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Spectroscopic Evidence of Hyponitrite Radical Intermediate in NO
Disproportionation at a MOF-Supported Mononuclear Copper Site

Chenyue Sun, Luming Yang, Manuel A. Ortuiio, Ashley M. Wright, Tianyang Chen,
Ashley R. Head, Nuria Loépez, and Mircea Dinca*

Abstract: Dianionic hyponitrite (N,O,’") is often proposed,
based on model complexes, as the key intermediate in reductive
coupling of nitric oxide to nitrous oxide at the bimetallic active
sites of heme-copper oxidases and nitric oxide reductases. In
this work, we examine the gas-solid reaction of nitric oxide with
the metal-organic framework Cu'-ZrTpmC* with a suite of in
situ spectroscopies and density functional theory simulations,
and identify an unusual chelating N,O,~ intermediate. These
results highlight the advantage provided by site-isolation in
metal-organic frameworks (MOFs) for studying important
reaction intermediates, and provide a mechanistic scenario
compatible with the proposed one-electron couple in these
enzymes.

Introduction

The majority of naturally occurring nitrous oxide (N,O) is
produced by reductive homocoupling of nitric oxide (NO),
2NO +2e +2H" — N,O + H,0, catalyzed by various nitric
oxide reductases (NORs) or heme-copper oxidases
(HCOs).l"¥1 The orchestrated cleavage and formation of
strong N=0O and N=N bonds are mediated by sophisticated
binuclear centers, such as Fe(heme)-Fe(His);(Glu) in
cNOR," or Fe(heme)-Cu(His); in HCO (Figure 1a).! Mech-
anistically, it is widely acknowledged that the N=N bond
forms with influx of two electrons to give a hyponitrite (ON=
NO?") intermediate.”) However, we know little about the
temporal order of electron transfer steps versus N-N
coupling.” Intriguingly, there are clues in favor of N-N
coupling occurring at a le -reduced bimetallic center,
implying the formation of monoanionic, radical N,O,”. One
such clue is that the 2e"-reduced state is energetically highly
unfavorable. Indeed, many studies find the heme in the
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Figure 1. a) The bimetallic active site in cbb; oxidase, the most active
NO-reducing HCO (PDB 3MK7). b) Structure of Cu-ZrTomC* (A) and
close-up at the metalloligand. An ideal full metalation is shown for
simplicity. Hydrogen atoms and tetrafluoroborate anions are omitted
for clarity. (Structure reported in Ref. [30].)

bimetallic active site lying more than 200 mV below the
standard reduction potential of the electron relay hemes and
the non-heme metals (Feg or Cug).*"!! In the case of Cup, this
would entail a transformation from {CuNO}" to a radical
monoanionic hyponitrite, Cu-N,O,”. To our knowledge,
such an intermediate has not been observed yet, presumably
due to its reactivity.

Molecular model systems often provide a fertile ground
for understanding aspects of enzymatic mechanisms. In this
case, much effort has been made to characterize the M-N,O,
unit in a biomimetic system.'>"! In cases where M-N,O,
adducts are sufficiently stable to allow isolation and crystallo-
graphic characterization, exclusively dianionic N,O,*~ species
have been found (M = Cu, ™l Fe ') Co, 18 Ni, 12 or Ptl2!1),
However, caution should be taken to not conflate crystallized
products with true intermediates."¥! The latter are arguably
more directly identifiable through in situ spectroscopic
methods. For this purpose, the stoichiometric disproportio-
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nation of NO (M"* 4+ 3NO — M®™VY*.NO, + N,0) is often
used as a surrogate reaction to reductive NO coupling,
because formation of N,O via disproportionation must also
involve an [N,0,] intermediate.”>! Earlier studies provided
us with kinetic and, more recently, reactivity evidence that
point to a monometallic 1e -couple, suggestive of mono-
anionic hyponitrite.?**! Herein we report comprehensive
spectroscopic evidence of an isolable, mononuclear Cu"-
N,O,” intermediate, in the reaction between a MOF, Cu'-
ZrTpmC#, (A, Figure 1b) and NO.

Results and Discussion

We previously reported the synthesis of a ZrTpmC* MOF
(Figure 1), wherein a NNN C;-symmetric Tpm* metalloligand
supports a tetrahedral Cu' center capped by an acetonitrile
molecule (Scheme 1, A). The copper sites lie at the triangular
faces of interconnected cuboctahedral cavities with open

CH.CN NO NO,
I | BF,-NO I 1BFs” NO lWBF, -N,O 1uBF,~
NO,
NEUN TN TN WO SN
N N N N
A B D

Scheme 1. Evolution of the copper site in Cu-ZrTpmC* under a flow of
dilute NO.

metal sites pointing into the channel of the MOF. Schneider
etal. showed that electron-poor Cu' trispyrazolylborate
(CuTp) analogues exhibit slow and unsynchronized Cu'-
NO, formation and Cu' depletion, suggesting the presence of
a long-lived intermediate.” Intrigued by these reports, we
sought to identify such an intermediate by taking advantage
of site-isolation of the similar Cu' in A. Indeed, the ligand
field of ZrTpmC* is similar to that of the electron deficient
Tp“™“™: based on comparisons of v(C-O) in LCu(I)-CO
complexes (2110 cm™ vs. 2109 em™!, respectively).’”* In
addition, the neutral NNN environment in A is similar to the
His; environment of Cug in various HCOs. A therefore
approximates the coordination environment of the enzymatic
Cuyg center.

To test the NO disproportionation activity of A, we
performed diffuse-reflectance infrared Fourier-transform
spectroscopy (DRIFTS) under a dilute stream of NO (25—
500 ppm) in Ar at room temperature. The spectral changes
can be divided into three stages (Figure 2; Figure S2 for ’N-
labeled DRIFTS). Immediately upon introduction of NO to
A (Scheme 1), a band grows at 1757 cm ' (B). This band shifts
to 1728 cm™' when “NO is used (calc. 1725cm™) and is
consistent with the N-O stretch of {CuNO}'". This value is
considerably higher than that observed for the electron-rich
TpR*FCu(NO) (1710-1720 cm ™) but is similar to that for the
electron-poor Tp“™>M:Cu(NO) (1753 cm™)®! and cationic
[Tpm'B*F"Cu(NO)]|* (1742 cm).*! The relatively high v(N-
0) is indicative of the weak d (Cu)-n*(NO) interaction and
suggests that electron distribution in B can be regarded as
largely pertaining to formal Cu' and a neutral NO", similar to
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Figure 2. DRIFTS evolution of A under a flow of NO in argon, showing
sequential formation of B (top), C (middle), and D (bottom). Changes
over full spectral range can be found in the Supporting Information.

the related Tp complexes.’” Under the dilute NO flow, the
1757 cm™" band quickly diminishes and the second stage is
dominated by the gradual growth of a second set of bands
(species C). Isotope sensitive bands are found at 1163 cm™
("N: 1148 cm™, cale. 1142cm™) and 887cm™' (PN:
883 cm ™). These values are similar to those of N,O,~ in Fe-
MOF-5.1 We accordingly assign C as a hyponitrite radical
anion bound to Cu". Based on its associated isotope shift, the
band at 1163 cm™ can be assigned to one of the v(N-O);
assignment of the second band required computation (vide
infra). No other isotope-sensitive bands could be discerned
but we note that the complex spectral changes associated with
framework vibrations may well conceal any less prominent
NO-related features. In the final stage, bands associated with
C decline and the spectrum evolves along with the emergence
of a new species D. The transformation of C to D is clearly
dependent on NO: in the absence of NO, no features of D can
be observed, and the rate of formation of D is clearly
correlated to [NO]. Only one isotope-sensitive band at
1205 cm ™' (P N 1180 cm !, calc. 1183 cm ™) can be confidently
assigned as v,((N-O) in Cu"-nitrito,* with the corresponding
v, and & modes likely obscured by framework vibrational
modes. Detailed assignment of the IR features is discussed in
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the computational section. Additional evidence supporting
Scheme 1 can be found in the SI.

Although B is only transiently formed under NO flow, it is
the predominant species when NO is substoichiometric. This
enables isolation of B and further in situ characterization.
Diffuse-reflectance UV-visible-NIR spectroscopy (DRUVS,
Figure S3 and S3) uncovers an electronic transition as a
shoulder at 450 nm which can be assigned as a Cu—NO
charge transfer (CT) band.’!! With an excitation wavelength
of 473 nm, resonance-enhanced Raman bands at 1762 cm™
(®N: 1731 cm™) and 434 cm™ (N: 429 cm™) can be found
for B, which correspond to v(N-O) and v(Cu-NO) (Fig-
ure S4). An electron paramagnetic resonance (EPR) spec-
trum of B measured at 4.4 K displays a reverse-axial pattern
(g, < g1) of an §=1/2 spin, with hyperfine coupling to both
copper (I,=3/2) and nitrogen (Iy=1) (Figure 4). This
spectrum can be simulated well with g, =1.81, g, =1.98,
Acy =143 G, Ag, =110G, and Ay =30G (Figure S5),
where the small g-values and large Ay, point to significant
spin density population on the nitrogen atom in the nitrosyl
ligand. All of these observations agree well with the EPR
pattern for a typical Cu'-nitrosyl compound.?

Species C is also sufficiently stable to allow inspection by
additional spectroscopic techniques. DRUVS (Figure 3) of
the greenish yellow C under nitrogen revealed ligand-field
(LF) transitions at 745 and 1065 nm, as well as charge transfer
bands at 315 and 395 nm. The LF bands are clearly indicative
of Cu™. The band at 395 nm recedes when C converts to D
(Figure S3), leading us to tentatively assign it as a Cu—N,O,™
CT band. In contrast, the blue-green D shows LF bands at 700
and 950 nm and CT band at 300 nm. An X-band EPR
spectrum of C measured at 4.4 K shows an axial signal typical
for a spin coupled to copper, with g;=2.30, g, =2.06, A¢, =
170 G, and A, =20 G (Figure S4, Figure S5). X-ray photo-
electron spectroscopy (XPS) data of C exhibited a N1s peak
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Figure 3. Diffuse-reflectance UV-vis-NIR at different stages of NO
reaction. 4, at 395 nm is tentatively assigned to CT in Cu'"-N,0,".
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0.8 eV higher than those pertaining to the pyrazole nitrogen
signals, which can be assigned to N,O,~ (Figure S7).

The key evidence in support of assigning C as a two-spin
system came from parallel mode EPR measurements, where
the relative intensity of the Am==2 transitions is enhanced.
At 44K, C exhibits a transition at 1688 G (g=3.96) that is
absent in the perpendicular mode spectrum (Figure S5). This
agrees well with the expected transition at half-field typical
for a triplet system arising from the coupling between the Cu"
and nitrogen-centered spins.” To validate this assignment,
we performed variable-temperature EPR in the range of 4.4
55 K in perpendicular mode, which has better signal-to-noise
ratio (Figure 4b). For a spin exchange-coupled system, the
nature of the coupling can be deciphered by comparing the
temperature dependence of the signal intensity with the Curie
law.”® For C, as the temperature increases, both the peak
amplitude and the integrated intensity of the signal of interest
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Figure 4. a) X-band EPR spectra for B, C, and D measured at 4.4 K
under perpendicular mode. b) Variable temperature EPR spectra of C
from 4.4 to 55 K. Inset shows the temperature dependence of double-
integrated EPR intensity and the product of double integral and
temperature.
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decrease while preserving the line shape and linewidth
(Figure S6). A closer look at the product of temperature
and double-integrated EPR intensity reveals that this value
increases to a maximum near 20 K before decreasing at higher
temperatures (Figure 4b inset). This temperature depend-
ence agrees well with the expected behavior for two
ferromagnetically coupled spins with zero-field splitting,
while thermal broadening is discounted based on invariance
of the spectral linewidth.""!

The Cu'-nitrite product D does not react further with NO
under our reaction conditions. X-band EPR of D at 5K
displays a typical Cu" signal with axial symmetry (g =225,
g.=2.04) (Figure S6). The large Ac, =165G points to
localization of the spin density on Cu". The absence of
notable hyperfine coupling to nitrogen agrees with the
assignment of a k* oxygen-bound Cu™-nitrito species. Impor-
tantly, powder X-ray diffraction (PXRD) of D shows
retention of crystallinity (Figure S8), confirming that the
structural integrity of the MOF itself is preserved.

A variety of linkage isomers for hyponitrite and nitrite are
commonly seen in the literature.">*! To further corroborate
our spectroscopic studies and assignments in this context, we
turned to density functional theory (DFT) simulations.*”) The
unit cell of ZrTpmC* was optimized at the PBE-D3 level and
a cluster model containing the core [Cu'-TpmC*]*[BF,]” was
computed at the B3LYP-D3 level of theory, fixing the
coordinates of the carboxylate C atoms to mimic the frame-
work rigidity. The use of hybrid density functionals is
recommended to properly account for different Cu oxidation
states.l*!] Full details can be found in the SI and the ioChem-
BD repository. !

The most stable computed structures for B, C, and D are
shown in Figure 5 (see Figure S11 for other isomers and spin
states). It is found that TpmC* becomes k*in B, C, and D (Cu-
N~20A, Cu~N 2.5-2.6 A) and the BF," therein interacts
rather strongly with Cu (Cu-F~2.3 A). Strong interactions
between Cu and BF,~ are precedented.”! The calculated spin
density (p) is consistent with our assignment from EPR and
electronic spectroscopy. Species B is a doublet with a Cu'
center (0=0.0) and a (xN)-NOr ligand (o =1.0). Species C is
a triplet with a Cu" center (0 =0.7) and a cis-(xO,k0')-N,O,"~
ligand (p=1.2) (Figure S12). The open-shell singlet has
a similar energy (3.6 kJmol™' above triplet C), while the
closed-shell singlet (Cu*"™-N,0,%") is significantly less stable
(33.3kJmol™" above triplet C). The energy difference be-
tween the open-shell singlet and triplet is slightly functional-

N ( o 70
iy Vi b
[N]"'/-._""F4B [N]"'I -._:"'F4B [N]"'l -._:"'F4B
[N] [N] N IN] N IN]
B D
doublet triplet doublet

Figure 5. DFT-optimized structures and lowest-energy spin states for
B, C, and D.
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dependent but the order is invariant (Figure S13). Lastly,
species D is a doublet with a Cu" center (0=0.7) and
a (k0,k0")-NO," ligand (0 =0.2), all in good agreement with
our spectroscopic assignments.

The computed vibrational frequencies for B-D are shown
in Table 1. They are also in line with the experimental values.
Calculations for B give v(N-O) at 1766 cm™ (exp. IR
1757 cm ™!, 1R 1762 cm ™). Omitting BF,~ yields a larger value
of 1812 cm™, further supporting a Cu-BF, interaction. v(Cu-
NO) is found at 410 cm™" (exp. 434 cm™"). Two main bands are
computed for the N,O, moiety in C in the region 1300-
600 cm™': v,(N-O) at 1183 cm ™' (exp. 1163 cm™") and &y penda-
(NNO) at 913 cm™! (exp. 887 cm ™). No vibrational modes in
the region 1600-1300 cm ™' can be associated with the N,O,
group. The nitrito species in D computes with an asymmetric
N-O stretch at 1201 cm™ (exp. 1205 cm™'). The computed
v{(N-O) and 8(ONO) appear at 1308 cm' and 857 cm™',
respectively. Finally, the isotope shifts in vibrational frequen-
cies are also well reproduced.

Table 1: Computed vibrational frequencies (cm™).

Species B ctl D
"N comp. 1766, 410 1183, 913 1201
N exp.”! 1757 1163, 887 1205
N exp.d 1762, 434

N comp. 1734, 403 1148, 895 1177
N exp.t! 1728 1159, 883 1180
N exp.ld 1731, 429

[a] Calculated based on the triplet state of C. [b] Experimental values
from DRIFTS. [c] Experimental values from resonance Raman.

Conclusion

In summary, detailed spectroscopic investigation of NO
disproportionation with a Cu center within a MOF identifies
the key intermediate of the N-N coupling step as a cis-
(kO,k0)-N,0,~ ligand bound to Cu"™. This unusual inter-
mediate is isolable at room temperature owing to spatial
isolation within a pore. These results contribute to mounting
evidence for the utility of MOFs in the isolation of extremely
reactive species that are difficult to investigate with other
platforms.[**% This strategy is particularly effective in gas-
solid systems and with weak ligands such as Tpm, which tend
to demetalate in solution. Indeed, in our hands, passing NO
through a solution of [Cu(CH;CN)BF,|TpmC*-Et (TpmC*-
Et is the ethyl ester of TpmC*) in CH,Cl, led to immediate
formation of the homoleptic bis-Tpm complex and no
observable intermediate. This strategy may be valuable for
the study of intermediates of relevance to enzymatic catalysis.
Here, although the Cu'-ZrTpmC#* is evidently not a faithful
structural or functional mimic of the Cug site in HCO, it
presents the conceptual framework for discussing the inter-
mediacy of an N,O,~ species at Cug in 1e -reduced HCO,
en route to N,O,>".
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A radical N,O, intermediate formed
during a nitric oxide reductive coupling
reaction was captured at a copper center
in a metal-organic framework (MOF).
Strict site isolation in the solid state is key
in stabilizing this intermediate.
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