Journal of
Non-Newtonian
Fluid
Mechanics

J. Non-Newtonian Fluid Mech. 145 (2007) 109-123

www.elsevier.com/locate/jnnfm

Accuracy of bead-spring chains in strong flows
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Abstract

We have analyzed the response of bead-spring chain models in strong elongational flow as the amount of polymer represented by a spring
is changed. We examined the longest relaxation time of the chains which is used to quantify the strength of the flow in terms of a Weissenberg
number. A chain with linear springs can be used to predict the longest relaxation time of the nonlinear chains if the linear spring constant is modified
correctly. We used the expansion of the elongational viscosity in the limit of infinite Weissenberg number to investigate the change of the viscosity
as the scale of discretization was changed. We showed that the viscosity is less sensitive to the details of the spring force law because the chain is
fully extended at very large Weissenberg number. However, the approach to that infinite Weissenberg number response is dependent both on the
behavior of the spring force at large force and the behavior at small force. New spring force laws to represent the worm-like chain or the freely
jointed chain are correct at both of these limits, while other currently used force laws produce and error. We also investigated the applicability of
these expansions to chains including hydrodynamic interactions. Our results suggest that the longest relaxation time may not be the appropriate

time scale needed to non-dimensionalize the strain rate in such highly extended states.
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1. Introduction

Bead-spring chain models have become common coarse-
grained versions of polymers. Most recent studies aimed at
increasing the accuracy of bead-spring chains have concen-
trated on the inclusion of excluded volume and hydrodynamic
interactions [1-3]. These can now be included in the simula-
tions because of increases in computation power and methods
of algorithm speed-up. While work in this area has furthered our
understanding of and confirmed the importance of excluded vol-
ume and hydrodynamic interactions, we consider here the role
of the spring force law. The increase in computation power has
also allowed for the use of a large number of springs where each
spring represents a small segment of polymer. The use of “small”
springs has been motivated in part by many new microfluidic
applications in which the behavior at a small length scale is
critical [4-6]. Coarse-graining out these finer-scale details gives
inaccurate models. It has been shown that using the conven-
tional spring force laws at this high discretization can result
in significant errors [7-9]. Thus, understanding the validity
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of currently used force laws and how to correct them when
needed is an important aspect of building an accurate polymer
model.

New spring force laws have been developed which do not
have these errors at high discretization [7-9]. By construction
these new bead-spring chains have the same force-extension
behavior as the micromechanical models they represent. The
response in low Weissenberg number flow due to the force law
has also been studied in detail. By relating the contribution of
the force law to the force-extension behavior at small force, we
could illustrate the advantages of the new force laws. While the
advantages of the new force laws for the force-extension behav-
ior at large force is clear, the impact in strong flows has not been
explicitly examined. One difference between the force-extension
behavior at large force and strong flows is the parameter used
to quantify the external forcing. In force-extension behavior, the
appropriate scale for the external force is kg7/Ap, where A,
is the persistence length. However, the strength of the flow is
typically specified in terms of a Weissenberg number, Wi = ér,
where ¢ is the strain rate and t is the polymer’s longest relax-
ation time. This makes the analysis in flow more complicated to
understand because the longest relaxation time itself depends on
the discretization error of the spring force laws [10]. However,
even if the longest relaxation time of the bead-spring chain dif-
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fers from the polymer to be modeled, one would think that if the
strain rate is correspondingly changed to simulate at the same
Wi, the difference will not play a role. For this reason we will
take care to calculate the longest relaxation time of the bead-
spring chains and examine how the response changes with the
Wi held fixed.

Here we will examine the response of bead-spring chains in
strong steady uniaxial extensional flow, comparing the behav-
ior of previous force laws with those which have been recently
developed. There has been much work recently looking at the
response of bead-spring chain models in extensional flow. Simu-
lations in uniaxial and planar extensional flow can be compared
directly with experiments done with a filament stretching device
or cross-slot devices [11,12]. Here we will be focusing on the
effect of the spring force law on the response when the polymer
is strongly stretched (approaching full extension). In such states
the inclusion of excluded volume effects should not affect the
response because the likelihood that the chain will be in a con-
figuration which is influenced by the excluded volume is small
due to the strong stretching. Recently, Sunthar et al. [13] exam-
ined the response in the start-up of elongational flow including
excluded volume interactions. While they found that excluded
volume interactions are important at small strains, we consider
here only the steady response (or infinite strain value). This
steady value will not be affected by excluded volume interactions
similar to force-extension behavior [14].

Initially, we will also neglect the influence of hydrodynamic
interactions. In an extended configuration, the segments of poly-
mer are further apart so the hydrodynamic interactions will be
weaker than in the equilibrium coiled state. However, when
expressing the flow strength in terms of a Weissenberg num-
ber, the longest relaxation time is used. This longest relaxation
time is affected by hydrodynamic interactions and even excluded
volume interactions. We will briefly examine the impact of
hydrodynamic interactions and their impact on the response in
strong extensional flow.

2. Bead-spring models

In this study we have examined a number of different spring
force laws. Two of the most common nonlinear spring force
laws are the FENE and Marko-Siggia force laws. The FENE
force law is an approximation to the inverse Langevin function.
Researchers have also used a Padé approximation to the inverse
Langevin. We will compare the response of these force laws
with two new force laws that we have developed to model the
freely jointed chain and worm-like chain [8,9]. We have used the
same notation and non-dimensionalization as in ref. [7], which
we briefly review here.

The Marko—Siggia force law is an approximation to the
response of long worm-like chains. The spring force is

_ ksT A_l 1
fS(r)_(Aef'f) {V 4+4(1_?)2} ey

where ¢ is the fully extended length of a spring, # = r/€ the
fractional extension of the spring, and At is the effective per-

sistence length. The true persistence length of the polymer being
modeled is denoted Aye. The key dimensionless parameters are
v = £/ Awue Which is the number of persistence lengths repre-
sented by each spring and A = Aefr/ Arue Which is a correction
factor that can be used to correct the polymer response. The use
of this correction factor is discussed in ref. [7]. Different criteria
exist for choosing A as a function of v. In particular we will be
discussing the so-called low-force and high-force criteria. These
are choices for A as a function of v such that the force-extension
behavior of the bead-spring chain matches the micromechanical
model at low or high force, respectively.

In ref. [9] we have developed a new force law which models
the worm-like chain
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This force law reproduces the force-extension behavior of the
worm-like chain by construction both at low and high forces.

We have also examined spring force laws which represent
freely jointed chains. The FENE force law is an approximation
to the response of long freely jointed chains [15]. The spring
force is

3
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where ag efr is the effective Kuhn length of the polymer. To
non-dimensionalize the equations we define an effective length
over which the chain is rigid, Ag. Although this length needs to
be proportional to the Kuhn length, the proportionality constant
can be chosen arbitrarily to make the equations look simpler.
Obviously the response of the chain will be independent of this
choice, though the dimensionless equations will depend on the
choice made. For convenience with the FENE force law we take
itto be Aefr = axg efr/3. We similarly have that Ayye = aK true/3
where ak e is the true Kuhn length of the polymer. With this
choice, v represents three times the number of Kuhn lengths
represented by each spring. One advantage of this choice is that
itremoves any overall prefactor in the dimensionless spring force
formula. It also means that there is a correspondence b <> v/A,
where b is a common parameter used in the literature which uses
the FENE force law.

An alternative to the FENE force law which is seeing increas-
ing use is a Padé approximation to the inverse Langevin function
due to Cohen [16], which is

“
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AaK eff
The advantage of this force law is that it more accurately approx-
imates the inverse Langevin function. In particular, the force has
the same divergence as the inverse Langevin function. Although
the FENE force is correctly proportional to (1 — r/¢)~! near
full extension, the proportionality factor is incorrect. The Cohen
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form has the same proportionality factor as the inverse Langevin
function. We will return to this difference between the FENE and
Cohen force laws when analyzing the steady, strong flows.

We have also previously developed a new spring force law
which is a better approximation to the response of the freely
jointed chain [8] which is given by

kgT
folr) = (B)
ag

3. Brownian dynamics
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We use the method of Brownian dynamics (BD) to calculate
the response of bead-spring chains in non-equilibrium situations.
This technique has been used widely to calculate the response of
bead-spring chains [17,11]. The techniques integrates forward
in time the equation of motion, a stochastic differential equation.
This equation is given by

mi¥; = FI = FB 4+ F¢ 4 F$ ~ 0, (©6)

where the subscript i denotes bead i, m the mass of each bead,
the acceleration, F™! the net force, FB the Brownian force due to
collisions of the solvent molecules with the beads, F¢ the drag
force due to the movement of each bead through the viscous
solvent, and F* is the systematic force on each bead due to the
springs and any external forces. We neglect the inertia (mass) of
the beads, and so the net force is approximately zero.

For simulations near equilibrium and if each spring repre-
sented a large segment of polymer, it was sufficient to use a
simple Euler integration scheme. However, at large Weissenberg
number and if each spring represented a small segment of poly-
mer, the timestep would need to be so small that the simulations
became too computationally expensive. In these situations we
used the semi-implicit predictor-corrector method developed
by Somasi et al. [10]. For the simulations including hydro-
dynamic interactions, we used the Rotne-Prager—Yamakawa
tensor [18,19] and the generalization of the integration method
due to Hsieh et al. [2]. We found that using a look-up table
with linear interpolation in the semi-implicit method introduced
an error when used at large Weissenberg number. Therefore, a
look-up table was not used.

4. Longest relaxation time

When examining the behavior of bead-spring chains in flow,
it is common to express the flow conditions (shear rate or elon-
gation rate) in terms of a Weissenberg number. The Weissenberg
number (Wi) is taken as the product of the shear rate or elonga-
tion rate and the longest relaxation time. This longest relaxation
time will certainly be affected by excluded volume and hydro-
dynamic interactions. However, for consistency with the high Wi
calculations to be done without those effects, we consider the
longest relaxation time of models without EV or HI. For models
for which analytic calculations can be performed such as for lin-

ear springs, the longest relaxation time can be expressed exactly
as a function of the model parameters (such as the bead drag
coefficient and spring constant). For nonlinear spring models,
such an analytic formula for the longest relaxation time is not
possible.

The longest relaxation time for these models can be calculated
numerically using dynamical simulations such as BD. These
simulations can be computationally costly, particularly for long
chains that have long relaxation times. It is also inconvenient to
have to perform a preliminary simulation for each set of model
parameters before performing the primary simulations. One way
around this is to use instead the characteristic time from dividing
the zero-shear rate first normal stress coefficient by two times
the zero-shear rate polymer viscosity [20]

70 20 (N
Both of these zero-shear rate properties, provided HI is ignored,
can be calculated from the retarded motion expansion coeffi-
cients [7]. For the FENE force law, these can be calculated
analytically. For other force laws, such as the Marko—Siggia
force law, they require numerical integration but are much less
computationally costly than full BD simulations. The disad-
vantage of using this characteristic time is that it differs from
the longest relaxation time even for chains with the relatively
simple linear spring force law [21]. It is unclear how the two
characteristic times are related for more complicated force laws.

It is well known that because the chains do not contain EV
or HI, each measure of the characteristic time will eventually
scale as N” as the number of beads becomes asymptotically
large. However, we require more detailed knowledge than this.
In this article we will be analyzing the behavior from as few
as two beads to a large number of beads. We will not always
be in this asymptotic limit. In particular, the point at which the
chain reaches this limiting behavior will depend on the choice
for characteristic time.

Another way of estimating the longest relaxation time is to
use the linear force law formula [11]. The linear spring constant
is taken from the nonlinear spring law at small extensions, where
the spring law looks linear. If the chain, as it is relaxing back to
equilibrium, only samples the linear region of the spring at long
times, then this should be a good approximation. It has been
shown that this approximation can result in significant errors.
This error results because even at equilibrium, the springs can
sample the nonlinear parts of the force law as discussed in ref.
[7].

Because of the deficiencies of each approximate method, we
performed direct BD simulations of the relaxation of chains
over a wide parameter range and with both the FENE and
Marko—Siggia force laws. In order to calculate the longest relax-
ation time, the chains were started in a stretched configuration
(95% extension) in the z direction. The chains were simulated
as they relaxed back to equilibrium. At long time, the stress dif-
ference o,;, — oy, decays as a single exponential, exp(—#/7). A
least-squares fit is used to extract the value of the longest relax-
ation time. Before plotting the results of the simulations, we
will review what we call the Rouse relaxation time of a chain
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and express it in the notation used here. Consider a chain of N
beads connected by N — 1 linear springs with spring force law
fs(r) = Hr. The longest relaxation time of the chain is

1 ¢

T Oy A ®

Now, consider a chain of inextensible springs. Using the notation
from ref. [7], we write the Taylor expansion of the spring force
as

ks T2¢ov
023

If we treat the linear term like the linear spring, the longest

relaxation is what we call the Rouse time

B 1 ce%h
KT 2sin?(/(2N)) 8ok TV’

With our choice of Ay as the persistence length then ¢ = 3/4
for the Marko-Siggia force law, and with Aye as one-third of
the Kuhn length then ¢» = 1/2 for the FENE force law. Note
that because of our ability to take different choices for Ay the
formulas can appear to take different forms. However, because
any change of choice affects the meaning of v while also chang-
ing the value of ¢;, the physical meaning of a formula remains
invariant. To illustrate this, let us insert into the Rouse time the
definitions of v and A and the value of ¢,. For the Marko—Siggia
force law, we have taken A.fr to be the effective persistence
length, A, eff, and the Rouse time becomes

= 1 ClAp efr
2 sin*(/(2N)) 6kgT

For the FENE force law, we have taken A to be one-third of
the effective Kuhn length, ax efr/3, and the Rouse time becomes

fs(r) = r+0O@?) ©)

(10)

(1)

" = 1 Slag eft
2 sin’(/(2N)) 12kgT

(12)

These two formulas remain the same independent of any choice
for Ayye and the corresponding value of ¢;.

We now show the results of the BD simulations using the
Marko—-Siggia force law in Fig. 1 where the longest relaxation
time of the chain is divided by the above Rouse time. The first
thing to note is that the longest relaxation time is the same as
the Rouse time when v/A — oo but deviates for smaller values.
This is because the Rouse time assumes that near equilibrium
the spring only samples the low extension (linear) part of the
spring. As discussed in ref. [7] if v/X is not infinite, the spring
samples the nonlinear parts of the spring even at equilibrium.
However, the other important aspect to notice from Fig. 1 is
that the relaxation time scales with NV just like the Rouse result.
The deviation from the Rouse time is only a function of v/A.
This suggests that it is possible to describe the relaxation time
using a chain with linear springs, but which have a linear spring
constant that differs from that in Eq. (9). In some approximate
sense, the chain still responds linearly to external forces even
if the spring samples the nonlinear regions and so returns to
equilibrium using some effective linear restoring force. This is
reminiscent of the force-extension behavior of the chains seen

1,01 i

T/TR
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Fig. 1. Plot of the longest relaxation time of Marko—Siggia bead-spring chains
relative to the Rouse prediction as a function of the number of effective persis-
tence lengths each spring represents. The symbols represent different number
of beads: N =2 (diamond), N = 5 (triangle), N = 10 (square), N = 30 (x),
N =50 (+), and N = 100 (*). The solid line is the modified Rouse relaxation
time (Eq. (18)). The dotted line is the fitted function (Eq. (21)).

in ref. [7]. Even if the chain samples the nonlinear regions, the
force-extension behavior is linear at low force. Ref. [7] showed
that a bead-spring chain has

(N = 1))

) 13
3kgT 13

im — (ziot)y =

f—0 Bf

where (ziot) 1S the average z extension of the model. The spring

force law comes in through the equilibrium averaged single

spring moment

[y 4 expl—(v/M)Uest(P)]
Jo d7 72 expl—(v/2) Uenr(#)]

The exponential is the Boltzmann factor, and the function Uett
represents the non-dimensional spring potential energy

(i) eq (14)

() = 200, (1s)
For a chain of linear springs, the force-extension relation is

0 N-—-1

§<Ztot)m = T (16)

Comparing Egs. (13) and (16), we define a modified Rouse
model as a chain of linear springs where the spring constant
is

3kpT
Hyr = 7

(F)eq

a7

This statement is equivalent to choosing the linear spring con-
stant such that it has the same equilibrium averaged end-to-end
distance squared and number of beads as the nonlinear spring
chain. Following from this is that they also have the same equi-
librium radius of gyration and zero shear viscosity. While these
equivalences do not guarantee that this modified Rouse model
will have the same longest relaxation time as the nonlinear spring
chain, we hope that they will be similar. Therefore, we will com-
pare the modified Rouse relaxation time with the exact relaxation
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Fig. 2. Plot of the longest relaxation time of Marko—Siggia bead-spring chains
relative to the modified Rouse prediction (Eq. (18))as a function of the number of
effective persistence lengths each spring represents. The symbols represent dif-
ferent number of beads: N = 2 (diamond), N = 5 (triangle), N = 10 (square),
N =30(x), N =50 (+), and N = 100 (*¥). The lines represent 7q ¢ divided by
the modified Rouse prediction for the same range of number of beads, with the
lowermost curve with N = 2 and the uppermost curve with N = 100. The error
bars represent plus or minus two standard deviations.

time to examine how well it predicts the nonlinear chain behav-
ior. The longest relaxation time of the modified Rouse model
is

B 1 (%) eq
2 sin®(r/(2N)) 12kgT

TMR (18)

In Fig. 2 we show the longest relaxation times of the bead-
spring chains as in Fig. 1 but now dividing the values by tyr
to gauge the predictive capability of the modified Rouse model
in terms of longest relaxation time. We see that the error using
the modified Rouse time is much smaller than if the Rouse time
were used. However, there does seem to be a general trend in
which the deviation grows at smaller discretization. The mod-
ified Rouse time almost always overpredicts the values fitted
from the simulations. Although the modified Rouse relaxation
time does not seem to give a quantitative predictive measure, we
believe it can still be used to understand the change of the longest
relaxation time with a change in the scale of discretization. This
is illustrated by the improved prediction of Fig. 2 compared with
Fig. 1.

We should note that the Egs. (10) and (18) are not new, and
have been used before. See, for example, the review by Larson
[11]. However, both equations have been called by the name
“Rouse” because for the Rouse model, for which they were
derived, they are equivalent. Our contribution is to notice that
for nonlinear spring force laws, the formulas give dramatically
different results. In order to carefully distinguish between these
formulas which give different predictions for nonlinear springs,
we call them “Rouse” and “modified Rouse”, respectively. We
have shown here that while the Rouse result (Eq. (10)) fails to
predict the relaxation of nonlinear springs, the modified Rouse
formula (Eq. (18)) retains approximate validity for nonlinear
springs.
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Fig. 3. Plotof the longest relaxation time of FENE bead-spring chains relative to
the modified Rouse prediction as a function of the number of effective persistence
lengths each spring represents. The symbols represent different number of beads:
N = 2 (diamond), N = 5 (triangle), N = 10 (square), N = 30 (x), N = 50 (+),
and N = 100 (*). The error bars represent plus or minus two standard deviations.

To this point, we have compared exact BD simulations of
the longest relaxation time to what we call the Rouse time (Eq.
(10)) and compared the exact simulations with a modified Rouse
model (Eq. (18)). The other method for estimating the relaxation
time is from the ratio of zero-shear properties, Eq. (7), which
we now compare with the exact BD simulations. One problem
with using this estimate is that the functional dependence with
N is different. For a chain of linear springs 7 is

2N?+7 ¢
=2 19
=75 am (19
This inspires us to define a scaled time
15 1
T0s = (20)

T 5
Y2NZ 72 sin’(x/(2N))

which compensates for the difference in N dependence that exists
even for the linear spring system. Fig. 2 also shows curves rep-
resenting 7o ¢ for the Marko—Siggia force law divided by tmr.
It is not clear that 7o s represents the data any better than g,
particularly given the accuracy of the simulations. Note also that
the absolute difference between the two is quite small compared
to the changes in relaxation time seen in Fig. 1. Because of the
useful physical interpretation of tyR in terms of the coil size and
force-extension behavior, we will not consider 7o further. We
have also performed a fit through the data to give a formula which
is only slightly more accurate than tyr. For the Marko—Siggia
force law, this is

1 ce? 1
Tht = 2 .
B S Sin2(x/(2N)) ks T 6v/A + 7.26/v]A + 21.2

@D

We have also performed BD simulations of the longest relaxation
time using the FENE spring force law to verify that the trends
seen with the Marko—Siggia force law are not specific to that
force law. In Fig. 3 we show the longest relaxation time divided
by tvmr for the FENE force law. For the FENE force law the
average in Eq. (18) can be calculated exactly. Therefore, the
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Fig. 4. Plot of the longest relaxation time of bead-spring chains using the new
force law for the worm-like chain relative to the modified Rouse prediction as a
function of the number of persistence lengths each spring represents. The sym-
bols represent different number of beads: N = 2 (diamond), N = 5 (triangle),
N =10 (square), and N = 30 (x). The error bars represent plus or minus two
standard deviations.

results in Fig. 3 can be viewed as

T T 5 ! ”
TMR_TR<V/)\+>. 22
The trend is the same as with the Marko—Siggia simulations. We
see a slight growing deviation at smaller discretization, how-
ever that deviation is much smaller than would be seen if the
Rouse model were used to attempt to predict the simulations.
The scatter of the data is of similar order of magnitude and the
modified Rouse time again almost always overpredicts the sim-
ulation data. We can also perform a fit through this data to give
a slightly more accurate result

1 ce? 1
" 2 sin?(n/(2N)) ks T 4v/A + 1.05/v/% +21.1°

These fitted functions will be used later as a closed form expres-
sion for the longest relaxation time when discussing the change
of the elongational viscosity with the degree of discretization.
We see that the modified Rouse formula gives a reason-
able prediction of the longest relaxation time even to very high
discretization. This is important because the modified Rouse
formula allows us to gain intuition about the governing factors
towards the relaxation time. The modified Rouse formula con-
tains the size of a spring at equilibrium, which can be related to
the force-extension response at small force. This gives us confi-
dence that if a new spring force is used which gives the correct
size of a spring and force-extension behavior, then the relaxation
time will be the expected value. We can show this explicitly by
calculating the relaxation time for a new force law to represent
the worm-like chain (Eq. (2)). Fig. 4 shows the relaxation time of
this force law divided by its modified Rouse prediction. We see
the same basic result as with the Marko—Siggia and FENE force
laws, that the modified Rouse formula is a reasonable prediction.
A similar scatter is seen and trend to deviate more at small dis-
cretization. Note that this new force law was developed to have
the correct behavior near equilibrium, and thus by construction

(23)

Tfit

the modified Rouse formula is
. 1 CLAp
" 2 sin®(r/(2N)) 6kp T’

TMR (24)

5. Steady elongational flow

After understanding the behavior of the longest relaxation
time, we can investigate the high Weissenberg number response.
One advantage of looking at steady elongational flow is that
the viscosity can be written formally as an integral over con-
figuration space [21]. This can be done because we are not
including the effects of EV and HI, which should be of secondary
importance near full extension. Although calculating the inte-
grals numerically is not efficient for getting the exact response
for chains of many springs, they can be used to develop series
approximations. This same type of expansion was performed
at small flow strength to obtain the retarded-motion expansion
coefficients in ref. [7].

5.1. Models of the freely jointed chain

We begin our analysis of the response of bead-spring chains in
strong, steady elongational flow with bead-spring chains used to
model the freely jointed chain. We will be able to explicitly judge
the accuracy of the coarse-grained model because the response
of the freely jointed chain which is being modeled by the bead-
spring chain is known.

The first bead-spring chain system we will examine to
describe the behavior of the freely jointed chain is with the FENE
spring force law. For the FENE force law, the expansion of the
elongational viscosity in terms of Pe is

00_1[(:+4)(N_1)—3CN]+0<1>,

=n
e
=n

Pe Pe?
(25)
where the Peclet number is defined as
ece?
= , 26
¢ =T (26)
the dimensionless elongational viscosity is defined as
= 7_] - 3’75
= —, 27
n PN 27
and the dimensionless elongational viscosity at infinite Pe is
. NW?-1) 28)
Noo = 12 :

We have also defined the parameter C which is a function of
N as

N—1 1
Cy = _— 29
N mZ:ll—l—m—l—m2 (29)

Our approach is to use this expansion to understand the change in
the response of the chain as the amount of polymer represented
by a spring is changed. Using an analytic expansion will allow
us to make precise statements about the effect of the different



P.T. Underhill, P.S. Doyle / J. Non-Newtonian Fluid Mech. 145 (2007) 109-123

<I(:1_

1000

115

<\<;1_

1 10 100

1000
N

Fig. 5. Calculation of the elongational viscosity as a function of the number of beads for constant Wi and « using the first two terms in the asymptotic expansion for
the FENE force law with A = 1 (Eq. (30)). The values of Wi are 1 (left) and 10 (right). The lines correspond to different values of ¢, from top to bottom ranging from
100, 400, 4000, and oo. The dashed lineis 1 — 6/(7'[2 Wi) (Eq. (31)). The dotted line is 1 — 0.46/ Wi (Eq. (32)). The long-dashed line is 1 — 0.34/ Wi (from Eq. (36)).

spring force laws and criteria for the effective persistence length.
Since itis an expansion for large strain rates, for sufficiently large
strain rates it will eventually describe the response.

Recall that for the FENE force law we have chosen to define
Agrue as one-third of the Kuhn length such that v = £/ Ae i
three times the number of Kuhn lengths represented by a spring.
While this choice will affect the look of the equation written in
terms of v, the physical meaning is unchanged. We now rear-
range and include an approximate form for the longest relaxation
time to obtain

_N+1 12

TN =17 NV = 1)2 sin(n/QN) Wi
1 % n 3 c
5 Vo3
4v/A+ 1050k +21.1 | A N-1 "

1

+0 ( Wi2> . (30)
We can now analyze how this expansion (the response of the
chain) changes as the number of beads is changed while the
Weissenberg number Wi is held constant, and @ = (N — 1)v is
held constant. When analyzing the behavior we must decide
which criterion for choosing A will be used. We will start by
choosing A = 1. Note though that this does not correspond to
either the high-force or low-force criterion.

Fig. 5 shows plots of Eq. (30) as a function of N for constant
Wi and « for A = 1, i.e. not using an effective Kuhn length.
We see similar shapes as with the previous bead-spring chains
discussed. If 1 « N « o we see a plateau which occurs at a
viscosity of

6 1
l-——+0(— ).
2w (Wﬂ)

For all chains with a finite «, the number of beads will eventu-
ally become large enough that the springs represents very small
segments of polymer. The system then approaches the limit-
ing behavior of the bead-string chain when 1 < N and o <« N
which is approximately

0.46 1
1l—-——+0(—).
wi " (Wﬂ)

€29

(32)

This equation is only known approximately because there is
some uncertainty in the longest relaxation time of a bead-string
chain used to write the expression using a Weissenberg num-
ber. Because the difference in responses between the long chain
plateau (Eq. (31)) and the bead-string chain (Eq. (32)) decreases
with Wi, as Wi!, the elongational viscosity is less sensitive to
the incorrect and changing accuracy of the spring force law as
Wi increases.

Recall that for the FENE force law, even the high-force cri-
terion is not A = 1. We show in Fig. 6 the response of the
elongational viscosity for the high-force and the low-force crite-
ria [7]. The different criteria can only be used up to values of N
such that the chain becomes the bead-string chain (i.e. . — 00).
At this point in N, the curves for the low and high-force criteria
must stop. We see that the high-force criterion performs slightly
better (stays in the plateau longer) than the low-force criterion,
although the difference for the FENE force law is almost indis-
tinguishable. However, there is the counter-intuitive result that
using A = 1 seems to do even better than either criteria. This
can be understood by looking at the expansion in Eq. (30). The
coefficient to Wi~! only depends on the ratio v/A. Therefore,
the smaller the value of A, the larger the ratio v/A, and the closer

1000

Fig. 6. Comparison of the different criteria for A and their effect on the elon-
gational viscosity for the FENE force law using Eq. (30). The parameters are
Wi = 1, o = 400, and either the low-force (upper curve) or high-force criteria
(middle curve) for A or A = 1 (lower curve). The A = 1 case and the dashed,
dotted, and long-dashed lines are identical to those in Fig. 5.
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the term is to the long chain limit behavior. In essence, a smaller
A makes it look like there are more effective Kuhn lengths per
spring, so the chain looks like a chain with a very large number
of Kuhn lengths. This arbitrary change of the Kuhn length does
not cause a detrimental response in the strong stretching limit
because the long chain behavior does not explicitly depend on
the true Kuhn length, only on the total drag on the chain, the
contour length squared, and the Weissenberg number. Although
arbitrarily choosing A very small does increase the size of the
plateau, we do not consider that a viable option for developing
an accurate coarse-grained model because the change in effec-
tive persistence length would cause all equilibrium properties to
be incorrect.

To this point we have presumed that the existence of the
plateau in the viscosity means that the chain is an accurate
coarse-grained model. For the FENE force law this plateau
essentially exists when the chain has many beads but each spring
still represents a large segment of polymer. We have shown that
even if the incorrect spring force law is used when each spring
represents a small segment of polymer, for sufficiently high Wi
the elongational viscosity does not actually deviate a significant
percentage from the plateau because the chain is always virtually
fully extended. However, the existence of this plateau does not
in of itself guarantee that the bead-spring represents the desired
micromechanical model. For the FENE chain, we can easily see
how well this plateau matches the behavior of the freely jointed
chain because the steady state behavior of the freely jointed
chain in elongational flow is known [22]. The expansion of the
steady state elongational viscosity of a freely jointed chain for
large strain rates is

7—3ns  N(N*-1) kgT
npla® 12 la%é

2N = 1)=3Cy1+ O (12) ,
€
(33)

where a is the length of a rod and the sum over the Kramers
matrix which was tabulated by Hassager can be written equiva-
lently as a simpler sum, Cy. Currently we are concerned with the
limit of a large number of rods because we want to compare this
series expansion with the plateau occurring for a FENE chain
with a large number of springs and where each spring still rep-
resents a large number of Kuhn lengths. In the limit of a large
number of rods, the elongational viscosity of a freely jointed
chain becomes

c 24 kTt 1

From ref. [23] we know that the relaxation time of long freely
jointed chains is approximately

2
¢~ 0014282 5% (35)
kgT

so the viscosity is
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We expect that Eq. (31) would be the same as this freely jointed
chain result, Eq. (36), however we see that they are not the same.
Recall that the FENE force law does not have the exact same
behavior as the inverse Langevin function near full extension.
This will account for some of the difference, which we will now
address by examining the behavior of the Cohen spring force
law.

Because the Cohen spring force law does have the same
approach to full extension as the inverse Langevin function, but
different from the FENE force law, we will be able to see the
influence of this divergence. Note that because the first two terms
in the flow expansion (in terms of Pe) only depends on the dom-
inant behavior of the spring near full extension, the Cohen force
law has the same two term expansion as a bead-spring chain with
the inverse Langevin function as the spring force law. Obviously
higher order terms in the expansion will be different between the
Cohen force law and the inverse Langevin function. The equi-
librium behavior (and relaxation time) will also be different at
intermediate v. At infinite v it only depends on the linear region
of the force law which is the same, and at zero v they both
become the bead-string chain which are the same. The first two
terms in the high strain rate expansion are

1 2v 1
(37)

In the limit of | < N < «, the expansion becomes

) 4 1
el — 40— ), 38
7 2wi <Wi2> (38)

where we have used our knowledge of the relaxation time of the
bead-spring chain when v is very large. We can also look in the
limit of such large N that each spring represents a very small
amount of polymer, 1 < N and o < N. In this limit the chain
looks like a bead-string chain, which is the same result as for
the FENE chain. In this limit the expansion is approximately

0.46 1
~l-—— 40— . 39
wi t (Wi2> 39)

Recall that the approximation here in determining the expansion
for the bead-string chain is that the longest relaxation time is only
known approximately.

There are two important aspects to notice about the behavior
of the Cohen force law chain. The first is that the structure has
changed from that of the FENE force law in that Eq. (38) is
now greater than Eq. (39). The other is that even this expansion
(which is the expansion for the exact inverse Langevin func-
tion) deviates from the freely jointed chain result when there
are a large number of springs and each spring represents a large
segment of polymer (i.e. comparing Eqgs. (36) and (38)).

This deviation, however, turns out to be related back to a
subtlety with the longest relaxation time of the freely jointed
chain which is not often discussed. Consider a freely jointed
chain with such a large number of rods that if one models it with
a bead-spring chain with the exact inverse Langevin force law,
it is possible to both have a very large number of springs and at

=n
=n

=»
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the same time have each spring represent a very large number
of rods. The longest relaxation time of this bead-spring chain is
given by Eq. (12) or alternatively (with A = 1)

_ (Np)Lag
67‘[2](]3 T

We know this relaxation time exactly because if each spring
represents a very large segment of polymer, near equilibrium
the spring only samples the linear region of the force law so
we can use the analytic result for the relaxation time of a bead-
spring chain with linear springs. Because this bead-spring chain
correctly models the equilibrium and force-extension behavior
of the freely jointed chain, one might think that it would model
the longest relaxation time of the chain. However, this is not true.
The longest relaxation time is given in Eq. (35) or equivalently

0.0142(N¢)Lak
T=—7T".
kgT

It is this difference in relaxation times that causes the difference
between the viscosity expansion of the freely jointed chain and
the Cohen or inverse Langevin chain even when the bead-spring
chain has a large number of springs and each spring represents
a large segment of polymer. We can see this by using Eq. (40)
in the expansion of the freely jointed chain, Eq. (34), instead
of the exact formula, which is then identical to the Cohen chain
expansion, Eq. (38). We can also see that it is the relaxation time
that causes this final discrepancy by noticing that both the freely
jointed chain and Cohen chain can be written in these limits as

(40)

(41)
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It is only when the extension rate is written in terms of a Weis-
senberg number using different longest relaxation times that
gives this final discrepancy.

It should be noted that it is not only from ref. [23] that we
know the longest relaxation time of a freely jointed chain. Other
researchers [24-26] have performed similar simulations verify-
ing the same result as well as independent tests of the relaxation
time. This is also not the first mentioning of this discrepancy
[25,26]. The almost 20% deviation in the longest relaxation time
is an unresolved issue and is outside the scope of this article. For
the purposes of this article we can not do better than reproducing
the expansion in Eq. (42), which depends on the behavior near
full extension, and to capture the longest relaxation time if each
spring represents a large segment of polymer. Thus, this plateau
(Eq. (38)) is considered “accurate” for our purposes. However,
even the Cohen force law or the inverse Langevin force law will
deviate from this as each spring represents a small segment of
polymer, and the chain approaches the bead-string chain.

A new spring force law has been developed such that the bead-
spring chain accurately represents the force-extension behavior
of the freely jointed chain (Eq. (5)) [8]. We can examine how
using this new force law affects the elongational viscosity at

large strain rates. The expansion of the viscosity for this force
law is
1
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This expansion should be compared with the expansion for the
Cohen force law or inverse Langevin force law (Eq. (37)). We see
that because the new force law correctly represents the behavior
at large forces, the expansion in viscosity in terms of Pe is mod-
eled correctly (like when using the high-force criterion for an
effective persistence length). The term 2v(N — 1)/3 is always
equal to two times the total number of Kuhn lengths represented
by the chain independent of how few Kuhn lengths each spring
represents, just as we saw in Eq. (42). However, the equilib-
rium behavior is also captured correctly with the new force law.
This means that the longest relaxation time will also be captured
essentially. Because both are captured correctly, the system will
not deviate at high discretization from the plateau.

5.2. Models of the worm-like chain

We now analyze of the response of bead-spring chains used
to model the worm-like chain. The most commonly used spring
force law to model the worm-like chain is the Marko—Siggia
interpolation formula. The expansion of the elongational vis-
cosity for large strain rates using the Marko-Siggia force law
is

. /a 1
n~noo—\/m;\/kuv—k>+o<&). (44)

To investigate the exact chain response and the range of valid-
ity of the expansion we performed BD simulations of chains
without EV and HI from approximately Wi = 1 to 1000 for a
range of parameters of the Marko—Siggia force law. These are
shown in Fig. 7. We plot the data versus Peclet number instead
of Weissenberg number because the Peclet number is the natural
parameter in the expansion and simulations. The Peclet number
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Fig.7. Comparison of the approach to the plateau elongational viscosity between
BD simulations and the two-term series expansion in Eq. (44)(solid lines). The
spring force law is the Marko—Siggia formula and the chains consist of 10 beads.
The curves correspond to (from left to right) v = 1, 10, 100, 1000. Each curves
spans strain rates from approximately Wi = 1 to Wi = 1000.
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Fig. 8. Calculation of the elongational viscosity as a function of the number of beads for a constant Wi and « using the first two terms in the asymptotic expansion
for the Marko—Siggia force law with A = 1 (Eq. (48)). The values of Wi are 1 (left) and 10 (right). The lines correspond to different values of ¢, from top to bottom
ranging from 100, 400, 4000, and oco. The dashed line is 1 — /3/(8Wi) (Eq. (49)), and the dotted line is 1 — 0.46/ Wi (from Eq. (53)).

is a local comparison of the strain rate to the characteristic time
for a bead to diffuse the fully extended length of a spring. In
absence of an exact formula for the longest relaxation time in
terms of model parameters (an approximate one is given in the
previous section) there exists an uncertainty in the value of the
Weissenberg number. There is also variability in what character-
istic time that is used to define the Weissenberg number. In our
comparison of the simulations and expansion we choose to elim-
inate the uncertainty of the Weissenberg number as a possible
source of deviation.

Having verified that the expansion represents the high exten-
sion rate behavior of the Brownian dynamics simulations, we can
examine the behavior of the two term expansion. We will use
the analytic nature of the expansion to investigate the behavior
of different bead-spring chains. After the analysis we will return
to the question of whether the expansion accurately represents
the data over the entire range of analysis. As in ref. [7] we will
examine the viscosity as a function of the number of beads while
the total number of persistence lengths in the molecule is held
constant. We will also keep the Weissenberg number constant
as we change the number of beads. We manipulate Eq. (44) to
write the expansion as a scaled elongational viscosity in terms
of the Weissenberg number

N range so is not a dominant effect. We can replace this by the
asymptotic value of 3/2 without significant error. Similarly, we
can replace the relaxation time using the approximation in Eq.
(21) which represents the relaxation time to within an error of
about a few percent

. N3 1
TN 2\ Wi6 +7.26 /7 v + 21.24/v)
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With Eq. (48) we have a simple approximation to the response
written in terms of Wi. We show in Fig. 8 the value of Eq. (48) as
a function of the number of beads, N, for Wi = 1 and Wi = 10
and using the high-force criterion [7] for the effective persistence
length (A = 1). The curves are also at a constant total number
of persistence lengths, « = L/Ague = V(N — 1). Although we
do not expect Eq. (48) to accurately represent the simulations
down to Wi = 1 over the whole range of N, the larger spread
of the curves allows one to see better the shape of the curves.
The behavior at low number of beads is similar to the zero Weis-
senberg number response, which we again attribute to the fact

=

(48)
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where we have defined a dimensionless relaxation time as
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ranges from /2 for both N = 2 and N = 3 to 3/2 for N — oo.
This prefactor changes by a total of about 6% over the entire

(45)

1

that the hydrodynamic drag is exerted only on discrete beads
instead of along a continuous contour. If the chain is very long
(o > 1), there will exist a large region for which 1| €« N <« o
and the viscosity is

3 1
—+0|=].
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However, for chains with a finite length (so finite o), N will
eventually become large enough that each spring represents

a small segment of polymer. The limit of this progression is
when o < N. In the limit that 1 <« N and o < N, the viscosity

(49)
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approaches
1+ 0 ! (50)
Wi/’

The difference between Egs. (49) and (50) decreases as Wi -1z,
which means that for very large Weissenberg number, there is no
upper limit on the number of beads past which the response devi-
ates significantly. Essentially, if the Weissenberg number is large
enough, the chain will be almost fully extended and so even if the
spring force is not represented correctly, the chain will still be in
the fully extended state. Thus, for some properties the change if
the incorrect spring force law is used may appear to have a negli-
gible effect. Note that this is different from the low Weissenberg
number behavior which was found to have a maximum number
of beads of N'/? « 1.15«!/? for the Marko-Siggia spring force
law [7]. This means that the response of the bead-spring chain
seems to be less sensitive to using an inappropriate spring force
law when the springs become very small.

To this point we have not used an effective persistence length
that differed from the persistence length of the WLC being mod-
eled, thus A = 1. Recall the progression of analysis used to study
the behavior at low Wi [7]. The analysis with A = 1 showed
that there was an error in the low Wi response if each spring
represented too small an amount of polymer. Howeve,r if the
low-force criterion was used for the effective persistence length,
the error due to the incorrect force law vanished in the range
of applicability of the low-force criterion. The only error that
remained was from the fact that for small number of beads, the
drag was not distributed along the contour. We would thus expect
that a similar vanishing of the error would be present in this
case if the high-force criterion were used. But recall that for the
Marko—Siggia force law using A = 1 is the high-force criterion.
There is still a deviation when each spring represents too few
number of persistence lengths. Let us compare this response if
instead A were chosen according to the low-force criterion. This
response is shown in Fig. 9. Recall that as the number of beads
N is increased, the number of persistence lengths per spring,

Fig. 9. Comparison of the different criteria for A and their effect on the elonga-
tional viscosity for the Marko—Siggia force law using Eq. (48). The parameters
are Wi = 1, « = 400, and either the low-force (upper curve) or the high-force
criteria (lower curve) for A. The high-force criterion curve and the dashed and
dotted lines are identical to those in Fig. 8.

v, decreases. For the low-force criterion, the effective persis-
tence will increase until the point of v = 10/3 when A — oco.
At this point, the chain becomes a bead-string chain, and the
curve in Fig. 9 can not continue past that value of N. We see that
the response with the low-force criterion more quickly deviates
from the plateau. Although it is true that the high-force criterion
produces a more extended plateau region, there is still an error
if each spring represents a small number of persistence lengths.

If we look closer at the expansion we see that the prefactor
to Pe~1/2, that is A~1/2, is correct if the high-force criterion is
used and deviates if the low-force criterion is used. However,
the plots have been produced at constant Wi. To convert the
formula from Pe to Wi the longest relaxation time must be used.
This longest relaxation time depends on the low-force behavior
of the chain. Recall that the modified Rouse relaxation time is a
function of the second moment of the spring length, (%), and the
low-force criterion gets this second moment correct. Thus, when
using the high-force criterion it is the longest relaxation time
that deviates at high discretization causing the error, while using
the low-force criterion gets the longest relaxation time correct
(to within the error between the true relaxation time and the
modified Rouse relaxation time) but has an error in the explicit
prefactor to the Pe. In some sense this makes the response at high
Wi more complicated and a more stringent test of the accuracy
of the spring force law because the response has a contribution
having to do with the high-force response and one having to do
with the low-force response. However, recall that it is also a less
stringent test because if the Wi is large enough the chain is fully
extended irrespective of the details of the spring force law.

To this point we have used the first two terms in the asymptotic
expansion to examine analytically the behavior of the bead-
spring chains. We have gained significant knowledge about the
response of the bead-spring chains using an expansion that is
relatively simple to produce and will be valid at large enough
strain rates. We now return to a more detailed description of
how accurately the two terms represents the true response of the
bead-spring chains. To answer that question, we will examine
the higher order terms in the expansion. The Pe~! correction to
Eq. (44) can be calculated with some effort, but the Pe=3/2 term
is excessively complex. However, we can use knowledge of the
structure of the series and our BD simulations to generate an
approximate form for the Pe~3/2 term. These two corrections to
Eq. (44) are

T n_1_3c
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While the Pe~3/? term is only approximate, with the addition
of these two terms, the expansion models well the response
of chains with N = 2, 5, 10, 30 and v/X = 1, 10, 100, 1000 for
flows ranging from Wi = 1 to Wi = 1000. The expansion has
a typical error of 2% for Wi = 1 with a much smaller error for
higher Wi. Using this, we can find the next corrections to Egs.
(49) and (50). The next correction for Eq. (49) comes from exam-
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ining the limit 1 < N < . In that limit the Wi~! term vanishes
and the Wi—3/2 term becomes

—0.07

Wil 62

where the possible error in the coefficient results because this
term was only inferred from the simulations. While this cor-
rection will play a role if the Wi is not large enough, it should
play a secondary role and the qualitative behavior discussed pre-
viously will remain unchanged. The correction for Eq. (50) is
more subtle. When only using the first two terms in the expan-
sion, the Wi—1/2 term vanishes in the limits 1 <« N and @ < N
as the chain approaches the bead-string chain. Therefore, we
only capture the finite extensibility but not the approach to finite
extensibility. In this limit the O(1) term is modeled correctly, but
the O(Wi—1/2) term of the worm-like chain is not. To examine
this limit we must examine the higher terms in the expansion.
However, we see that the coefficient to the Wi~3/? term actually
diverges. This happens because the limit to a bead-string chain
is a singular limit. It is similar to the force-extension behavior at
large force using the Marko—Siggia spring force law. Thus, the
Pe~!termin Eq. (51) is the behavior seen if, for a constant v/A,
the Pe is made large. If instead the limit v/A — 0 is taken for a
constant Pe or Wi, the response should approach the bead-string
chain. If this bead-string chain response is expanded for large
Pe or Wi, the Pe~! term is different than in Eq. (51). The coeffi-
cient to Pe~! depends on the order in which the limits are taken.
We have already seen the expansion of the bead-string chain (if
v/A — 0 in Eq. (25)) which has a Pe~! term that is similar to
the one in Eq. (51) but with the 7/2 replaced by a 4. Thus, in the
limit I <« N buta < N the true next correction to the response
of the Marko—Siggia bead-spring chains as seen in Figs. 8 and 9
is

—0.46
Wi

) (53)

where the possible error in this coefficient results from using
our approximate formula for the relaxation time (used to convert
from Pe to Wi) in the limit v/A — O.

We have now examined the next corrections to the behavior
in the two different limits, both 1 < N < « and 1 < N and
o < N. While these obviously affect the quantitative compari-
son between the curves in Figs. 8 and 9, the qualitative nature
will not be changed significantly because at a large enough Wi
only the first two terms in the expansion are sufficient to describe
the simulation results.

The analysis of the Marko—Siggia force law has shown that
the response does begin to deviate at large enough discretization
because each spring represents too small a segment of polymer.
In this limit the Marko-Siggia spring force law does not accu-
rately capture the response of the worm-like chain it is trying to
represent. A new spring force law has been developed which can
be used to model a worm-like chain even if each spring repre-
sents as few as 4 persistence lengths (provided the whole chain
contains many persistence lengths) [9]. This new force law was
given in Eq. (2). The expansion of the elongational viscosity

using this new spring force law for the worm-like chain is
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We can explicitly see from this expansion the great advantage
of the new spring force law. Note that the Pe~!/2 term looks
like that for the Marko—Siggia force law using the high-force
criterion for the effective length, while the new force law does not
need to use an effective persistence length. Previously we saw
that even using the high-force criterion and the Marko-Siggia
force law, the response deviated at high discretization because
the longest relaxation time (used to convert from Pe to Wi) did
not correctly compensate for the v in the expansion. Using the
idea of a modified Rouse relaxation time, we can understand
that essentially the relaxation time deviated because the size
of the spring at equilibrium (r?) was incorrect. However, the
new spring has by construction the correct equilibrium (r2). To
within the accuracy of the modified Rouse relaxation time, the
longest relaxation time will be correctly modeled even at high
discretization.

The other advantage of the new spring force law is the order
Pe~! term. In developing the new force law, the coefficient to
the 7/(1 — ?2) term in the force law was determined such that
the f~! term in the force-extension behavior near large force
would vanish (which it does for very long worm-like chains).
While this choice does not make the Pe~! term vanish here in
the elongational viscosity, the coefficient is made O(1) instead
of O(N) which is a significant reduction when N is large. Recall
that N must be large to even be in the plateau region of dis-
cretization. We postulate that the true continuous worm-like
chain would not have a Pe~! term just as it did not have a f~!
term in the force-extension behavior. Thus, even at the next order
in the expansion having the correct force-extension behavior
corresponds to having the correct behavior in elongational flow.

Finally, we can compare between the response of freely
jointed chains and worm-like chains. Consider a worm-like
chain with o = 400 persistence lengths at a Wi = 10. Fig. 10
shows the elongational viscosity using the Marko-Siggia force
law with A = 1 as a function of the number of beads used in the
model. The curve plotted is from Eq. (48) with the additional
terms from Eq. (51). We also show in Fig. 10 the response of
chains using the FENE spring force law attempting to model the
worm-like chain. It is important to note that FENE chain used
to model a worm-like chain with 400 persistence lengths would
have o = 600 (i.e. there are 200 Kuhn lengths, so three times
the number of Kuhn lengths is 600). In Fig. 10 we plot Eq. (30)
for the FENE force law with « = 600, Wi = 10, and A = 1.

This figure illustrates the difference in response between
the two force laws and the different micromechanical models
at large Wi. The weaker approach towards maximum elogna-
tional viscosity as Wi~!/2 for the worm-like chain results in
a smaller elognational viscosity than the freely jointed chain,
which approaches as Wi~!. However, as each model is more
finely discretized, both eventually approach the same model,
the bead-string chain.
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Fig. 10. Comparison of the elongational viscosity between models using the
Marko-Siggia vs. FENE force laws. The solid lines correspond to Marko—Siggia
(lower, Eq. (48) modified with Eq. (51)) and FENE (upper, Eq. (30)). The models
contain 400 persistence lengths (o« = 400 for Marko—Siggia, « = 600 for FENE)
and are at Wi = 10 with A = 1. The dotted line represents the bead-string result
(Eq. (32)). The dashed lines represent the plateau regions for Marko—Siggia
(lower, Eq. (49)) and FENE (upper, Eq. (31)).

In this section we have analyzed the behavior of bead-spring
chains in uniaxial elongational flow at large strain rates. After
verifying the applicability of the expansion for large strain rates,
we could use the expansion to better understand the physical
origin of the chain response. We found that if the strain rate is
large enough, the chain is essentially fully extended and so the
elongational viscosity is the fully extended value virtually inde-
pendent of the accuracy of the spring force law. However, the
“deficit”, or how close the system is to that plateau, does depend
on the accuracy of the spring force law. In fact the accuracy
of this deficit is even more subtle to understand than the weak
flow response. The response certainly depends on the behavior
of the spring near full extension which is shown by the expan-
sion of the viscosity in terms of Pe. However, it is conventional
to express the expansion in terms of a Weissenberg number,
which uses the longest relaxation time. This longest relaxation
time depends on the equilibrium response of the spring, not the
response near full extension. To get the correct behavior for the
deficit a model should get both behaviors correct, at large forces
and at equilibrium. For the Marko-Siggia spring force law, nei-
ther the low-force nor the high-force criteria capture correctly the
response at both extremes. For this reason the deficit is incorrect
if very small springs are used. However, our new spring force
law does get the behavior correct at low force and high force, and
thus represents the deficit correctly even to high discretization
provided the number of beads is large enough.

It is useful to review at this point the main features we have
observed through the analysis of the elongational viscosity at
large strain rates. At very large strain rates the chain is vir-
tually fully extended, so as long as the spring has the correct
fully extended length ¢, this infinite strain rate viscosity is inde-
pendent of the details of the spring force law. In this sense the
behavior at large enough strain rate is insensitive to the details
of the spring force law. However, some experiments may aim to
explore more than the absolute value of viscosity (or similarly
fractional extension). For example, ref. [27] used the deficit (dif-

ference between the fractional extension from full extension) to
distinguish between the worm-like chain, freely jointed chain,
and stem-flower models. Shaqfeh et al. [28] and Doyle et al.
[29] examined the relaxation after strong elongational flow and
found that the relaxation was highly influenced by the deficit
away from the fully extended state. For a bead-spring chain to
accurately represent these types of response of a micromechan-
ical model, it is necessary to capture not only the plateau but
also the approach to the plateau. This approach is sensitive to
the accuracy of the spring force law. In fact it is dependent on the
force law both near full extension and at equilibrium because of
using the longest relaxation time to form a Weissenberg number.
For this reason previously used spring force laws do not capture
this deficit when each spring represents a small segment of poly-
mer. However, the new spring force laws developed to represent
the worm-like chain and freely jointed chain do not deviate at
high discretization.

6. Influence of hydrodynamic interactions

In this article we have focused on the role of the spring force
law and have not included effects of hydrodynamic interactions.
In highly extended states we expect the effect will be much less
than in the coiled state, and the spring force law will play the
major role. For the Marko—Siggia force law, we found that the
elongational viscosity has a series expansion of the form

n—3ns  N(N?—1) c 1
npcl? 12 (1 Pe1/2+O<Pe>>' (55)

Certainly the plateau value will be dependent on hydrodynamic
interactions, which changes the scaling with length to include a
logarithm. However, we postulate the coefficient C may have the
same scaling with or without hydrodynamic interactions. This is
because the chain is so close to full extension that the positions
of the beads, and therefore their interactions, will not be much
different from in the fully extended state. The postulated form
is thus

_ _ C 1
= 3ns ~ (11 = 3ns)eo (1_Pe1/2+0<Pe>)' (56)

Whether the scaling of C is the same with and without hydro-
dynamic interactions has interesting consequences. Without
hydrodynamic interactions the scaling is C ~ N~!. This is
consistent with turning the Peclet number into a Weissenberg
number, because without HI the longest relaxation time scales
as N2. However, in the non-draining limit, the longest relax-
ation time scales as N3/2. Turning the expansion Pe to Wi using
a non-draining scaling for the longest relaxation time gives a
coefficient of

CN3/4
wil/2”

(57)

If the value of C scales as N~!, this implies a vanishing coeffi-
cient to Wi™1/2 as N — oo.

To test this hypothesis, we performed simulations using the
Marko-Siggia force law and the RPY hydrodynamic interaction
tensor, with parameters v = 200, A = 1, and 2* = 0.25 [2]. We
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Fig. 11. Coefficient of the Pe~1/2 term, C, as a function of the number of beads
with and without HI. The spring force law is Marko—Siggia with v = 200 and
A = 1. The squares are without HI and the diamonds are from BD simulations
using the RPY tensor and 2* = 0.25. The dashed lines represent power laws of
N1, N7%% and N707.

performed simulations at a range of Pe until we were confident
that higher order terms in Pe were negligible and extracted a
value of C from the simulation data. The infinite Pe number
response was calculated exactly using the formalism presented
in an appendix to ref. [3]. In Fig. we plot the value of C cal-
culated from the simulations versus N. From the figure we can
see clearly that the the scaling is not N~3/4. The fitted scaling
is approximately N~ for the largest N simulated here.
These simulations bring about an interesting point which war-
rants further investigation. If the scaling of C with N in the large
chain limit is different than N ~3/4 as we see here, that means that
near the fully extended state the time used to convert from Pe in
order to have collapse of the data in the long chain limit is not the
longest relaxation time. However, it may be necessary to reach
the non-draining limit in the extended state in order to reach
the long chain limit scaling of the coefficient. By non-draining
limit in the extended state, we mean that the plateau viscosity
scales as would be expected from Batchelor’s formula. We can
estimate the number of beads necessary to be in that limit using
an approximate formula in the appendix of ref. [3]. Because of
the slow logarithm convergence in the number of beads, with
the parameters used here, the number of beads would have to be
greater than 10° to be into the non-draining limit in the extended
state. This is not feasible to simulate. A better route to reach
the non-draining limit would be make each spring represent a
smaller segment of polymer. However, care should be taken to
make sure the correct 1* is used relative to the size of a spring.

7. Conclusion

In this article we have looked at the behavior of bead-spring
chain models in strong flows and the effect of the spring force
law. We did this for coarse-grained models of both the WLC and
FIC. We expect that EV effects are small in such strong flows and
the effects of HI may be small (or smaller) so we initially neglect
those contributions. The longest relaxation time was examined,
which is used to express the strain rate as a Weissenberg number.

It was shown that the chain samples the nonlinear regions of the
force law even at equilibrium, making the relaxation time devi-
ate from the Rouse result. However, a modified Rouse model
is able to capture the relaxation time even if each spring repre-
sents a small segment of polymer. This modified Rouse model
gives insight into the important role the force-extension behav-
ior at small force plays in determining the longest relaxation
time.

We looked at the elongational viscosity in the limit of large
strain rates and used the first few terms in the expansion to under-
stand how the response of the chain changes as the level of
discretization changes and for different spring force laws. We
basically saw that for arbitrarily large strain rate the viscosity
becomes not as sensitive to getting the spring force law cor-
rect because the system is always fully extended. However, it
is important to model correctly how close the chain is to fully
extended. To get this correct it is even more sensitive than in
weak flows/equilibrium. This is because you are in a highly
extended state so the expansion depends on that behavior, but
also when writing the response in terms of a Wi with the longest
relaxation time, that is influenced by the low-force/equilibrium
behavior. So to really get the correct response you need to get
both correct. Using the previous force laws with an effective
persistence length requires a trade-off to get one right or the
other but not both. Our new force laws get both correct so do
not deviate when each spring represents a small segment of
polymer.

Acknowledgements

This work was supported by the National Science Founda-
tion CAREER program Grant No. CTS-0239012 and P.S.D’s
Doherty Chair. We also acknowledge Chih-Chen Hsieh for help
performing the simulations including hydrodynamic interac-
tions.

References

[1] R.M. Jendrejack, J.J. dePablo, M.D. Graham, Stochastic simulations of
DNA in flow: Dynamics and the effects of hydrodynamic interactions, J.
Chem. Phys. 116 (2002) 7752-7759.

[2] C.-C. Hsieh, L. Li, R.G. Larson, Modeling hydrodynamic interaction in
Brownian dynamics: simulations of extensional flows of dilute solutions of
DNA and polystyrene, J. Non-Newtonian Fluid Mech. 113 (2003) 147-191.

[3] R.Prabhakar, J.R. Prakash, T. Sridhar, A sucessive fine-graining scheme for
predicting the rheological properties of dilute polymer solutions, J. Rheol.
48 (2004) 1251-1278.

[4] G.C. Randall, K.M. Schultz, P.S. Doyle, Methods to electrophoretically
stretch DNA: microcontractions, gels, and hybrid gel-microcontraction
devices, Lab Chip 6 (2006) 516-525.

[5] J.W. Larson, G.R. Yantz, Q. Zhong, R. Charnas, C.M. DAntoni, M. V.
Gallo, K.A. Gillis, L.A. Neely, K.M. Phillips, G.G. Wong, S.R. Gullans, R.
Gilmanshin, Single DNA molecule stretching in sudden mixed shear and
elongational microflows, Lab Chip 6 (2006) 1187-1199.

[6] A.G. Balducci, P.S. Doyle, Double-stranded DNA diffusion in slit-like
nanochannels, Macromolecules 39 (2006) 6273-6281.

[7] P.T. Underhill, P.S. Doyle, On the coarse-graining of polymers into bead-
spring chains, J. Non-Newtonian Fluid Mech. 122 (2004) 3-31.

[8] P.T. Underhill, P.S. Doyle, Development of bead-spring polymer models
using the constant extension ensemble, J. Rheol. 49 (2005) 963-987.



P.T. Underhill, P.S. Doyle / J. Non-Newtonian Fluid Mech. 145 (2007) 109-123 123

[9] P.T. Underhill, P.S. Doyle, Alternative spring force law for bead-spring
chain models of the worm-like chain, J. Rheol. 50 (2006) 513-529.

[10] M. Somasi, B. Khomami, N.J. Woo, J.S. Hur, E.S.G. Shaqfeh, Brown-
ian dynamics simulations of bead-rod and bead-spring chains: numerical
algorithms and coarse-graining issues, J. Non-Newtonian Fluid Mech. 108
(2002) 227-255.

[11] R.G.Larson, The rheology of dilute solutions of flexible polymers: Progress
and problems, J. Rheol. 49 (2005) 1-70.

[12] E.S.G. Shagfeh, The dynamics of single-molecule DNA in flow, J. Non-
Newtonian Fluid Mech. 130 (2005) 1-28.

[13] P.Sunthar, D.A. Nguyen, R. Dubbelboer, J.R. Prakash, T. Sridhar, Measure-
ment and prediction of the elongational stress growth in a dilute solution
of DNA molecules, Macromolecules 38 (2005) 10200-10209.

[14] J.F. Marko, E.D. Siggia, Stretching DNA, Macromolecules 28 (1995)
8759-8770.

[15] H.R. Warner, Kinetic theory and rheology of dilute suspensions of finitely
extendible dumbbells, Ind. Eng. Chem. Fundam. 11 (1972) 379-387.

[16] A. Cohen, A Padé approximant to the inverse Langevin function, Rheol.
Acta 30 (1991) 270-272.

[17] H.C. Ottinger, Stochastic Processes in Polymeric Fluids: Tools and Exam-
ples for Developing Simulation Algorithms, Springer, Berlin, 1996.

[18] J. Rotne, S. Prager, Variational treatment of hydrodynamic interaction in
polymers, J. Chem. Phys. 50 (1969) 4831-4837.

[19] H. Yamakawa, Transport properties of polymer chains in dilute solution:
Hydrodynamic interaction, J. Chem. Phys. 53 (1970) 436-443.

[20] R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids
volume 1: Fluid Mechanics, second ed., Wiley, New York, 1987.

[21] R.B. Bird, C.F. Curtiss, R.C. Armstrong, O. Hassager, T Dynamics of Poly-
meric Liquids, volume 2: Kinetic Theory, second ed., Wiley, New York,
1987.

[22] O. Hassager, Kinetic theory and rheology of bead-rod models for macro-
molecular solutions I. equilibrium and steady flow properties, J. Chem.
Phys. 60 (1974) 2111-2124.

[23] P.S. Doyle, E.S.G. Shagfeh, A.P. Gast, Dynamic simulation of freely drain-
ing flexible polymers in steady linear flows, J. Fluid Mech. 334 (1997)
251-291.

[24] P.S. Grassia, E.J. Hinch, Computer simulations of polymer chain relaxation
via Brownian motion, J. Fluid Mech. 308 (1996) 255-288.

[25] F. Peters, Polymers in flow, modeling and simulation, Ph.D. Thesis, Delft
University of Technology, 2000.

[26] P. Dimitrakopoulos, Stress and configuration relaxation of an initially
straight flexible polymer, J. Fluid Mech. 513 (2004) 265-286.

[27] B. Ladoux, P.S. Doyle, Stretching tethered DNA chains in shear flow,
Europhys. Lett. 52 (2000) 511-517.

[28] E.S.G. Shagfeh, G.H. McKinley, N. Woo, D.A. Nguyen, T. Sridhar, On
the polymer entropic force singularity and its relation to extensional stress
relaxation and filament recoil, J. Rheol. 48 (2004) 209-221.

[29] P.S. Doyle, E.S.G. Shaqgfeh, G.H. McKinley, S.H. Spiegelberg, Relaxation
of dilute polymer solutions following extensional flow, J. Non-Newtonian
Fluid Mech. 76 (1998) 79-110.



	Accuracy of bead-spring chains in strong flows
	Introduction
	Bead-spring models
	Brownian dynamics
	Longest relaxation time
	Steady elongational flow
	Models of the freely jointed chain
	Models of the worm-like chain

	Influence of hydrodynamic interactions
	Conclusion
	Acknowledgements
	References


