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Accuracy of bead-spring chains in strong flows
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bstract

We have analyzed the response of bead-spring chain models in strong elongational flow as the amount of polymer represented by a spring
s changed. We examined the longest relaxation time of the chains which is used to quantify the strength of the flow in terms of a Weissenberg
umber. A chain with linear springs can be used to predict the longest relaxation time of the nonlinear chains if the linear spring constant is modified
orrectly. We used the expansion of the elongational viscosity in the limit of infinite Weissenberg number to investigate the change of the viscosity
s the scale of discretization was changed. We showed that the viscosity is less sensitive to the details of the spring force law because the chain is
ully extended at very large Weissenberg number. However, the approach to that infinite Weissenberg number response is dependent both on the
ehavior of the spring force at large force and the behavior at small force. New spring force laws to represent the worm-like chain or the freely

ointed chain are correct at both of these limits, while other currently used force laws produce and error. We also investigated the applicability of
hese expansions to chains including hydrodynamic interactions. Our results suggest that the longest relaxation time may not be the appropriate
ime scale needed to non-dimensionalize the strain rate in such highly extended states.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Bead-spring chain models have become common coarse-
rained versions of polymers. Most recent studies aimed at
ncreasing the accuracy of bead-spring chains have concen-
rated on the inclusion of excluded volume and hydrodynamic
nteractions [1–3]. These can now be included in the simula-
ions because of increases in computation power and methods
f algorithm speed-up. While work in this area has furthered our
nderstanding of and confirmed the importance of excluded vol-
me and hydrodynamic interactions, we consider here the role
f the spring force law. The increase in computation power has
lso allowed for the use of a large number of springs where each
pring represents a small segment of polymer. The use of “small”
prings has been motivated in part by many new microfluidic
pplications in which the behavior at a small length scale is
ritical [4–6]. Coarse-graining out these finer-scale details gives

naccurate models. It has been shown that using the conven-
ional spring force laws at this high discretization can result
n significant errors [7–9]. Thus, understanding the validity
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f currently used force laws and how to correct them when
eeded is an important aspect of building an accurate polymer
odel.
New spring force laws have been developed which do not

ave these errors at high discretization [7–9]. By construction
hese new bead-spring chains have the same force-extension
ehavior as the micromechanical models they represent. The
esponse in low Weissenberg number flow due to the force law
as also been studied in detail. By relating the contribution of
he force law to the force-extension behavior at small force, we
ould illustrate the advantages of the new force laws. While the
dvantages of the new force laws for the force-extension behav-
or at large force is clear, the impact in strong flows has not been
xplicitly examined. One difference between the force-extension
ehavior at large force and strong flows is the parameter used
o quantify the external forcing. In force-extension behavior, the
ppropriate scale for the external force is kBT/Ap, where Ap
s the persistence length. However, the strength of the flow is
ypically specified in terms of a Weissenberg number, Wi = ε̇τ,
here ε̇ is the strain rate and τ is the polymer’s longest relax-
tion time. This makes the analysis in flow more complicated to
nderstand because the longest relaxation time itself depends on
he discretization error of the spring force laws [10]. However,
ven if the longest relaxation time of the bead-spring chain dif-
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ers from the polymer to be modeled, one would think that if the
train rate is correspondingly changed to simulate at the same
i, the difference will not play a role. For this reason we will

ake care to calculate the longest relaxation time of the bead-
pring chains and examine how the response changes with the
i held fixed.
Here we will examine the response of bead-spring chains in

trong steady uniaxial extensional flow, comparing the behav-
or of previous force laws with those which have been recently
eveloped. There has been much work recently looking at the
esponse of bead-spring chain models in extensional flow. Simu-
ations in uniaxial and planar extensional flow can be compared
irectly with experiments done with a filament stretching device
r cross-slot devices [11,12]. Here we will be focusing on the
ffect of the spring force law on the response when the polymer
s strongly stretched (approaching full extension). In such states
he inclusion of excluded volume effects should not affect the
esponse because the likelihood that the chain will be in a con-
guration which is influenced by the excluded volume is small
ue to the strong stretching. Recently, Sunthar et al. [13] exam-
ned the response in the start-up of elongational flow including
xcluded volume interactions. While they found that excluded
olume interactions are important at small strains, we consider
ere only the steady response (or infinite strain value). This
teady value will not be affected by excluded volume interactions
imilar to force-extension behavior [14].

Initially, we will also neglect the influence of hydrodynamic
nteractions. In an extended configuration, the segments of poly-
er are further apart so the hydrodynamic interactions will be
eaker than in the equilibrium coiled state. However, when

xpressing the flow strength in terms of a Weissenberg num-
er, the longest relaxation time is used. This longest relaxation
ime is affected by hydrodynamic interactions and even excluded
olume interactions. We will briefly examine the impact of
ydrodynamic interactions and their impact on the response in
trong extensional flow.

. Bead-spring models

In this study we have examined a number of different spring
orce laws. Two of the most common nonlinear spring force
aws are the FENE and Marko–Siggia force laws. The FENE
orce law is an approximation to the inverse Langevin function.
esearchers have also used a Padé approximation to the inverse
angevin. We will compare the response of these force laws
ith two new force laws that we have developed to model the

reely jointed chain and worm-like chain [8,9]. We have used the
ame notation and non-dimensionalization as in ref. [7], which
e briefly review here.
The Marko–Siggia force law is an approximation to the

esponse of long worm-like chains. The spring force is(
kBT

){
1 1

}

s(r) =

Aeff
r̂ −

4
+

4(1 − r̂)2 (1)

here � is the fully extended length of a spring, r̂ = r/� the
ractional extension of the spring, and Aeff is the effective per-
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t
t
f
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istence length. The true persistence length of the polymer being
odeled is denoted Atrue. The key dimensionless parameters are
≡ �/Atrue which is the number of persistence lengths repre-

ented by each spring and λ ≡ Aeff/Atrue which is a correction
actor that can be used to correct the polymer response. The use
f this correction factor is discussed in ref. [7]. Different criteria
xist for choosing λ as a function of ν. In particular we will be
iscussing the so-called low-force and high-force criteria. These
re choices for λ as a function of ν such that the force-extension
ehavior of the bead-spring chain matches the micromechanical
odel at low or high force, respectively.
In ref. [9] we have developed a new force law which models

he worm-like chain

s(r) =
(

kBT

Aeff

){
r̂

(1−r̂2)2 − 7r̂

ν(1 − r̂2)
+
(

3

32
− 3

4ν
− 6

ν2

)
r̂

+
(

(13/32)+(0.8172/ν)−(14.79/ν2)

1 − (4.225/ν) + (4.87/ν2)

)
r̂(1 − r̂2)

}
.

(2)

his force law reproduces the force-extension behavior of the
orm-like chain by construction both at low and high forces.
We have also examined spring force laws which represent

reely jointed chains. The FENE force law is an approximation
o the response of long freely jointed chains [15]. The spring
orce is

s(r) =
(

3kBT

aK,eff

)
r̂

1 − r̂2 , (3)

here aK,eff is the effective Kuhn length of the polymer. To
on-dimensionalize the equations we define an effective length
ver which the chain is rigid, Aeff. Although this length needs to
e proportional to the Kuhn length, the proportionality constant
an be chosen arbitrarily to make the equations look simpler.
bviously the response of the chain will be independent of this

hoice, though the dimensionless equations will depend on the
hoice made. For convenience with the FENE force law we take
t to be Aeff = aK,eff/3. We similarly have that Atrue = aK,true/3
here aK,true is the true Kuhn length of the polymer. With this

hoice, ν represents three times the number of Kuhn lengths
epresented by each spring. One advantage of this choice is that
t removes any overall prefactor in the dimensionless spring force
ormula. It also means that there is a correspondence b ↔ ν/λ,
here b is a common parameter used in the literature which uses

he FENE force law.
An alternative to the FENE force law which is seeing increas-

ng use is a Padé approximation to the inverse Langevin function
ue to Cohen [16], which is

s(r) =
(

3kBT

aK,eff

)
r̂ − r̂3/3

1 − r̂2 . (4)

he advantage of this force law is that it more accurately approx-

mates the inverse Langevin function. In particular, the force has
he same divergence as the inverse Langevin function. Although
he FENE force is correctly proportional to (1 − r/�)−1 near
ull extension, the proportionality factor is incorrect. The Cohen
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orm has the same proportionality factor as the inverse Langevin
unction. We will return to this difference between the FENE and
ohen force laws when analyzing the steady, strong flows.

We have also previously developed a new spring force law
hich is a better approximation to the response of the freely

ointed chain [8] which is given by

s(r) =
(

kBT

aK

) (3 − 10/ν + 10/(3ν2))r̂

− (1 + 2/ν + 10/(3ν2))r̂3

1 − r̂2 (5)

. Brownian dynamics

We use the method of Brownian dynamics (BD) to calculate
he response of bead-spring chains in non-equilibrium situations.
his technique has been used widely to calculate the response of
ead-spring chains [17,11]. The techniques integrates forward
n time the equation of motion, a stochastic differential equation.
his equation is given by

ir̈i = Fnet
i = FB

i + Fd
i + Fs

i � 0, (6)

here the subscript i denotes bead i, m the mass of each bead, r̈
he acceleration, Fnet the net force, FB the Brownian force due to
ollisions of the solvent molecules with the beads, Fd the drag
orce due to the movement of each bead through the viscous
olvent, and Fs is the systematic force on each bead due to the
prings and any external forces. We neglect the inertia (mass) of
he beads, and so the net force is approximately zero.

For simulations near equilibrium and if each spring repre-
ented a large segment of polymer, it was sufficient to use a
imple Euler integration scheme. However, at large Weissenberg
umber and if each spring represented a small segment of poly-
er, the timestep would need to be so small that the simulations

ecame too computationally expensive. In these situations we
sed the semi-implicit predictor-corrector method developed
y Somasi et al. [10]. For the simulations including hydro-
ynamic interactions, we used the Rotne–Prager–Yamakawa
ensor [18,19] and the generalization of the integration method
ue to Hsieh et al. [2]. We found that using a look-up table
ith linear interpolation in the semi-implicit method introduced

n error when used at large Weissenberg number. Therefore, a
ook-up table was not used.

. Longest relaxation time

When examining the behavior of bead-spring chains in flow,
t is common to express the flow conditions (shear rate or elon-
ation rate) in terms of a Weissenberg number. The Weissenberg
umber (Wi) is taken as the product of the shear rate or elonga-
ion rate and the longest relaxation time. This longest relaxation
ime will certainly be affected by excluded volume and hydro-

ynamic interactions. However, for consistency with the high Wi
alculations to be done without those effects, we consider the
ongest relaxation time of models without EV or HI. For models
or which analytic calculations can be performed such as for lin-
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ar springs, the longest relaxation time can be expressed exactly
s a function of the model parameters (such as the bead drag
oefficient and spring constant). For nonlinear spring models,
uch an analytic formula for the longest relaxation time is not
ossible.

The longest relaxation time for these models can be calculated
umerically using dynamical simulations such as BD. These
imulations can be computationally costly, particularly for long
hains that have long relaxation times. It is also inconvenient to
ave to perform a preliminary simulation for each set of model
arameters before performing the primary simulations. One way
round this is to use instead the characteristic time from dividing
he zero-shear rate first normal stress coefficient by two times
he zero-shear rate polymer viscosity [20]

0 ≡ Ψ1,0

2ηp,0
. (7)

oth of these zero-shear rate properties, provided HI is ignored,
an be calculated from the retarded motion expansion coeffi-
ients [7]. For the FENE force law, these can be calculated
nalytically. For other force laws, such as the Marko–Siggia
orce law, they require numerical integration but are much less
omputationally costly than full BD simulations. The disad-
antage of using this characteristic time is that it differs from
he longest relaxation time even for chains with the relatively
imple linear spring force law [21]. It is unclear how the two
haracteristic times are related for more complicated force laws.

It is well known that because the chains do not contain EV
r HI, each measure of the characteristic time will eventually
cale as N2 as the number of beads becomes asymptotically
arge. However, we require more detailed knowledge than this.
n this article we will be analyzing the behavior from as few
s two beads to a large number of beads. We will not always
e in this asymptotic limit. In particular, the point at which the
hain reaches this limiting behavior will depend on the choice
or characteristic time.

Another way of estimating the longest relaxation time is to
se the linear force law formula [11]. The linear spring constant
s taken from the nonlinear spring law at small extensions, where
he spring law looks linear. If the chain, as it is relaxing back to
quilibrium, only samples the linear region of the spring at long
imes, then this should be a good approximation. It has been
hown that this approximation can result in significant errors.
his error results because even at equilibrium, the springs can
ample the nonlinear parts of the force law as discussed in ref.
7].

Because of the deficiencies of each approximate method, we
erformed direct BD simulations of the relaxation of chains
ver a wide parameter range and with both the FENE and
arko–Siggia force laws. In order to calculate the longest relax-

tion time, the chains were started in a stretched configuration
95% extension) in the z direction. The chains were simulated
s they relaxed back to equilibrium. At long time, the stress dif-

erence σzz − σxx decays as a single exponential, exp(−t/τ). A
east-squares fit is used to extract the value of the longest relax-
tion time. Before plotting the results of the simulations, we
ill review what we call the Rouse relaxation time of a chain
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nd express it in the notation used here. Consider a chain of N
eads connected by N − 1 linear springs with spring force law
s(r) = Hr. The longest relaxation time of the chain is

= 1

2 sin2(π/(2N))

ζ

4H
. (8)

ow, consider a chain of inextensible springs. Using the notation
rom ref. [7], we write the Taylor expansion of the spring force
s

s(r) = kBT2φ2ν

�2λ
r + O(r2) (9)

f we treat the linear term like the linear spring, the longest
elaxation is what we call the Rouse time

R = 1

2 sin2(π/(2N))

ζ�2λ

8φ2kBTν
. (10)

ith our choice of Atrue as the persistence length then φ2 = 3/4
or the Marko–Siggia force law, and with Atrue as one-third of
he Kuhn length then φ2 = 1/2 for the FENE force law. Note
hat because of our ability to take different choices for Atrue the
ormulas can appear to take different forms. However, because
ny change of choice affects the meaning of ν while also chang-
ng the value of φ2, the physical meaning of a formula remains
nvariant. To illustrate this, let us insert into the Rouse time the
efinitions of ν and λ and the value of φ2. For the Marko–Siggia
orce law, we have taken Aeff to be the effective persistence
ength, Ap,eff, and the Rouse time becomes

R = 1

2 sin2(π/(2N))

ζ�Ap,eff

6kBT
. (11)

or the FENE force law, we have taken Aeff to be one-third of
he effective Kuhn length, aK,eff/3, and the Rouse time becomes

R = 1

2 sin2(π/(2N))

ζ�aK,eff

12kBT
. (12)

hese two formulas remain the same independent of any choice
or Atrue and the corresponding value of φ2.

We now show the results of the BD simulations using the
arko–Siggia force law in Fig. 1 where the longest relaxation

ime of the chain is divided by the above Rouse time. The first
hing to note is that the longest relaxation time is the same as
he Rouse time when ν/λ → ∞ but deviates for smaller values.
his is because the Rouse time assumes that near equilibrium

he spring only samples the low extension (linear) part of the
pring. As discussed in ref. [7] if ν/λ is not infinite, the spring
amples the nonlinear parts of the spring even at equilibrium.
owever, the other important aspect to notice from Fig. 1 is

hat the relaxation time scales with N just like the Rouse result.
he deviation from the Rouse time is only a function of ν/λ.
his suggests that it is possible to describe the relaxation time
sing a chain with linear springs, but which have a linear spring
onstant that differs from that in Eq. (9). In some approximate

ense, the chain still responds linearly to external forces even
f the spring samples the nonlinear regions and so returns to
quilibrium using some effective linear restoring force. This is
eminiscent of the force-extension behavior of the chains seen

e
w
c
p

f beads: N = 2 (diamond), N = 5 (triangle), N = 10 (square), N = 30 (×),
= 50 (+), and N = 100 (*). The solid line is the modified Rouse relaxation

ime (Eq. (18)). The dotted line is the fitted function (Eq. (21)).

n ref. [7]. Even if the chain samples the nonlinear regions, the
orce-extension behavior is linear at low force. Ref. [7] showed
hat a bead-spring chain has

lim
→0

∂

∂f
〈ztot〉m = (N − 1)�2〈r̂2〉eq

3kBT
, (13)

here 〈ztot〉m is the average z extension of the model. The spring
orce law comes in through the equilibrium averaged single
pring moment

r̂2〉eq =
∫ 1

0 dr̂ r̂4 exp[−(ν/λ)Ûeff(r̂)]∫ 1
0 dr̂ r̂2 exp[−(ν/λ)Ûeff(r̂)]

. (14)

he exponential is the Boltzmann factor, and the function Ûeff
epresents the non-dimensional spring potential energy

ν

λ
Ûeff(r̂) = Ueff(r)

kBT
. (15)

or a chain of linear springs, the force-extension relation is

∂

∂f
〈ztot〉m = N − 1

H
. (16)

omparing Eqs. (13) and (16), we define a modified Rouse
odel as a chain of linear springs where the spring constant

s

MR ≡ 3kBT

�2〈r̂2〉eq
. (17)

his statement is equivalent to choosing the linear spring con-
tant such that it has the same equilibrium averaged end-to-end
istance squared and number of beads as the nonlinear spring
hain. Following from this is that they also have the same equi-
ibrium radius of gyration and zero shear viscosity. While these

quivalences do not guarantee that this modified Rouse model
ill have the same longest relaxation time as the nonlinear spring

hain, we hope that they will be similar. Therefore, we will com-
are the modified Rouse relaxation time with the exact relaxation
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Fig. 2. Plot of the longest relaxation time of Marko–Siggia bead-spring chains
relative to the modified Rouse prediction (Eq. (18))as a function of the number of
effective persistence lengths each spring represents. The symbols represent dif-
ferent number of beads: N = 2 (diamond), N = 5 (triangle), N = 10 (square),
N = 30 (×), N = 50 (+), and N = 100 (*). The lines represent τ0,s divided by
the modified Rouse prediction for the same range of number of beads, with the
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Fig. 3. Plot of the longest relaxation time of FENE bead-spring chains relative to
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seen with the Marko–Siggia force law are not specific to that
owermost curve with N = 2 and the uppermost curve with N = 100. The error
ars represent plus or minus two standard deviations.

ime to examine how well it predicts the nonlinear chain behav-
or. The longest relaxation time of the modified Rouse model
s

MR = 1

2 sin2(π/(2N))

ζ�2〈r̂2〉eq

12kBT
. (18)

In Fig. 2 we show the longest relaxation times of the bead-
pring chains as in Fig. 1 but now dividing the values by τMR
o gauge the predictive capability of the modified Rouse model
n terms of longest relaxation time. We see that the error using
he modified Rouse time is much smaller than if the Rouse time
ere used. However, there does seem to be a general trend in
hich the deviation grows at smaller discretization. The mod-

fied Rouse time almost always overpredicts the values fitted
rom the simulations. Although the modified Rouse relaxation
ime does not seem to give a quantitative predictive measure, we
elieve it can still be used to understand the change of the longest
elaxation time with a change in the scale of discretization. This
s illustrated by the improved prediction of Fig. 2 compared with
ig. 1.

We should note that the Eqs. (10) and (18) are not new, and
ave been used before. See, for example, the review by Larson
11]. However, both equations have been called by the name
Rouse” because for the Rouse model, for which they were
erived, they are equivalent. Our contribution is to notice that
or nonlinear spring force laws, the formulas give dramatically
ifferent results. In order to carefully distinguish between these
ormulas which give different predictions for nonlinear springs,
e call them “Rouse” and “modified Rouse”, respectively. We
ave shown here that while the Rouse result (Eq. (10)) fails to

redict the relaxation of nonlinear springs, the modified Rouse
ormula (Eq. (18)) retains approximate validity for nonlinear
prings.

f
b
a

engths each spring represents. The symbols represent different number of beads:
= 2 (diamond), N = 5 (triangle), N = 10 (square), N = 30 (×), N = 50 (+),

nd N = 100 (*). The error bars represent plus or minus two standard deviations.

To this point, we have compared exact BD simulations of
he longest relaxation time to what we call the Rouse time (Eq.
10)) and compared the exact simulations with a modified Rouse
odel (Eq. (18)). The other method for estimating the relaxation

ime is from the ratio of zero-shear properties, Eq. (7), which
e now compare with the exact BD simulations. One problem
ith using this estimate is that the functional dependence with
is different. For a chain of linear springs τ0 is

0 = 2N2 + 7

15

ζ

4H
. (19)

his inspires us to define a scaled time

0,s ≡ τ0
15

2N2 + 7

1

2 sin2(π/(2N))
, (20)

hich compensates for the difference in N dependence that exists
ven for the linear spring system. Fig. 2 also shows curves rep-
esenting τ0,s for the Marko–Siggia force law divided by τMR.
t is not clear that τ0,s represents the data any better than τMR,
articularly given the accuracy of the simulations. Note also that
he absolute difference between the two is quite small compared
o the changes in relaxation time seen in Fig. 1. Because of the
seful physical interpretation of τMR in terms of the coil size and
orce-extension behavior, we will not consider τ0,s further. We
ave also performed a fit through the data to give a formula which
s only slightly more accurate than τMR. For the Marko–Siggia
orce law, this is

fit = 1

2 sin2(π/(2N))

ζ�2

kBT

1

6ν/λ + 7.26
√

ν/λ + 21.2
. (21)

e have also performed BD simulations of the longest relaxation
ime using the FENE spring force law to verify that the trends
orce law. In Fig. 3 we show the longest relaxation time divided
y τMR for the FENE force law. For the FENE force law the
verage in Eq. (18) can be calculated exactly. Therefore, the
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Fig. 4. Plot of the longest relaxation time of bead-spring chains using the new
force law for the worm-like chain relative to the modified Rouse prediction as a
function of the number of persistence lengths each spring represents. The sym-
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esults in Fig. 3 can be viewed as

τ

τMR
= τ

τR

(
5

ν/λ
+ 1

)
. (22)

he trend is the same as with the Marko–Siggia simulations. We
ee a slight growing deviation at smaller discretization, how-
ver that deviation is much smaller than would be seen if the
ouse model were used to attempt to predict the simulations.
he scatter of the data is of similar order of magnitude and the
odified Rouse time again almost always overpredicts the sim-

lation data. We can also perform a fit through this data to give
slightly more accurate result

fit = 1

2 sin2(π/(2N))

ζ�2

kBT

1

4ν/λ + 1.05
√

ν/λ + 21.1
. (23)

hese fitted functions will be used later as a closed form expres-
ion for the longest relaxation time when discussing the change
f the elongational viscosity with the degree of discretization.

We see that the modified Rouse formula gives a reason-
ble prediction of the longest relaxation time even to very high
iscretization. This is important because the modified Rouse
ormula allows us to gain intuition about the governing factors
owards the relaxation time. The modified Rouse formula con-
ains the size of a spring at equilibrium, which can be related to
he force-extension response at small force. This gives us confi-
ence that if a new spring force is used which gives the correct
ize of a spring and force-extension behavior, then the relaxation
ime will be the expected value. We can show this explicitly by
alculating the relaxation time for a new force law to represent
he worm-like chain (Eq. (2)). Fig. 4 shows the relaxation time of
his force law divided by its modified Rouse prediction. We see
he same basic result as with the Marko–Siggia and FENE force

aws, that the modified Rouse formula is a reasonable prediction.

similar scatter is seen and trend to deviate more at small dis-
retization. Note that this new force law was developed to have
he correct behavior near equilibrium, and thus by construction

O
t
b
u
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he modified Rouse formula is

MR = 1

2 sin2(π/(2N))

ζ�Ap

6kBT
. (24)

. Steady elongational flow

After understanding the behavior of the longest relaxation
ime, we can investigate the high Weissenberg number response.
ne advantage of looking at steady elongational flow is that

he viscosity can be written formally as an integral over con-
guration space [21]. This can be done because we are not

ncluding the effects of EV and HI, which should be of secondary
mportance near full extension. Although calculating the inte-
rals numerically is not efficient for getting the exact response
or chains of many springs, they can be used to develop series
pproximations. This same type of expansion was performed
t small flow strength to obtain the retarded-motion expansion
oefficients in ref. [7].

.1. Models of the freely jointed chain

We begin our analysis of the response of bead-spring chains in
trong, steady elongational flow with bead-spring chains used to
odel the freely jointed chain. We will be able to explicitly judge

he accuracy of the coarse-grained model because the response
f the freely jointed chain which is being modeled by the bead-
pring chain is known.

The first bead-spring chain system we will examine to
escribe the behavior of the freely jointed chain is with the FENE
pring force law. For the FENE force law, the expansion of the
longational viscosity in terms of Pe is

˜̄ ∼ ˜̄η∞ − 1

Pe

[( ν

λ
+ 4
)

(N − 1) − 3CN

]
+ O

(
1

Pe2

)
,

(25)

here the Peclet number is defined as

e ≡ ε̇ζ�2

kBT
, (26)

he dimensionless elongational viscosity is defined as

˜̄ = η̄ − 3ηs

npζ�2 , (27)

nd the dimensionless elongational viscosity at infinite Pe is

˜̄∞ = N(N2 − 1)

12
. (28)

e have also defined the parameter CN which is a function of
as

N ≡
N−1∑
m=1

1

1 + m + m2 . (29)
ur approach is to use this expansion to understand the change in
he response of the chain as the amount of polymer represented
y a spring is changed. Using an analytic expansion will allow
s to make precise statements about the effect of the different
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can be understood by looking at the expansion in Eq. (30). The
coefficient to Wi−1 only depends on the ratio ν/λ. Therefore,
the smaller the value of λ, the larger the ratio ν/λ, and the closer
ig. 5. Calculation of the elongational viscosity as a function of the number of
he FENE force law with λ = 1 (Eq. (30)). The values of Wi are 1 (left) and 10 (
00, 400, 4000, and ∞. The dashed line is 1 − 6/(π2Wi) (Eq. (31)). The dotted

pring force laws and criteria for the effective persistence length.
ince it is an expansion for large strain rates, for sufficiently large
train rates it will eventually describe the response.

Recall that for the FENE force law we have chosen to define
true as one-third of the Kuhn length such that ν = �/Atrue is

hree times the number of Kuhn lengths represented by a spring.
hile this choice will affect the look of the equation written in

erms of ν, the physical meaning is unchanged. We now rear-
ange and include an approximate form for the longest relaxation
ime to obtain

ˆ̄ ≈ N + 1

N − 1
− 12

N(N − 1)2 sin2(π/(2N))Wi

× 1

4ν/λ + 1.05
√

ν/λ + 21.1

[
ν

λ
+ 4 − 3

N − 1
CN

]

+O
(

1

Wi2

)
. (30)

e can now analyze how this expansion (the response of the
hain) changes as the number of beads is changed while the
eissenberg number Wi is held constant, and α = (N − 1)ν is

eld constant. When analyzing the behavior we must decide
hich criterion for choosing λ will be used. We will start by

hoosing λ = 1. Note though that this does not correspond to
ither the high-force or low-force criterion.

Fig. 5 shows plots of Eq. (30) as a function of N for constant
i and α for λ = 1, i.e. not using an effective Kuhn length.
e see similar shapes as with the previous bead-spring chains

iscussed. If 1 
 N 
 α we see a plateau which occurs at a
iscosity of

− 6

π2Wi
+ O

(
1

Wi2

)
. (31)

or all chains with a finite α, the number of beads will eventu-
lly become large enough that the springs represents very small
egments of polymer. The system then approaches the limit-
ng behavior of the bead-string chain when 1 
 N and α 
 N
hich is approximately

− 0.46

Wi
+ O

(
1

Wi2

)
. (32)

F
g
W

(
d

for constant Wi and α using the first two terms in the asymptotic expansion for
The lines correspond to different values of α, from top to bottom ranging from
1 − 0.46/Wi (Eq. (32)). The long-dashed line is 1 − 0.34/Wi (from Eq. (36)).

his equation is only known approximately because there is
ome uncertainty in the longest relaxation time of a bead-string
hain used to write the expression using a Weissenberg num-
er. Because the difference in responses between the long chain
lateau (Eq. (31)) and the bead-string chain (Eq. (32)) decreases
ith Wi, as Wi−1, the elongational viscosity is less sensitive to

he incorrect and changing accuracy of the spring force law as
i increases.
Recall that for the FENE force law, even the high-force cri-

erion is not λ = 1. We show in Fig. 6 the response of the
longational viscosity for the high-force and the low-force crite-
ia [7]. The different criteria can only be used up to values of N
uch that the chain becomes the bead-string chain (i.e. λ → ∞).
t this point in N, the curves for the low and high-force criteria
ust stop. We see that the high-force criterion performs slightly

etter (stays in the plateau longer) than the low-force criterion,
lthough the difference for the FENE force law is almost indis-
inguishable. However, there is the counter-intuitive result that
sing λ = 1 seems to do even better than either criteria. This
ig. 6. Comparison of the different criteria for λ and their effect on the elon-
ational viscosity for the FENE force law using Eq. (30). The parameters are
i = 1, α = 400, and either the low-force (upper curve) or high-force criteria

middle curve) for λ or λ = 1 (lower curve). The λ = 1 case and the dashed,
otted, and long-dashed lines are identical to those in Fig. 5.
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he term is to the long chain limit behavior. In essence, a smaller
makes it look like there are more effective Kuhn lengths per

pring, so the chain looks like a chain with a very large number
f Kuhn lengths. This arbitrary change of the Kuhn length does
ot cause a detrimental response in the strong stretching limit
ecause the long chain behavior does not explicitly depend on
he true Kuhn length, only on the total drag on the chain, the
ontour length squared, and the Weissenberg number. Although
rbitrarily choosing λ very small does increase the size of the
lateau, we do not consider that a viable option for developing
n accurate coarse-grained model because the change in effec-
ive persistence length would cause all equilibrium properties to
e incorrect.

To this point we have presumed that the existence of the
lateau in the viscosity means that the chain is an accurate
oarse-grained model. For the FENE force law this plateau
ssentially exists when the chain has many beads but each spring
till represents a large segment of polymer. We have shown that
ven if the incorrect spring force law is used when each spring
epresents a small segment of polymer, for sufficiently high Wi
he elongational viscosity does not actually deviate a significant
ercentage from the plateau because the chain is always virtually
ully extended. However, the existence of this plateau does not
n of itself guarantee that the bead-spring represents the desired

icromechanical model. For the FENE chain, we can easily see
ow well this plateau matches the behavior of the freely jointed
hain because the steady state behavior of the freely jointed
hain in elongational flow is known [22]. The expansion of the
teady state elongational viscosity of a freely jointed chain for
arge strain rates is

η̄−3ηs

npζa2 ∼ N(N2−1)

12
− kBT

ζa2ε̇
[2(N − 1) − 3CN ] + O

(
1

ε̇2

)
,

(33)

here a is the length of a rod and the sum over the Kramers
atrix which was tabulated by Hassager can be written equiva-

ently as a simpler sum, CN . Currently we are concerned with the
imit of a large number of rods because we want to compare this
eries expansion with the plateau occurring for a FENE chain
ith a large number of springs and where each spring still rep-

esents a large number of Kuhn lengths. In the limit of a large
umber of rods, the elongational viscosity of a freely jointed
hain becomes

ˆ̄ ∼ 1 − 24

Wi

kBTτ

N2ζa2 + O
(

1

Wi2

)
. (34)

rom ref. [23] we know that the relaxation time of long freely
ointed chains is approximately

≈ 0.0142N2 ζa2

kBT
, (35)
o the viscosity is

ˆ̄ ≈ 1 − 0.34

Wi
+ O

(
1

Wi2

)
. (36)

c
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e expect that Eq. (31) would be the same as this freely jointed
hain result, Eq. (36), however we see that they are not the same.
ecall that the FENE force law does not have the exact same
ehavior as the inverse Langevin function near full extension.
his will account for some of the difference, which we will now
ddress by examining the behavior of the Cohen spring force
aw.

Because the Cohen spring force law does have the same
pproach to full extension as the inverse Langevin function, but
ifferent from the FENE force law, we will be able to see the
nfluence of this divergence. Note that because the first two terms
n the flow expansion (in terms of Pe) only depends on the dom-
nant behavior of the spring near full extension, the Cohen force
aw has the same two term expansion as a bead-spring chain with
he inverse Langevin function as the spring force law. Obviously
igher order terms in the expansion will be different between the
ohen force law and the inverse Langevin function. The equi-

ibrium behavior (and relaxation time) will also be different at
ntermediate ν. At infinite ν it only depends on the linear region
f the force law which is the same, and at zero ν they both
ecome the bead-string chain which are the same. The first two
erms in the high strain rate expansion are

˜̄ ∼ ˜̄η∞ − 1

Pe

[(
2ν

3λ
+ 4

)
(N − 1) − 3CN

]
+ O

(
1

Pe2

)
.

(37)

n the limit of 1 
 N 
 α, the expansion becomes

ˆ̄ ∼ 1 − 4

π2Wi
+ O

(
1

Wi2

)
, (38)

here we have used our knowledge of the relaxation time of the
ead-spring chain when ν is very large. We can also look in the
imit of such large N that each spring represents a very small
mount of polymer, 1 
 N and α 
 N. In this limit the chain
ooks like a bead-string chain, which is the same result as for
he FENE chain. In this limit the expansion is approximately

ˆ̄ ≈ 1 − 0.46

Wi
+ O

(
1

Wi2

)
. (39)

ecall that the approximation here in determining the expansion
or the bead-string chain is that the longest relaxation time is only
nown approximately.

There are two important aspects to notice about the behavior
f the Cohen force law chain. The first is that the structure has
hanged from that of the FENE force law in that Eq. (38) is
ow greater than Eq. (39). The other is that even this expansion
which is the expansion for the exact inverse Langevin func-
ion) deviates from the freely jointed chain result when there
re a large number of springs and each spring represents a large
egment of polymer (i.e. comparing Eqs. (36) and (38)).

This deviation, however, turns out to be related back to a
ubtlety with the longest relaxation time of the freely jointed

hain which is not often discussed. Consider a freely jointed
hain with such a large number of rods that if one models it with
bead-spring chain with the exact inverse Langevin force law,

t is possible to both have a very large number of springs and at
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range of parameters of the Marko–Siggia force law. These are
shown in Fig. 7. We plot the data versus Peclet number instead
of Weissenberg number because the Peclet number is the natural
parameter in the expansion and simulations. The Peclet number
P.T. Underhill, P.S. Doyle / J. Non-Ne

he same time have each spring represent a very large number
f rods. The longest relaxation time of this bead-spring chain is
iven by Eq. (12) or alternatively (with λ = 1)

= (Nζ)LaK

6π2kBT
. (40)

e know this relaxation time exactly because if each spring
epresents a very large segment of polymer, near equilibrium
he spring only samples the linear region of the force law so
e can use the analytic result for the relaxation time of a bead-

pring chain with linear springs. Because this bead-spring chain
orrectly models the equilibrium and force-extension behavior
f the freely jointed chain, one might think that it would model
he longest relaxation time of the chain. However, this is not true.
he longest relaxation time is given in Eq. (35) or equivalently

= 0.0142(Nζ)LaK

kBT
. (41)

t is this difference in relaxation times that causes the difference
etween the viscosity expansion of the freely jointed chain and
he Cohen or inverse Langevin chain even when the bead-spring
hain has a large number of springs and each spring represents
large segment of polymer. We can see this by using Eq. (40)

n the expansion of the freely jointed chain, Eq. (34), instead
f the exact formula, which is then identical to the Cohen chain
xpansion, Eq. (38). We can also see that it is the relaxation time
hat causes this final discrepancy by noticing that both the freely
ointed chain and Cohen chain can be written in these limits as

η̄ − 3ηs

np
∼ (Nζ)L2

12
− kBT

ε̇

× [2×(number of Kuhn lengths in whole molecule)]

+O
(

1

ε̇2

)
. (42)

t is only when the extension rate is written in terms of a Weis-
enberg number using different longest relaxation times that
ives this final discrepancy.

It should be noted that it is not only from ref. [23] that we
now the longest relaxation time of a freely jointed chain. Other
esearchers [24–26] have performed similar simulations verify-
ng the same result as well as independent tests of the relaxation
ime. This is also not the first mentioning of this discrepancy
25,26]. The almost 20% deviation in the longest relaxation time
s an unresolved issue and is outside the scope of this article. For
he purposes of this article we can not do better than reproducing
he expansion in Eq. (42), which depends on the behavior near
ull extension, and to capture the longest relaxation time if each
pring represents a large segment of polymer. Thus, this plateau
Eq. (38)) is considered “accurate” for our purposes. However,
ven the Cohen force law or the inverse Langevin force law will
eviate from this as each spring represents a small segment of
olymer, and the chain approaches the bead-string chain.
A new spring force law has been developed such that the bead-
pring chain accurately represents the force-extension behavior
f the freely jointed chain (Eq. (5)) [8]. We can examine how
sing this new force law affects the elongational viscosity at

F
B
s
T
s
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arge strain rates. The expansion of the viscosity for this force
aw is

˜̄ ∼ ˜̄η∞ − 1

Pe

[
2ν

3
(N − 1) − 3CN

]
+ O

(
1

Pe2

)
(43)

his expansion should be compared with the expansion for the
ohen force law or inverse Langevin force law (Eq. (37)). We see

hat because the new force law correctly represents the behavior
t large forces, the expansion in viscosity in terms of Pe is mod-
led correctly (like when using the high-force criterion for an
ffective persistence length). The term 2ν(N − 1)/3 is always
qual to two times the total number of Kuhn lengths represented
y the chain independent of how few Kuhn lengths each spring
epresents, just as we saw in Eq. (42). However, the equilib-
ium behavior is also captured correctly with the new force law.
his means that the longest relaxation time will also be captured
ssentially. Because both are captured correctly, the system will
ot deviate at high discretization from the plateau.

.2. Models of the worm-like chain

We now analyze of the response of bead-spring chains used
o model the worm-like chain. The most commonly used spring
orce law to model the worm-like chain is the Marko–Siggia
nterpolation formula. The expansion of the elongational vis-
osity for large strain rates using the Marko–Siggia force law
s

˜̄ ∼ ˜̄η∞ −
√

ν/λ

2Pe

N−1∑
k=1

√
k(N − k) + O

(
1

Pe

)
. (44)

o investigate the exact chain response and the range of valid-
ty of the expansion we performed BD simulations of chains
ithout EV and HI from approximately Wi = 1 to 1000 for a
ig. 7. Comparison of the approach to the plateau elongational viscosity between
D simulations and the two-term series expansion in Eq. (44)(solid lines). The

pring force law is the Marko–Siggia formula and the chains consist of 10 beads.
he curves correspond to (from left to right) ν = 1, 10, 100, 1000. Each curves
pans strain rates from approximately Wi = 1 to Wi = 1000.
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ig. 8. Calculation of the elongational viscosity as a function of the number of
or the Marko–Siggia force law with λ = 1 (Eq. (48)). The values of Wi are 1 (l
anging from 100, 400, 4000, and ∞. The dashed line is 1 − √

3/(8Wi) (Eq. (4

s a local comparison of the strain rate to the characteristic time
or a bead to diffuse the fully extended length of a spring. In
bsence of an exact formula for the longest relaxation time in
erms of model parameters (an approximate one is given in the
revious section) there exists an uncertainty in the value of the
eissenberg number. There is also variability in what character-

stic time that is used to define the Weissenberg number. In our
omparison of the simulations and expansion we choose to elim-
nate the uncertainty of the Weissenberg number as a possible
ource of deviation.

Having verified that the expansion represents the high exten-
ion rate behavior of the Brownian dynamics simulations, we can
xamine the behavior of the two term expansion. We will use
he analytic nature of the expansion to investigate the behavior
f different bead-spring chains. After the analysis we will return
o the question of whether the expansion accurately represents
he data over the entire range of analysis. As in ref. [7] we will
xamine the viscosity as a function of the number of beads while
he total number of persistence lengths in the molecule is held
onstant. We will also keep the Weissenberg number constant
s we change the number of beads. We manipulate Eq. (44) to
rite the expansion as a scaled elongational viscosity in terms
f the Weissenberg number

ˆ̄ ∼ N + 1

N − 1

⎛
⎜⎜⎜⎜⎜⎝1 − 6

N sin(π/(2N))

N−1∑
k=1

√
k(N − k)

N2 − 1

√
τ̂2 sin2(π/

W

here we have defined a dimensionless relaxation time as

ˆ = τ

(
kBT

ζ�2

)
. (46)

he prefactor

6

N−1∑√
k(N − k)
N sin(π/(2N))
k=1

N2 − 1
(47)

anges from
√

2 for both N = 2 and N = 3 to 3/2 for N → ∞.
his prefactor changes by a total of about 6% over the entire

e
a
w

s for a constant Wi and α using the first two terms in the asymptotic expansion
nd 10 (right). The lines correspond to different values of α, from top to bottom
d the dotted line is 1 − 0.46/Wi (from Eq. (53)).

))ν/λ

⎞
⎟⎟⎟⎟⎟⎠+ O

(
1

Wi

)
, (45)

range so is not a dominant effect. We can replace this by the
symptotic value of 3/2 without significant error. Similarly, we
an replace the relaxation time using the approximation in Eq.
21) which represents the relaxation time to within an error of
bout a few percent

ˆ̄ ≈ N + 1

N − 1

(
1 − 3

2

√
1

Wi(6 + 7.26
√

λ/ν + 21.2λ/ν)

)

+O
(

1

Wi

)
. (48)

ith Eq. (48) we have a simple approximation to the response
ritten in terms of Wi. We show in Fig. 8 the value of Eq. (48) as
function of the number of beads, N, for Wi = 1 and Wi = 10

nd using the high-force criterion [7] for the effective persistence
ength (λ = 1). The curves are also at a constant total number
f persistence lengths, α = L/Atrue = ν(N − 1). Although we
o not expect Eq. (48) to accurately represent the simulations
own to Wi = 1 over the whole range of N, the larger spread
f the curves allows one to see better the shape of the curves.
he behavior at low number of beads is similar to the zero Weis-
enberg number response, which we again attribute to the fact

hat the hydrodynamic drag is exerted only on discrete beads
nstead of along a continuous contour. If the chain is very long
α � 1), there will exist a large region for which 1 
 N 
 α

nd the viscosity is

−
√

3

8Wi
+ O

(
1

Wi

)
. (49)
However, for chains with a finite length (so finite α), N will
ventually become large enough that each spring represents
small segment of polymer. The limit of this progression is
hen α 
 N. In the limit that 1 
 N and α 
 N, the viscosity
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pproaches

+ O
(

1

Wi

)
. (50)

he difference between Eqs. (49) and (50) decreases as Wi−1/2,
hich means that for very large Weissenberg number, there is no
pper limit on the number of beads past which the response devi-
tes significantly. Essentially, if the Weissenberg number is large
nough, the chain will be almost fully extended and so even if the
pring force is not represented correctly, the chain will still be in
he fully extended state. Thus, for some properties the change if
he incorrect spring force law is used may appear to have a negli-
ible effect. Note that this is different from the low Weissenberg
umber behavior which was found to have a maximum number
f beads of N1/2 
 1.15α1/2 for the Marko–Siggia spring force
aw [7]. This means that the response of the bead-spring chain
eems to be less sensitive to using an inappropriate spring force
aw when the springs become very small.

To this point we have not used an effective persistence length
hat differed from the persistence length of the WLC being mod-
led, thus λ = 1. Recall the progression of analysis used to study
he behavior at low Wi [7]. The analysis with λ = 1 showed
hat there was an error in the low Wi response if each spring
epresented too small an amount of polymer. Howeve,r if the
ow-force criterion was used for the effective persistence length,
he error due to the incorrect force law vanished in the range
f applicability of the low-force criterion. The only error that
emained was from the fact that for small number of beads, the
rag was not distributed along the contour. We would thus expect
hat a similar vanishing of the error would be present in this
ase if the high-force criterion were used. But recall that for the
arko–Siggia force law using λ = 1 is the high-force criterion.

here is still a deviation when each spring represents too few

umber of persistence lengths. Let us compare this response if
nstead λ were chosen according to the low-force criterion. This
esponse is shown in Fig. 9. Recall that as the number of beads

is increased, the number of persistence lengths per spring,

ig. 9. Comparison of the different criteria for λ and their effect on the elonga-
ional viscosity for the Marko–Siggia force law using Eq. (48). The parameters
re Wi = 1, α = 400, and either the low-force (upper curve) or the high-force
riteria (lower curve) for λ. The high-force criterion curve and the dashed and
otted lines are identical to those in Fig. 8.
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, decreases. For the low-force criterion, the effective persis-
ence will increase until the point of ν = 10/3 when λ → ∞.
t this point, the chain becomes a bead-string chain, and the

urve in Fig. 9 can not continue past that value of N. We see that
he response with the low-force criterion more quickly deviates
rom the plateau. Although it is true that the high-force criterion
roduces a more extended plateau region, there is still an error
f each spring represents a small number of persistence lengths.

If we look closer at the expansion we see that the prefactor
o Pe−1/2, that is λ−1/2, is correct if the high-force criterion is
sed and deviates if the low-force criterion is used. However,
he plots have been produced at constant Wi. To convert the
ormula from Pe to Wi the longest relaxation time must be used.
his longest relaxation time depends on the low-force behavior
f the chain. Recall that the modified Rouse relaxation time is a
unction of the second moment of the spring length, 〈r2〉, and the
ow-force criterion gets this second moment correct. Thus, when
sing the high-force criterion it is the longest relaxation time
hat deviates at high discretization causing the error, while using
he low-force criterion gets the longest relaxation time correct
to within the error between the true relaxation time and the
odified Rouse relaxation time) but has an error in the explicit

refactor to the Pe. In some sense this makes the response at high
i more complicated and a more stringent test of the accuracy

f the spring force law because the response has a contribution
aving to do with the high-force response and one having to do
ith the low-force response. However, recall that it is also a less

tringent test because if the Wi is large enough the chain is fully
xtended irrespective of the details of the spring force law.

To this point we have used the first two terms in the asymptotic
xpansion to examine analytically the behavior of the bead-
pring chains. We have gained significant knowledge about the
esponse of the bead-spring chains using an expansion that is
elatively simple to produce and will be valid at large enough
train rates. We now return to a more detailed description of
ow accurately the two terms represents the true response of the
ead-spring chains. To answer that question, we will examine
he higher order terms in the expansion. The Pe−1 correction to
q. (44) can be calculated with some effort, but the Pe−3/2 term

s excessively complex. However, we can use knowledge of the
tructure of the series and our BD simulations to generate an
pproximate form for the Pe−3/2 term. These two corrections to
q. (44) are

−1

Pe

[
7

2
(N − 1) − 3CN

]

− 1

Pe3/2

[
3.6

√
λ

ν
+
√

ν

λ
+
(

1 − 2

N2

)( ν

λ

)3/2
]

. (51)

hile the Pe−3/2 term is only approximate, with the addition
f these two terms, the expansion models well the response
f chains with N = 2, 5, 10, 30 and ν/λ = 1, 10, 100, 1000 for

ows ranging from Wi = 1 to Wi = 1000. The expansion has
typical error of 2% for Wi = 1 with a much smaller error for
igher Wi. Using this, we can find the next corrections to Eqs.
49) and (50). The next correction for Eq. (49) comes from exam-
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ning the limit 1 
 N 
 α. In that limit the Wi−1 term vanishes
nd the Wi−3/2 term becomes

−0.07

Wi3/2 , (52)

here the possible error in the coefficient results because this
erm was only inferred from the simulations. While this cor-
ection will play a role if the Wi is not large enough, it should
lay a secondary role and the qualitative behavior discussed pre-
iously will remain unchanged. The correction for Eq. (50) is
ore subtle. When only using the first two terms in the expan-

ion, the Wi−1/2 term vanishes in the limits 1 
 N and α 
 N

s the chain approaches the bead-string chain. Therefore, we
nly capture the finite extensibility but not the approach to finite
xtensibility. In this limit theO(1) term is modeled correctly, but
he O(Wi−1/2) term of the worm-like chain is not. To examine
his limit we must examine the higher terms in the expansion.
owever, we see that the coefficient to the Wi−3/2 term actually
iverges. This happens because the limit to a bead-string chain
s a singular limit. It is similar to the force-extension behavior at
arge force using the Marko–Siggia spring force law. Thus, the
e−1 term in Eq. (51) is the behavior seen if, for a constant ν/λ,

he Pe is made large. If instead the limit ν/λ → 0 is taken for a
onstant Pe or Wi, the response should approach the bead-string
hain. If this bead-string chain response is expanded for large
e or Wi, the Pe−1 term is different than in Eq. (51). The coeffi-
ient to Pe−1 depends on the order in which the limits are taken.
e have already seen the expansion of the bead-string chain (if

/λ → 0 in Eq. (25)) which has a Pe−1 term that is similar to
he one in Eq. (51) but with the 7/2 replaced by a 4. Thus, in the
imit 1 
 N but α 
 N the true next correction to the response
f the Marko–Siggia bead-spring chains as seen in Figs. 8 and 9
s

−0.46

Wi
, (53)

here the possible error in this coefficient results from using
ur approximate formula for the relaxation time (used to convert
rom Pe to Wi) in the limit ν/λ → 0.

We have now examined the next corrections to the behavior
n the two different limits, both 1 
 N 
 α and 1 
 N and

 N. While these obviously affect the quantitative compari-

on between the curves in Figs. 8 and 9, the qualitative nature
ill not be changed significantly because at a large enough Wi
nly the first two terms in the expansion are sufficient to describe
he simulation results.

The analysis of the Marko–Siggia force law has shown that
he response does begin to deviate at large enough discretization
ecause each spring represents too small a segment of polymer.
n this limit the Marko–Siggia spring force law does not accu-
ately capture the response of the worm-like chain it is trying to
epresent. A new spring force law has been developed which can

e used to model a worm-like chain even if each spring repre-
ents as few as 4 persistence lengths (provided the whole chain
ontains many persistence lengths) [9]. This new force law was
iven in Eq. (2). The expansion of the elongational viscosity

a
w
fi
t

an Fluid Mech. 145 (2007) 109–123

sing this new spring force law for the worm-like chain is

˜̄ ∼ ˜̄η∞ −
√

ν

2Pe

N−1∑
k=1

√
k(N − k) + 3CN

Pe
+ O

(
1

Pe3/2

)
.

(54)

e can explicitly see from this expansion the great advantage
f the new spring force law. Note that the Pe−1/2 term looks
ike that for the Marko–Siggia force law using the high-force
riterion for the effective length, while the new force law does not
eed to use an effective persistence length. Previously we saw
hat even using the high-force criterion and the Marko–Siggia
orce law, the response deviated at high discretization because
he longest relaxation time (used to convert from Pe to Wi) did
ot correctly compensate for the ν in the expansion. Using the
dea of a modified Rouse relaxation time, we can understand
hat essentially the relaxation time deviated because the size
f the spring at equilibrium 〈r2〉 was incorrect. However, the
ew spring has by construction the correct equilibrium 〈r2〉. To
ithin the accuracy of the modified Rouse relaxation time, the

ongest relaxation time will be correctly modeled even at high
iscretization.

The other advantage of the new spring force law is the order
e−1 term. In developing the new force law, the coefficient to

he r̂/(1 − r̂2) term in the force law was determined such that
he f−1 term in the force-extension behavior near large force
ould vanish (which it does for very long worm-like chains).
hile this choice does not make the Pe−1 term vanish here in

he elongational viscosity, the coefficient is made O(1) instead
f O(N) which is a significant reduction when N is large. Recall
hat N must be large to even be in the plateau region of dis-
retization. We postulate that the true continuous worm-like
hain would not have a Pe−1 term just as it did not have a f−1

erm in the force-extension behavior. Thus, even at the next order
n the expansion having the correct force-extension behavior
orresponds to having the correct behavior in elongational flow.

Finally, we can compare between the response of freely
ointed chains and worm-like chains. Consider a worm-like
hain with α = 400 persistence lengths at a Wi = 10. Fig. 10
hows the elongational viscosity using the Marko–Siggia force
aw with λ = 1 as a function of the number of beads used in the

odel. The curve plotted is from Eq. (48) with the additional
erms from Eq. (51). We also show in Fig. 10 the response of
hains using the FENE spring force law attempting to model the
orm-like chain. It is important to note that FENE chain used

o model a worm-like chain with 400 persistence lengths would
ave α = 600 (i.e. there are 200 Kuhn lengths, so three times
he number of Kuhn lengths is 600). In Fig. 10 we plot Eq. (30)
or the FENE force law with α = 600, Wi = 10, and λ = 1.

This figure illustrates the difference in response between
he two force laws and the different micromechanical models
t large Wi. The weaker approach towards maximum elogna-
ional viscosity as Wi−1/2 for the worm-like chain results in
smaller elognational viscosity than the freely jointed chain,
hich approaches as Wi−1. However, as each model is more
nely discretized, both eventually approach the same model,

he bead-string chain.
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Fig. 10. Comparison of the elongational viscosity between models using the
Marko–Siggia vs. FENE force laws. The solid lines correspond to Marko–Siggia
(lower, Eq. (48) modified with Eq. (51)) and FENE (upper, Eq. (30)). The models
contain 400 persistence lengths (α = 400 for Marko–Siggia, α = 600 for FENE)
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nd are at Wi = 10 with λ = 1. The dotted line represents the bead-string result
Eq. (32)). The dashed lines represent the plateau regions for Marko–Siggia
lower, Eq. (49)) and FENE (upper, Eq. (31)).

In this section we have analyzed the behavior of bead-spring
hains in uniaxial elongational flow at large strain rates. After
erifying the applicability of the expansion for large strain rates,
e could use the expansion to better understand the physical
rigin of the chain response. We found that if the strain rate is
arge enough, the chain is essentially fully extended and so the
longational viscosity is the fully extended value virtually inde-
endent of the accuracy of the spring force law. However, the
deficit”, or how close the system is to that plateau, does depend
n the accuracy of the spring force law. In fact the accuracy
f this deficit is even more subtle to understand than the weak
ow response. The response certainly depends on the behavior
f the spring near full extension which is shown by the expan-
ion of the viscosity in terms of Pe. However, it is conventional
o express the expansion in terms of a Weissenberg number,
hich uses the longest relaxation time. This longest relaxation

ime depends on the equilibrium response of the spring, not the
esponse near full extension. To get the correct behavior for the
eficit a model should get both behaviors correct, at large forces
nd at equilibrium. For the Marko–Siggia spring force law, nei-
her the low-force nor the high-force criteria capture correctly the
esponse at both extremes. For this reason the deficit is incorrect
f very small springs are used. However, our new spring force
aw does get the behavior correct at low force and high force, and
hus represents the deficit correctly even to high discretization
rovided the number of beads is large enough.

It is useful to review at this point the main features we have
bserved through the analysis of the elongational viscosity at
arge strain rates. At very large strain rates the chain is vir-
ually fully extended, so as long as the spring has the correct
ully extended length �, this infinite strain rate viscosity is inde-
endent of the details of the spring force law. In this sense the

ehavior at large enough strain rate is insensitive to the details
f the spring force law. However, some experiments may aim to
xplore more than the absolute value of viscosity (or similarly
ractional extension). For example, ref. [27] used the deficit (dif-

c

M
t
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erence between the fractional extension from full extension) to
istinguish between the worm-like chain, freely jointed chain,
nd stem-flower models. Shaqfeh et al. [28] and Doyle et al.
29] examined the relaxation after strong elongational flow and
ound that the relaxation was highly influenced by the deficit
way from the fully extended state. For a bead-spring chain to
ccurately represent these types of response of a micromechan-
cal model, it is necessary to capture not only the plateau but
lso the approach to the plateau. This approach is sensitive to
he accuracy of the spring force law. In fact it is dependent on the
orce law both near full extension and at equilibrium because of
sing the longest relaxation time to form a Weissenberg number.
or this reason previously used spring force laws do not capture

his deficit when each spring represents a small segment of poly-
er. However, the new spring force laws developed to represent

he worm-like chain and freely jointed chain do not deviate at
igh discretization.

. Influence of hydrodynamic interactions

In this article we have focused on the role of the spring force
aw and have not included effects of hydrodynamic interactions.
n highly extended states we expect the effect will be much less
han in the coiled state, and the spring force law will play the

ajor role. For the Marko–Siggia force law, we found that the
longational viscosity has a series expansion of the form

η̄ − 3ηs

npζ�2 ∼ N(N2 − 1)

12

(
1 − C

Pe1/2 + O
(

1

Pe

))
. (55)

ertainly the plateau value will be dependent on hydrodynamic
nteractions, which changes the scaling with length to include a
ogarithm. However, we postulate the coefficient C may have the
ame scaling with or without hydrodynamic interactions. This is
ecause the chain is so close to full extension that the positions
f the beads, and therefore their interactions, will not be much
ifferent from in the fully extended state. The postulated form
s thus

¯ − 3ηs ∼ (η̄ − 3ηs)∞
(

1 − C

Pe1/2 + O
(

1

Pe

))
. (56)

hether the scaling of C is the same with and without hydro-
ynamic interactions has interesting consequences. Without
ydrodynamic interactions the scaling is C ∼ N−1. This is
onsistent with turning the Peclet number into a Weissenberg
umber, because without HI the longest relaxation time scales
s N2. However, in the non-draining limit, the longest relax-
tion time scales as N3/2. Turning the expansion Pe to Wi using
non-draining scaling for the longest relaxation time gives a

oefficient of

CN3/4

Wi1/2 . (57)

f the value of C scales as N−1, this implies a vanishing coeffi-

ient to Wi−1/2 as N → ∞.

To test this hypothesis, we performed simulations using the
arko–Siggia force law and the RPY hydrodynamic interaction

ensor, with parameters ν = 200, λ = 1, and h∗ = 0.25 [2]. We
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Fig. 11. Coefficient of the Pe−1/2 term, C, as a function of the number of beads
with and without HI. The spring force law is Marko–Siggia with ν = 200 and
λ
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= 1. The squares are without HI and the diamonds are from BD simulations
sing the RPY tensor and h∗ = 0.25. The dashed lines represent power laws of
−1, N−0.9, and N−0.75.

erformed simulations at a range of Pe until we were confident
hat higher order terms in Pe were negligible and extracted a
alue of C from the simulation data. The infinite Pe number
esponse was calculated exactly using the formalism presented
n an appendix to ref. [3]. In Fig. we plot the value of C cal-
ulated from the simulations versus N. From the figure we can
ee clearly that the the scaling is not N−3/4. The fitted scaling
s approximately N−0.90 for the largest N simulated here.

These simulations bring about an interesting point which war-
ants further investigation. If the scaling of C with N in the large
hain limit is different than N−3/4 as we see here, that means that
ear the fully extended state the time used to convert from Pe in
rder to have collapse of the data in the long chain limit is not the
ongest relaxation time. However, it may be necessary to reach
he non-draining limit in the extended state in order to reach
he long chain limit scaling of the coefficient. By non-draining
imit in the extended state, we mean that the plateau viscosity
cales as would be expected from Batchelor’s formula. We can
stimate the number of beads necessary to be in that limit using
n approximate formula in the appendix of ref. [3]. Because of
he slow logarithm convergence in the number of beads, with
he parameters used here, the number of beads would have to be
reater than 106 to be into the non-draining limit in the extended
tate. This is not feasible to simulate. A better route to reach
he non-draining limit would be make each spring represent a
maller segment of polymer. However, care should be taken to
ake sure the correct h∗ is used relative to the size of a spring.

. Conclusion

In this article we have looked at the behavior of bead-spring
hain models in strong flows and the effect of the spring force
aw. We did this for coarse-grained models of both the WLC and

JC. We expect that EV effects are small in such strong flows and

he effects of HI may be small (or smaller) so we initially neglect
hose contributions. The longest relaxation time was examined,
hich is used to express the strain rate as a Weissenberg number.
an Fluid Mech. 145 (2007) 109–123

t was shown that the chain samples the nonlinear regions of the
orce law even at equilibrium, making the relaxation time devi-
te from the Rouse result. However, a modified Rouse model
s able to capture the relaxation time even if each spring repre-
ents a small segment of polymer. This modified Rouse model
ives insight into the important role the force-extension behav-
or at small force plays in determining the longest relaxation
ime.

We looked at the elongational viscosity in the limit of large
train rates and used the first few terms in the expansion to under-
tand how the response of the chain changes as the level of
iscretization changes and for different spring force laws. We
asically saw that for arbitrarily large strain rate the viscosity
ecomes not as sensitive to getting the spring force law cor-
ect because the system is always fully extended. However, it
s important to model correctly how close the chain is to fully
xtended. To get this correct it is even more sensitive than in
eak flows/equilibrium. This is because you are in a highly

xtended state so the expansion depends on that behavior, but
lso when writing the response in terms of a Wi with the longest
elaxation time, that is influenced by the low-force/equilibrium
ehavior. So to really get the correct response you need to get
oth correct. Using the previous force laws with an effective
ersistence length requires a trade-off to get one right or the
ther but not both. Our new force laws get both correct so do
ot deviate when each spring represents a small segment of
olymer.
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