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ABSTRACT: Partial substitution of Zn" by Mn" in
Zns(OAc),(S,5 -bibenzo[d][1,2,3]triazole); (CFA-1) results in
a Mn" species supported by three nitrogen ligands and a charge-
balancing anion, a structure reminiscent of those found in
molecular “scorpionate” complexes. Unlike molecular
manganese(II) scorpionates, Mn-CFA-1 is capable of catalyti-
cally activating oxygen from air to oxidize C—H bonds up to 87
kcal/mol in strength. A series of in situ spectroscopic studies,
including diffuse-reflectance UV—vis, diffuse-reflectance infrared
Fourier transform spectroscopy, and X-ray absorption spectros-
copy, reveal that catalysis likely proceeds through a manganese-
(II1) hydroperoxo that is only accessed in the presence of a
hydrogen-atom donor. These results demonstrate that the site
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isolation provided in metal—organic frameworks enables the generation and utilization of highly reactive species for catalysis

that are inaccessible in molecular systems.

B INTRODUCTION

Selective oxidations are key steps in the transformation of both
petroleum and biofeedstocks into commodity chemicals and
ultimately into consumer products. Often, oxidations are
achieved with the intermediacy of reactive metal oxo species,
which typically suffer either from indiscriminate reactivity and
a lack of selectivity toward a range of C—H bonds or from
bimolecular decomposition.'~* Manganese is an element of
interest for these transformations because of its prevalence in
biological transformations involving oxygen-atom transfer and
the ease of access to multiple redox states.’”® However,
manganese-based molecular catalysts are particularly prone to
bimolecular decomposition, while most isolated molecular
examples of manganese(IV) oxo species display sluggish
oxygen-atom-transfer reactivity, at least, in part, because of
the strongly donating ligand fields and steric bulk typically
required for their isolation.”” "'

Metal—organic frameworks (MOFs) confer several advan-
tages for heterogeneous small-molecule chemistry, lending
such attributes as ease of product separation and site isolation,
coupled with well-defined, tunable catalytic sites.'>~"> The
combination of these features enables access to unique
coordination geometries around metal ions that are otherwise
inaccessible in molecular analogues and sometimes lead to
unusual reactivity.'”"” The carboxylate and azolate binding
moieties that often serve as the node-to-linker interface in
MOFs offer relatively weak ligand fields, especially compared
to those found in the ligands of molecular manganese
complexes. These weaker ligand fields combined with site
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isolation make it possible to access and utilize highly reactive
metal—oxygen species.'®

Here, we took inspiration from a family of molecular
manganese complexes colloquially known as “scorpionates”,
which feature manganese—oxygen species that are primed for
reactivity.'”?* Indeed, several molecular scorpionate-based
manganese(III) peroxo species have been isolated, albeit
through harsh oxidizing agents such as hydrogen peroxide or
potassium superoxide.”' >’ No catalysis has been reported
with these species, presumably either because they are
sterically accessible but plagued by instability or because they
are relatively stable but sterically inaccessible. We surmised
that the incorporation of such species within scorpionate-like
MOFs would unlock the reactivity potential that has not yet
been achieved with molecular manganese scorpionates. This
approach is inspired by earlier work wherein Kuratowski
clusters in materials such as Zn;Cl,(BTDD), (MFU-4[)** and
Zng(OAc),(bibta), (CFA-1)*° serve as excellent platforms for
site-isolated scorpionate chemistry.”°*> The secondary
building units (SBUs) in both of these materials offer metal
sites supported by three nitrogen ligands and a charge-
balancing anion, comprising a ligand field that is far weaker
than those typically reported for known molecular manganese-
(IV) oxo species.” Altogether, these properties make CFA-1,
made from a more accessible ligand than MFU-4], a
particularly attractive platform for the isolation of reactive
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high-valent manganese—oxygen species potentially capable of
selective catalytic C—H activation chemistry.

Bl RESULTS AND DISCUSSION

Mn-CFA-1 (Figure 1) can be accessed via cation exchange at
room temperature by gently stirring CFA-1, a crystalline

Figure 1. (a) Pore structure of CFA-1 (hydrogen atoms and acetate
anions omitted for clarity) (b) SBU of CFA-1 (c) schematic of cation
exchange reaction in CFA-1

powder, with 50 equiv of MnCl,-4H,0 in N,N-dimethylfor-
mamide (DMF) for 7 days. Thorough washing of the solid
material isolated from this reaction with DMF and methanol,
followed by activation under dynamic vacuum at 180 °C, yields
a crystalline material with a Brunauer—Emmett—Teller (BET)
surface area of 1990 m?/g, consistent with that of the CFA-1
starting material (see the Supporting Information).”> Analysis
by inductively coupled plasma optical emission spectrometry
(ICP-OES) indicates the incorporation of two manganese
atoms per SBU, and the 'H NMR of an acid-digested material
revealed the presence of some residual acetate anions.

A comparison of the X-ray absorption near-edge spectros-
copy (XANES) features collected on the activated material
sealed in a capillary under an inert atmosphere to Mn"
reference compounds indicated that the manganese present
in Mn-CFA-1 is in the 2+ formal oxidation state (Figure 2).
Exposure of activated Mn-CFA-1 to air for several hours led to
only a slight shift in the edge energy (+0.2 eV) relative to
pristine Mn-CFA-1 and is indicative of the coordination of a
small amount of water to Mn" rather than oxidation to Mn" or
higher. Indeed, formal oxidation would be expected to shift the
edge energy by several electronvolts, as evidenced by Mn™
standards such as Mn,O; and Mn(OAc); (Figure 2).

The first signs of intriguing reactivity of the manganese
scorpionate moieties in Mn-CFA-1 came from stoichiometric
oxidations of substrates such as cyclohexene to products
including cyclohexen-1-0l, cyclohexen-1-one, and cyclohexene
oxide using a variety of oxidants including tert-butylsulfonyl-2-
iodosylbenzene and tert-butyl hydroperoxide. The more
remarkable reactivity was observed, however, when using air
as the terminal oxidant, which led to catalytic and selective
formation of alcohol and ketone products from a variety of
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Figure 2. XANES data for Mn-MOFs compared with manganese
standards.

substrates including ethylbenzene, cyclohexene, cumene, and
1-hexene but not including substrates with stronger C—H
bonds such as toluene and cyclohexane. Evidencing the key
role of manganese in this reactivity and the heterogeneity of
the manganese catalytic site, all-zinc CFA-1 does not enable
catalysis under identical conditions, while ICP-OES of a
postcatalysis filtrate sample presented no detectable manganese
traces in solution. Additionally, powder X-ray diffraction
(PXRD) of the solid material postcatalysis indicated good
crystallinity that was unchanged from that of the Mn-CFA-1
starting material (Figure S1), eliminating the possibility of
framework decomposition.

The heterogeneous nature of the catalysis was further
confirmed by a size-exclusion experiment. Thus, Mn-CFA-1
was found to catalyze oxidation of 1,3,5-triisopropylbenzene
for a total of 3.3 turnovers per manganese, whereas cumene
oxidation was 2.5 times more efficient, with 8.3 turnovers per
manganese. It is expected that both of these substrates have
comparable benzylic C—H bond strengths; however, cumene
at its narrowest width is approximately 4.2 A, while the
narrowest width of 1,3,5-triisopropylbenzene is approximately
7.3 A. The channels of CFA-1 are only 6.2 A at their widest
aperture. Presumably, whereas cumene is able to diffuse
through the pores of the material and undergo oxidation
catalyzed by the site-isolated manganese species within, 1,3,5-
triisopropylbenzene is likely only able to access manganese
species on the surface of the MOF crystals, resulting in more
limited conversion. These results are in line with previous
observations of size-selective catalysis with MOFs,"***~*°

Because of the previously mentioned observation of acetate
upon acid digestion of Mn-CFA-1, the impact of the charge-
balancing anion identity on catalysis was investigated. Attempts
at performing cation exchange on CFA-1 with Mn(OAc),
4H,0, which would theoretically yield a material featuring only
acetate anions, were unsuccessful. Additionally, attempts at
complete anion exchange of acetate for chloride in Mn-CFA-1
resulted in a poorly crystalline material with severely lowered
surface area. Fortunately, the pentanuclear zinc cluster that is
the SBU of CFA-1 is a motif that can be found in other MOFs
as well, most notably MFU-4l. The latter is isolated with
chloride as the charge-balancing anion rather than acetate, thus
ensuring that the manganese-exchanged material will feature
chloride as the only charge-balancing anion. It has been
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Table 1. Effect of Catalyst, Oxidant, and Reaction Time on the Total Catalyst TON and Selectivity”

TON
catalyst oxidant time alcohol? ketone® sum of the alcohol and ketone products ratio of alcohol/ketone
Mn-CFA-1 air 1S min 2.8 32 6 1:1.1
Mn-CFA-1 air 1h 3.8 5.0 8.8 1:1.3
Mn-CFA-1 air 6 h 3.8 6.9 10.7 1:1.8
Mn-CFA-1 0, (2 bar) 18h 54 15.8 212 1:2.9
Mn-MFU-4] air 18 h 0.9 0.5 1.4 1:0.55
Mn(CO,CH,)-MFU-4] air 18h 47 147 194 1:1.3
Mn(CO,CF,)-MFU-4] air 18h 55 111 16.6 1:2.0

“Typical reaction conditions: 10 mg of MOF, 1 mL of cyclohexene, 22 °C. “Turnovers of cyclohexen-1-ol calculated with respect to manganese.

“Turnovers of cyclohexen-1-one calculated with respect to manganese.

Scheme 1. Proposed Catalytic Cycle for Oxidation of Cyclohexene by Mn-CFA-1 in Air
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previously reported that highly sensitive catalysis, such as
ethylene dimerization to selectively yield 1-butene, proceeds
identically in both the CFA-1 and MFU-4! platforms;”’ given
their remarkably similar geometries, this was expected to be the
case for the oxidation reactions discussed in this work as well.
Thus, Mn-MFU-4] was synthesized in a manner similar to that
described for Mn-CFA-1 and slightly modified from what has
been previously reported.”” MFU-4] was gently stirred in a
DME solution containing 50 equiv of MnCl,-4H,O for 7 days.

The solid material isolated from this reaction was washed
thoroughly with DMF and methanol and then activated under
a high vacuum at 180 °C until a pressure of 10™° Torr was
achieved. This procedure yielded a high-quality material with
good crystallinity and a BET surface area of 3570 m?®/g,
consistent with that of the MFU-4/ starting material and with
the value previously reported for Mn-MFU-4l. ICP-OES
analysis indicated the incorporation of 1.8 manganese atoms
per SBU, and the 'H NMR of the acid-digested material
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confirmed that, indeed, no acetate anions were present.
Extended X-ray absorption fine structure (EXAFS) analysis
was performed on this material and yielded a fit consistent with
the substitution of manganese for zinc into the MOF
framework, complete with a charge-balancing chloride anion.
Details of this analysis can be found in the Supporting
Information.

Tellingly, for the influence of the anion on reactivity, Mn-
MFU-4l, which is never exposed to acetate, does not catalyze
the oxidation of cyclohexene with air, with the reactivity
observed being merely stoichiometric (Table 1). Subjecting
Mn-MFU-4] to a sodium acetate solution yields Mn-
(CO,CH;)-MFU-4l, a material with good crystallinity where
2.7 chlorides per SBU are replaced by acetates (see the
Supporting Information). This acetate-exchanged Mn-MFU-4/
does enable catalytic oxidation of cyclohexene in the presence
of air, conclusively demonstrating the critical role of acetate for
oxidation activity by manganese in both Mn-CFA-1 and Mn-
MFU-4l. Adding a large excess of sodium acetate to Mn-CFA-1
did not significantly increase the number of turnovers for
cyclohexene oxidation, suggesting that acetate is not consumed
in the reaction, but rather facilitated it as a ligand on the
manganese. Importantly, replacing even only 0.9 of the
chloride anions in each SBU of MFU-4/ by trifluoroacetate
produces a material, Mn(CO,CF;)-MFU-4/ (see the Support-
ing Information), that is as active as Mn-MFU-4] with a more
significant acetate content, underscoring the importance of
weak ligand-field anions in promoting oxidation catalysis with
manganese-substituted Kuratowski clusters.

Visual inspection of the reaction progress provides first clues
to the potential mechanism of O, activation and reactivity with
the manganese-exchanged MOFs. Thus, when substrates with
sufficiently weak C—H bonds are added to beige Mn-CFA-1 in
air, the MOF turns black upon contact and then rapidly
lightens to dark brown over the course of 5 min; as the
reaction continues overnight, the material returns to its original
color. This series of color changes is not observed when the
substrate is introduced to Mn-CFA-1 in the absence of oxygen,
nor is it ever observed when the substrate has C—H bonds that
are too strong to be oxidized, such as toluene. These visual
observations combined with the decline in catalyst perform-
ance over time suggest that a highly reactive species forms
initially only in the presence of both O, and substrate and that
this species is responsible for the majority of the observed
reactivity, before disappearing from the reaction mixture. A
plausible scenario is one where, in the presence of a suitable
hydrogen-atom donor, manganese(III) hydroperoxo is formed
and kicks off the catalytic cycle shown in Scheme 1. Although
rare, the few manganese(III) hydroperoxo species reported in
the literature are accessed in a similar manner: a Mn"' complex
is oxidized by molecular oxygen in the presence of a hydrogen-
atom donor to yield manganese(III) hydroperoxo, presumably
via a very transient manganese(11I) superoxof“’42 In support of
this hypothesis, the addition of only 10 equiv of benzoquinone
per manganese, a well-known superoxide and hydroperoxide
scavenger,34’43 results in a more than 60% reduction in the
oxidized product produced by Mn-CFA-1 in air. Although the
proposed manganese(III) hydroperoxo was not isolable in our
hands, we assign its relative instability to the comparatively
weaker ligand field conferred by Mn-CFA-1 relative to those in
reported manganese(Ill) hydroperoxo molecular species.
Notably, the same reasoning explains the increased reactivity
of the putative manganese(III) superoxo here, which is able to

oxidize stronger C—H bonds than previously seen with
molecular systems.

In line with our qualitative visual observations, in situ
spectroscopic experiments confirmed oxidation of Mn" in Mn-
CFA-1 as well as changes in its electronic structure upon
exposure to cyclohexene in air. Although Mn"-CFA-1 in air has
no strong absorptions in diffuse-reflectance (DR) UV-—vis
(Figure 3a), new absorptions at 439 and 650 nm appear upon
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Figure 3. (a) DR UV—vis and (b) XANES data of Mn-CFA-1 in air,
before and after exposure to cyclohexene.

the addition of 1 drop of cyclohexene. These bands are not
associated with pure cyclohexene itself and likely indicate the
formation of Mn'"™, wherein d—d transitions become spin-
allowed.

In situ XANES measurements provided more conclusive
evidence for the formation of Mn"™ upon exposure of Mn-
CFA-1 to both cyclohexene and air. Thus, whereas exposing
Mn-CFA-1 to a flow of simulated air (20% O, in N,) produced
no visible changes in the XAS spectrum, adding cyclohexene to
the in situ gas flow caused an abrupt change in the edge energy
and line shape (Figure 3b). More specifically, a shift in the
edge energy of +0.5 eV and a shift of the preedge feature by
+0.3 eV were consistent with the oxidation of manganese.
Although not as dramatic as those observed for molecular
manganese scorpionates undergoing oxidation from Mn" to
Mn'L** we note that the Mn™! in our system is likely not a
dominant species when the system reaches the steady state.
Indeed, in light of the catalytic cycle proposed in Scheme 1, we
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Figure 4. In situ DRIFTS of Mn-CFA-1 after exposure to O, and cyclohexene. Spectra were collected over the course of 15 min; a feature at 903

cm ™! grows in (a) and then diminishes (b), as does a feature at 827 cm

, which also grows in (c) and then diminishes (d)

do not anticipate that 100% of the manganese in the sample
would be oxidized from Mn" at any given point in time. Of
even greater interest is the decrease in the intensity of the
preedge feature at 6540.3 eV upon exposure to cyclohexene.
The preedge features of Mn-XANES spectra are closely related
to the symmetry at the manganese site*”** and here suggest
that the manganese site reaches a more centrosymmetric
environment upon exposure to air and cyclohexene, resulting
in a less intense preedge feature. This would be in line with the
manganese atom gaining another ligand (such as the
hydroperoxo).

Additional evidence for the formation of manganese(III)
hydroperoxo came from in situ diffuse-reflectance infrared
Fourier transform spectroscopy (DRIFTS; Figure 4). Exposing
Mn-CFA-1 to a 10 s “pulse” of O, flowing through a saturator
filled with cyclohexene caused the appearance of a band at 903
cm™ over the course of 20 min, which then gradually
disappeared. This frequency is in the region of the O—O bond
stretch of the putative hydroperoxo species, as numerous
manganese(III) side-on peroxo, manganese(IIl) hydroperoxo,
and manganese(III) alkylperoxo species have been reported in
the same region.u—zs’“’%’47 One other band of interest that
exhibits the same transient behavior as that at 903 cm™' (that
is, it grows in and then disappears over the course of
approximately 20 min) is 827 cm™". Intriguingly, this frequency
is most in line with those of terminal manganese(IV) oxo

species. Although such species are extremely rare, one reported
instance for the Mn—O stretching frequency in a manganese-
(IV) oxo places it at 845 cm™'.*>"

Although the Mn-CFA-1 and Mn-MFU-4/ systems allow the
identification of rare, transient manganese(III) hydroperoxo
and potentially of a manganese(IV) oxo species with notable
reactivity toward C—H bonds, the catalytic activity of these
high-valent manganese species is quickly quenched by water
formed during the reaction. The appearance of water is readily
discernible through in situ DRIFTS experiments (Figure SS).
Even increasing the availability of the oxidant by performing
the reaction under 2 bar of O, and increasing the duration to
18 h did not result in more than a marginal increase in the
catalytic performance (Table 1). This is also consistent with
the only transient appearance of spectroscopic signatures of
Mn"-OOH and manganese(IV) oxo that are not discernible
beyond the first 30 min of the reaction. Indeed, it is highly
likely that the proposed catalytic cycle is only in effect initially,
and further turnovers achieved after the inaugural few rounds
of catalysis are instead the result of radical processes. Indeed,
the addition of 10 equiv of 2,4,6-tri-tert-butylphenol, a free-
radical scavenger that is too large to diffuse into the pore of
Mn-CFA-], to the reaction inhibits conversion of cyclohexene
to oxidized products and, interestingly, keeps the product
distribution closer to 1:1 for reactions run for longer than 1 h
(Table 2).
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Table 2. Effect of the Free-Radical Inhibitor 2,4,6-Tri-tert-butylphenol and Reaction Time on the Total Catalyst TON and

Selectivity”
catalyst oxidant  addition of a free-radical inhibitor®  time
Mn-CFA-1 air no 1h
Mn-CFA-1 air yes 1h
Mn-CFA-1 air no 6h
Mn-CFA-1 air yes 6h

TON
alcohol®

3.8
0.4
3.8

ketone?  sum of the alcohol and ketone products alcohol/ketone ratio

5.0 8.8 1:1.3
0.5 0.9 1:1.3
6.9 10.7 1:1.8
1.6 3 1:1.1

“Typical reaction conditions: 10 mg of MOF, 1 mL of cyclohexene, 22 °C. ®10 equiv of 2,4,6-tri-tert-butylphenol. “Turnovers of cyclohexen-1-ol
calculated with respect to manganese. “Turnovers of cyclohexen-1-one calculated with respect to manganese.

The detrimental effect of water on catalysis is made obvious
when water is added directly to Mn-CFA-1 prior to the
addition of cyclohexene, which reduces product formation by
75%. Although clearly a limitation in batch processes, the
generation of reaction-limiting water in situ could be mitigated
by implementing catalysis in a flow system. In a setup where all
products (desired and otherwise) are swept out of the catalyst
bed before having a chance to further react, Mn-CFA-1 could
exhibit increased turnover numbers (TONs) for olefin
oxidation and potentially increased selectivity. Indeed, a time
point study indicated that the bulk of the observed activity for
Mn-CFA-1 occurs within the first 15 min of the reaction. Even
during this time, the selectivity shifts from an initial alcohol/
ketone ratio of approximately 1:1 to the favoring of ketone
products over alcohol products as the reaction progresses. The
implementation of a flow approach employing Mn-CFA-1 is
ongoing.

B CONCLUSION

The foregoing results highlight how the site isolation and
relatively weak ligand fields generally exhibited by MOFs, here
exemplified by CFA-1, enable the activation of O, by a Mn!
species in a scorpionate environment, followed by reactivity
that has not been accessible in molecular systems. Mn-CFA-1
is capable of catalytically oxidizing weak C—H bonds using air
as the terminal oxidant with the proposed intermediacy of
Mn"-OOH. The data provide evidence that this catalysis is
influenced by the identity of the charge-balancing anion, and
preliminary results suggest that more weakly coordinating
species, such as trifluoroacetate, promote even greater catalytic
activity. The reaction is inhibited by the inherent formation of
water as a side product, likely because of the highly reactive
nature of the intermediates in our proposed catalytic cycle,
making this catalyst an intriguing candidate for continuous-
flow chemistry.
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