
The population is divided into “crumpled” molecules that
have strongly stretched on the front side (xex/L g 0.5)
and those that only weakly stretched (xex/L < 0.5). There
is a strong correlation between molecules that were
strongly stretched on the front and those molecules that
extend faster at the backside. In general, we find that
crumpled DNA configurations tend to stretch faster
than equilibrium coils and speculate that this may be
because they lack significant configuration complexities.

Continuing our comparison of stretching at the front
and back of the obstacle, the local strain rate during

Figure 7. (a) Sample images of a λ-DNA collision at De ) 2
(in 1.3 cP buffer) without significant deformation. The time
steps between frames are 0.1 s. (b) A sample impact (right-
to-left) at De ) 2 in 1.3 cP buffer with time steps of 0.17 s
unless otherwise noted. (c) An impact at De ) 9 in the 6 cP
buffer with 0.33 s time steps unless otherwise noted.

Figure 8. Dynamic extension during compression on the
backside of a large obstacle at (a) De ) 2 and (b) De ) 9. Time
was reset to zero when a compressing DNA had xex/L ) 0.3.
The thin horizontal line is 〈xex〉0/L. The gray lines are data for
individual molecules (30 total) and the symbols are the
ensemble average. The solid line scaling is the affine scaling
and the dashed line scaling is the thermal relaxation scaling.
(c) Mean square fractional extension with thermal relaxation
scaling (solid lines) after the molecules leave the obstacle for
the same data.

Figure 9. Dynamic post-impact extension at De ) 9. The
strain was reset to zero when the compressing DNA achieved
a minimum xex/L near the back stagnation point. Black
trajectories correspond to molecules g50% extended on the
front of the obstacle, while gray trajectories are molecules
which stretch <50%. Plotted trajectories terminate when the
extension begins to drop due to relaxation. The solid line is
the affine scaling.
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backside stretching will also be weaker than at the
front. This is because of the DNA’s finite size (λ-DNA
has 〈xex〉0 ) 2.8 µm) and because the DNA is moving
away from the obstacle as it stretches. For example, at
a distance of 〈xex〉0 from the obstacle surface, Delocal is
reduced to 1/2 De. Consequently, a crumpled molecule
leaving the back of an obstacle at De ) 1 or 2 would
have a low εeff

EL, i.e., it does not experience significant
time in the strong region (Delocal > 1/2) of the extensional
field. In contrast, a stretching DNA at the front of the
obstacle can move very close to the obstacle surface
(where the strain rate is maximum) and it can adopt
long-lived (high strain) metastable configurations. The
combined effects of the DNA configuration, DNA finite
size, and the inhomogeneous strain rate explain the
large difference we see in the extension of DNA leaving
the obstacle at De ) 2 and 9. Importantly, this post-
impact stretch is still limited by the post-impact strain,
which is only in the range of εEL ∼ 1-1.5. So, for larger
De, we postulate that extensions occurring at the rear
of the obstacle will not greatly exceed 40% (affine limit).

Finally, note that after the post-impact stretch, the
molecules thermally relax back to an equilibrium coil
as they move away from the obstacle. We show this
explicitly in Figure 8c, by replotting the data to match
the form of eq 10. Here we subtract the mean square
equilibrium stretch (〈xex

2〉0/L2 ) 0.018) in order to see
the exponential relaxation scaling for such small per-
turbations from equilibrium. The ensemble average
longest relaxation time is equivalent to τ, so that the
average time it takes these molecules return to coil
configurations is independent of µE, as predicted.

Conclusion

This study shows how one can harness electric field
gradients to manipulate flexible charged macromol-
ecules. Specifically, we examined the deformation his-
tory of single DNA molecules in the electric field
gradients near a large insulating post. On average, the
molecules slightly stretch along the axis of extension
before impact, but still showed characteristic configu-
ration-sensitive extension-strain trajectories of an elon-
gational field. Moreover, these stretched DNA affinely
compress at the backside of the obstacle, and can
restretch in the field direction as they leave the obstacle.
This post-impact stretch was much more pronounced
at De ) 9 than De ) 2, which we argued was due to the
DNA’s crumpled configuration, its finite size, and the
steeply decaying inhomogeneous strain rate. Finally, the
molecules thermally relax in low field gradient regions
away from the obstacle. The terminal relaxation time
is identically τ.

More generally, we presented situations where the
electrohydrodynamic equivalence is valid in free solu-
tion, as both electric field gradients and elongational
flows create strong extensional fields. A more dramatic
example of this equivalence would be to demonstrate
coil-stretch hysteresis46 with electric field gradients.
This study is also a unique analysis of deformation
dynamics in an inhomogeneous (though pseudo-homo-
geneous) extensional field. We stress that electric field
gradients provide a convenient way to induce purely
extensional fields without shear components near sur-
faces.

Knowing how DNA molecules will extend and com-
press in field gradients offers a powerful new tool for
microfluidic process design. One may consider the

cylinder as a first order example; more complex obstacle
geometries or channel contractions/expansions can be
envisioned for custom DNA manipulations. Potential
applications include pre-straining configurations, com-
pression, or stretching of DNA. For example, we have
observed history-dependent DNA deformation dynamics
from “pre-crumpled” molecules. Additionally, we are
able to quickly compress a stretched DNA molecule by
introducing it to a stagnation point near a large obstacle.
This may be a valuable tool for collision-based DNA
mapping applications that rely on frequent transitions
from stretched to compact configurations. But we also
foresee creation of custom geometries to fully stretch
DNA with electric fields so that nanoanalytical methods
may be incorporated to decode or map gene locations.2
Preliminary experiments in contractions analogous to
those used in Chan et al.2 have shown complete stretch-
ing of DNA.
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