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Abstract

This paper addresses the two-agent safety control proldeipidcewise continuous systems
with disturbances and imperfect state information. Inipalar, we focus on a class of systems
that evolve on a partial order and whose dynamics preseevertiering. While the safety con-
trol problem with imperfect state information is prohikéifor general classes of nonlinear and
hybrid systems, the class of systems considered in thisr@apmits an explicit solution. We
compute this solution with linear complexity discreteimlgorithms that are guaranteed to ter-
minate. The proposed algorithms are illustrated on a twuele collision avoidance problem and
implemented on a hardware roundabout test-bed.

1 Introduction

In this paper, we consider a class of piecewise continuostes)s that evolve on a partial order and
propose an explicit solution to the two-agent safety cdmirablem with imperfect state information.
There has been a wealth of research on safety control forgilemenlinear and hybrid systems
assuming perfect state information [37,43,46,47]. In¢hesrks, the safety control problem is
elegantly formulated in the context of optimal control aedds to the Hamilton-Jacobi-Bellman
(HJIB) equation. This equation implicitly determines thexmaal controlled invariant set and the
least restrictive feedback control map. Due to the complexdi exactly solving the HIB equation,
researchers have been investigating approximated digwsifor computing inner-approximations of
the maximal controlled invariant set [29, 30,41, 47]. Teration of the algorithm that computes the
maximal controlled invariant set is often an issue and wak ireen focusing on determining special
classes of systems that allow one to prove termination &xehd the references therein). The safety
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control problem for hybrid systems has also been invesidyaithin a viability theory approach by a
number of researchers (see [12, 25, 26], for example).

The above cited works focus on control problems with fultesiaformation and, as a result, static
feedback control maps are designed. When the state of tkensys not fully available for control,
the above approaches cannot be applied. The advancesarestamation for hybrid systems of the
past few years [5, 13-15, 18, 23, 42, 50] have set the basthdéaidevelopment of dynamic feedback
(state estimation plus control) for hybrid systems [205241, In particular, [51] proposes a solution
to the control problem with imperfect state information fectangular hybrid automata that admit
a finite-state abstraction. For this case, the problem i&slo have exponential complexity in the
size of the system. This problem is solved by determiningriagimal controlled invariant safe set,
that is, the set of all initial information states for whicldgnamic control law exists guaranteeing
that the current information state never intersects thefsbad states. Since the information state
is a set, the maximal controlled invariant set iset of setsmaking its computation even harder
than for the static feedback problem. As a consequence,dioergl hybrid systems the dynamic
feedback problem under safety specifications is prohéitynamic feedback in a special class of
hybrid systems with imperfect discrete state informatspriesented in [20], however the problem of
computing the maximal controlled invariant set is not cdased. Dynamic control of block triangular
order preserving hybrid automata under imperfect contisgiate information is considered in [21]
for discrete-time systems, and an algorithm for computimgnaer approximation of the maximal
controlled invariant set is proposed. Dynamic feedbackofder preserving systems in continuous
time is considered in [22, 27]. However, in [22] only a cogise game structure is considered and
in [27] only a competitive game structure is addressed. @), [dynamic feedback is addressed for a
class of hybrid automata with imperfect state information.

Since for general classes of hybrid systems, the dynamatbesk problem is prohibitive, we con-
sider this problem in a restricted class of hybrid systentsiclwis still general enough to model
application scenarios of interest. In particular, we foons class of hybrid systems whose state and
input spaces have a partial ordering and generate trajestbiat preserve this ordering. The problem
is posed as an order preserving game structure, which is@oagh that unifies the special cases of
cooperative [22] and competitive [27] game structure betwievo agents in a general framework. By
exploiting the order preserving property of the flow, we ab&n explicit solution for the maximal
controlled invariant set and for a dynamic control map. Wavsthat the static and dynamic feedback
problems are solved by the same control map, which is cordmrighe state in the first case and on
a state estimate in the second case. This implies sepalstamen state estimation and control for
the class of systems considered. For safety control prabigmerated by a specific conflict topology,
this solution can be computed in discretetime by linear dexity algorithms, for which we can show
termination.

Dynamical systems whose flow preserves an ordering on tkee gtace with respect to state and
input are called monotone control systems [6]. Monotonarocbeystems have received considerable
attention in the dynamical systems and control literat@weeveral biological processes involving
competing or cooperating species are monotone [45]. Monergé bio-molecular systems can be
modeled as the interconnection of monotone control sys{én&s24]. There are also a large num-
ber of engineering applications that feature agents ewglen partial orders with order preserving
dynamics. Multi-robot systems engaged in target assighmasks have been shown to evolve ac-
cording to an order preserving dynamics on the partial oed¢ablished on the set of all possible
assignments [23]. Railway control networks feature a nunob@gents (the trains) that evolve on



Figure 1:(Left) Vehicles approaching a “T” intersection. (Right)&@set,,, andC,,,,, in whichL = (L%, L?),
H = (H%, H?), andB =]L!, H[ x ]L2, H2[.

pre-defined paths (the railways) unidirectionally accogdio the Lomonosgtis model, which is an
order preserving system on the path [31, 39]. Transportai&iworks also feature vehicles traveling
unidirectionally on their paths and lanes, which impose ateeng on their motion. In air tfac
networks, the longitudinal motion of each aircraft alorgptescribed route can also be modeled by
an order preserving dynamics [32, 40].

In this paper, we illustrate the application of the propossthnique to a two-vehicle collision
avoidance problem as found infiia intersections or modern roundabouts in the presence o¢lngd
uncertainty, missing communication, and imperfect stafiermation.

Motivating Example. Consider the problem of preventing a collision between twhicles ap-
proaching an intersection as depicted in the left panel giiféi 1. A collision occurs if the two
vehicles are in the shaded red aigat the same time. The problem is to design a controller that
guarantees that the vehicles do not collide excluding tlki&kisolution in which the vehicles stop.
In general, the vehicle states can be subject to large wiokes as deriving from GPS, for example,
and the dynamic model can b&ected by modeling error. For the sake of explaining the bidsa
of our solution, consider the case in which the dynamics bicles 1 and 2 are given by* = u,

X% = U2, respectively, withu!, u?> € [u,,uq] andug,uy > 0. A more realistic second order hybrid
model for each of the vehicle dynamics will be consideredchm gimulation section. Assume also
perfect information of the state{, x?). Here,x! andx? denote the longitudinal displacements of the
vehicles on their paths as shown in the figure. In this coateisystemB =]L!, H[ x ]L? H?[. To
solve the control problem, we seek to compute the set of @ihirronditions &*(0), x*(0)) that are
taken toB for all inputs (1, u?). This set is called the capture set, denafe@dnd is the complement
of the largest controlled invariant set that does not coraiOn the basis of the capture set, we then
seek to design a feedback map that guarantees that anytatategoutsideC is kept outside.

This general problem can be elegantly formulated as an aptiomtrol problem with terminal cost,
which leads to an implicit solution expressed as the satutica PDE [37]. In this example, however,
there is a rich structure that can be exploited to obtain anediate explicit solution without the
need of solving an optimal control problem. In particulag tlynamics of each vehicle preserve the
standard ordering dR, that is, higher initial conditions (0) and higher inputs' lead to higher values
of the statex (t) for all time. Denote byC,,,, the set of all initial conditions that are takenBavhen



the input to the system is setdg, := (u., uy), that is, vehicle 1 applies constarit= u_ and vehicle

2 applies constant? = uy. Similarly, denote byC,,, the set of all initial conditions that are taken to
B when the input to the system is set#g := (uy, U, ), that is, vehicle 1 applies constart= uy and
vehicle 2 applies constant = u_. Because the dynamics of the system have the order pregervin
properties described above, one can show that the captussgbeen by the intersection of these two
sets, that isC = Cw, N Cw,, (right panel of Figure 1). In practice, this means the follogv The
statex is taken toB for all input choices if and only if it is taken tB both when (a) vehicle 1 applies
maximum control and vehicle 2 applies minimum control andvéhicle 1 applies minimum control
and vehicle 2 applies maximum control.

The relevance of having@ = Cw, N Cw,, resides in the following key points. Firste, and
Cw,, can be easily computed by backward integration without gelrof optimizing over the control
values because the controls are fixed. Second, this backatagtation task can be performed by
simply propagating back through the dynamics the lower gmkubounds o8B, that is,L andH,
respectively, with fixed inputs (refer to the right panel afjife 1). In discrete-time, this can be
performed by a linear complexity algorithm. Furthermoreeaking whether a state{ x?) belongs
to eitherC,,, or C,,, can be performed in finite time because the backward iniegraf L andH
leads to strictly decreasing sequences: once the decgessijuences starting kh passes beyond the
point (x!, x%), one has enough information to establish whetxér€) belongs either te&,,, or to
C.,,. Finally, a feedback map is one that imposes the coanigpk= (u., uy) when the state is inside
C.,, and on the boundary «,,, while it imposes the contreb, = (uy, u ) when the state is inside
C., and on the boundary d@,,, (right panel of Figure 1). This way, we provide also a closamuinf
solution for the feedback majn this paper, we show that this basic result holds for admyrorder
preserving dynamics, for the case in which these dynamesygected by disturbances, and when
only imperfect state information is available

This paper is organized as follows. In Section 2, we intredbasic definitions and the class
of systems that we consider is introduced in Section 3. Irti@ed, we provide a mathematical
statement of the safety control problem. In Section 5, we tire main result of the paper, namely the
computation of the maximal controlled invariant set andréflated dynamic feedback control map.
In Section 6, we present a discrete-time algorithm for cainguhe maximal controlled invariant set
and the dynamic feedback map. In Section 7, we present anpdgapplication involving a two-
vehicle collision avoidance problem at affra intersection. Several of the proofs are found in the
Appendix.

2 Notation and Basic Definitions

For the setA c X with X a normed vector space, denote the complemeAt:= X\A, the interior

A, the closureA, the closed convex hulio A, the boundaryA, and the set of all subsets contained
in A by 28 Forx € R", denote the Euclidean norfix||, and the inner producty|x). Forx € R"
and setA c R", denote the distance fromto A asd(x, A) := infyallX—Yll. This extends to the
distance between two se#sB € R", whered(A, B) := infycad(y, B). Let]a b[, ]a,b], [a,b] c R
denote the open, half open, and closed intervals respbctiVais notation extends to interval sets
la,b[, ]Ja,b], [a,b] c R", where, for example,a b[ := ]ai,bi[ X ... X ]an, by[. The open ball of
radiuse > O centered ak € R" is denotedB(x,¢€) := {z € R"| |[Xx— 12| < €}. For the setA c R",
we define an open neighborhood about A of radius 0 by B(A,e) := {z € R" | d(z A) < €}.
Denote the canonical basis vectersor i € {1,2,...,n}. Forx € R", denote the™" component by
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Figure 2:The setsA, B c R? are 0.p.c., while the se@ D c R? are not o.p.c.

X = (X|&). Denote the canonical projectian : R" — R defined byr;(X) = X, which naturally
extends to sets. Denote the unit sphgteand the unit diskd", whereS" := {x € R™ | ||x|| = 1}
andD™?! := {x e R™?| ||x|| < 1}. For setsA, B ¢ R" we define the binary relatioA < B (A < B) if
71(A) N 71(B) is non-empty and for akk € A andy € B such thatx; = y;, we havex; < y, (X < ¥»).

Denote the space aftimes continuously dierentiable functions from into B asC"(A, B). We
use the notatiofr : A =3 B to denote a set-valued map frofninto B. ForA c Xandf : X -,
we define the image oA underf asf(A) := {f(x) € Y | x € A}. We denote the space of piecewise
continuous signals on A aS(A) := PC(R,,A). Denote the unit interval := [0,1]. For the set
A c R?, we will call a pathy € C°(l, A) simple ify is injective. We will call it closed ify(0) = y(1).
We define the Cone at vertex € R" with respect toa;, ay,...,a € R" as Cong, 4, a4(X) =
{(yeR"| (y—x|a)y>0Vie{l2,...,kl}. Forx € R?, we use the shorthand notation Cp(¢ :=
Conegg, &,)(X) € R? and Cone(x) := Cone_g, &, (X) € R?. We use the following continuity definition
for set-valued maps [11].

Definition 1. For metric space8 andD, a set-valued map : A = D is saidupper hemi-continuous
atx € Aiffor all e > 0 there isy > 0 such that(y) c B(F(X), €) for all y € B(x, n).

We next introduce a set characterization useful in fornmuggsafety control problems for order
preserving systems.

Definition 2. A pathy € C°(1,R?) is said to beorder preserving connecte@.p.c.) if it is simple,
and for allx € R? Cone.(x) N (1) # 0 implies that Cong(x) N y(l) is path connected. A s& ¢ R?
is said o.p.c. if for allx,y € D, there exists & € C°(I, D) such thaty(0) = x,y(1) = y andy is o.p.c.
(Figure 2).

Note that any convex set is trivially o.p.c. A partial orderiset P with a partial order relatiog™,
which we denote by the pair @, [19]. In this paper, we are mostly concerned with the photider
(R", <) defined by component-wise ordering, that is, fovalk € R" we have thatv < zif and only
if w, <zforallie{l2...,n}. Givenset, Bc R", we sayA < Bif a<bforallae Aandb e B.
ForU cC R™ we define the partial orde6(U), <) by component-wise ordering for all time, that is,
for allw, z € S(U) we have thatv < z providedw(t) < z(t) for all t € R,. Suppose (Rp) and (Q<q)
are two partially ordered sets. A mdp P — Qs an order preserving map providedp y implies

F() <o T(¥)-



3 Class of Systems Considered

We consider piecewise continuous systems, with impertate snformation. This includes the set
of hybrid systems with no continuous state reset and no etis@tate memory, also referred to as
switched systems [17].

Definition 3. A piecewise continuous systehwith imperfect state information is a collectian=
(X,U, 0, f, h), in which

(i) X cR"is a set of continuous variables;

(i) U cRMis a set of continuous inputs;

(i) O c Xis a set of continuous outputs;

(iv) f:XxU — Xisapiecewise continuousector field;

(vy h:0 =3 Xisan output map

For an output measurement O, the functionh(z) returns the set of all states compatible with the
current output. We assunteis closed valued, that is, for atle O, h(z) is closed. We assume that
there is az € O such thath(z) = X, corresponding to missing sensory information. Weglgf x, u)
denote the flow ok at timet € R,, with initial conditionx € X and inputu € S(U) [35]. Denote the
it component of the flow by;(t, X, u).

We restrict the class of piecewise systems to order prasgsyistems. These systems are defined
on the partial ordersR(", <) and S(U), <) as follows.

Definition 4. The systenk = (X, U, O, f, h) is anorder preservingystem provided there exist con-
stantsu,, uy € R™andé > 0 such that

()  U=[u,uy] cR™

(i) The flowg(t, x, u) is an order preserving map with respect to steé@d inputu;

(i) fi(x,u) > &forall (x,u) e X x U;

(iv) Forallze O,h(2) = [inf h(2), suph(2)] < R".

Conditions for establishing order preserving propertiethe flow generated by a smooth vector
field f(x, u) have been previously addressed [6]filRient conditions for establishing order preserv-
ing properties of piecewiseffine systems have been addressed in [9]. For systems in whish
a position (as in the case of the example illustrated in 8ect), condition (iii) guarantees that the
system never comes to a halt. More generally, it enforcesvbeess of the system. Condition (iv)
requires that the sdt(z) for any measuremerztis an interval in the K", <) partial order. We next
define the parallel composition of two systems as definedcamdstrd references [28].

Definition 5. Forx! = (X', UL, 0%, f1, ht) andz? = (X2, U?, 0?, 2, h?), we define thgarallel compo-
sitionX = 2|22 := (X, U, 0, f,h), inwhichX := X'x X2, U := U'xU?, 0 := O'x0?, f = (f, f?)
andh := (h, K?).

Forx = (x}, x?) € X! x X? andu = (u*, u?) € S(U'xU?), we denote the flow of the parallel compo-
sition X2 as¢(t, x, u) = (¢(t, XL, ut), p2(t, X2, u?)) in which ¢'(t, x*, ut) € Xt andg?(t, X2, u?) € X2,
We denotep;(t, x, u) := (#](t, X", ut), ¢2(t, 3, u%)).

We next define a new partial orde8(U), <) on input signals of the parallel composition of two
systems as follows.

Definition 6. Given the parallel compositian = 31|22, the input set) = U x U2, andu, v € S(U),
we say thati < v if u! > vt andu? < v2.



Proposition 1. Considerz = |22 in whichX! andX? are order preserving systems. FoexX and
input signalsu, v € S(U) such thatu < v, we have thap,(R,, X, U) < ¢1(R,, X, V).

The proof is given in the Appendix. This proposition stateattif two inputs satisfy the &”
relation, the trajectories generated by these inputs (thithsame initial condition) must satisfy the
“<" relation, that is, one trajectory will always “lie abovéie other in thex;, x¢) subspace.

4 Problem Formulation

In order to formulate the control problem, we first specifyavimputs of = £1||=? are controlled and
what are uncontrolled (disturbances). This is performethbpducing a two-player game structure
on the parallel composition of the two systems as follows.

Definition 7. A two-player piecewise continuous game structigra tuple = (£,Q, A, ¢,B) Iin
which

(i) = =232Y2?=(XU,O, f, h) isthe parallel composition of two piecewise continuouseys;
(i) Q,A cR™x R™are the control and disturbance sets, respectively;
(i) ¢:QxA — U isthe game input map;
(iv) B c Xis a set of bad states.

The disturbancé € A and the controb € Q determine the input = (ut, u?) of X through the map
¢, that is, we have that = ¢(w, §). Extend the mag to operate on signals hy(w, 6) := u where
u is the signal such that(t) = ¢(w(t), 6(t)). We denote the flow of the game B{t, X, ¢(w, 8)). We
will say that the disturbanc&wins the game if the flow o entersB, while the controllew wins
the game if the flow of/ never enter8.

Definition 8. A game structur¢/ = (X, Q, A, ¢, B) is anorder preservinggame structure provided
(i) = =X =2 with ! andx? order preserving systems;
(i) A:=[of,6}] x[62,63] :=[0L,6n] andQ := [w], wi] X [w?, wi] 1= [wL, wh];

(iii) The game inputp(w,d) = (Y (w?, 6Y), ¥*(w? 6%)) is an order preserving map with respect to
controlw and disturbance;

(iv) B:={xeR"xR"|(x3, X) € B} with Ban o.p.c. set.

The order preserving property gfcan be interpreted as follows. For the control sigrals €
S(Q) and disturbance signafsd € S(A), if we have thaiw < w andé < d, theng(w, §) < o(w, d).
Similarly, < w andé < d implies p(w,d) < ¢(w,d). The utility of this formulation lies in the
ability to model cooperation and competition between twerdg under a simple unified framework.
For a cooperative scenario, in which both syst&handx? are dfected by the control but not by the
disturbance, we lgpcoop(w, ) := w. For a competitive scenario, in which syst&his an adversary
while systemz?! is completely controlled, we havgomiw, d) := (w',6%). The more general case,
in which both system&! and x? are dfected by control and disturbance, could represent model
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uncertainty for example. An instance of each case is predantSection 7. One can easily check
that the example proposed in Section 1 is an order presegange structure in whicl = ¢coop.

In the reminder of this paper, we assume (unless statedvat@rthat the flow of¢ is continuous
with respect to initial condition, with respect to inputdanith respect to time. Continuity conditions
for the flow of a hybrid system have been previously investiddy, for example, [36] and the ref-
erences therein. For the compact set of initial conditiars X, we assume that the set-valued flow
o(t, A, S(U)) is compact and upper hemi-continuous with respect to.tilkes property is satisfied,
for example, in systems generated by thffedential inclusionx € f(x, U), in which f(x,U) is a
Marchaud map (see Theorem 3.5.2 in [10], and Corollary 4[841). Note that, given a dlierential
inclusionx € f(x, U), the closed convex hull generates &etiential inclusiorx e €of (x, U), which
is Marchaud provided that it is upper hemi-continuous anghided above by some linedfiae func-
tion, that is,|| f(x, U)|| < c(||x|| + 1). This allows for the over-approximation of a given syst&ith
another one that has the desired properties of the sete/dove

Given a game structufg, we consider the problem of designing a controller that erbhsis of the
output information guarantees that the flowdohever enters the bad set of staésf®r all disturbance
choices. For stating the control problem with imperfectestaformation, denote by(t, X, w, z) the
set of all possible states at tiheompatible with the set of initial conditiong € X and measurable
signalsw andz. More formally,

X(t, X0, w,2) :={x€ X| A Xy € X andé € S(A) s.t.4(t, Xo, p(w, 6)) = x and
¢(7, %o, ¢(w, 6)) € h(z(7)) ¥ 7 € [0, 1]}.

The setx(t, X, w, Z) is called the information state [33] and we will denote it X{§) when Xy, w
andz are clear from the context. We note that if the set of init@hditionsx; is compact, then the
information statex(, Xo, w, z) is compact by the compactness of the set-valued flow andltised
value property of the output mdyz).

Problem 1. (Dynamic Feedback Safety Control Proble@iyen a game structur€, determine the
set

W= {A €2’ |Jwe S(Q)s.t.Vze S(O) andV t € R, we havex(t, A, w,2) "B =0 }
and a set-valued mdp : 2¥X =3 Q such that for initial convex sefs W, we havex(t, A, w,2)NB = 0
forallt € R, andz € S(O) whenw(7) € G(X(r, A, w,z)) for all T e R,.

This problem can be interpreted as one of determining thefsat initial state uncertaintie8 e
2X for which a control map exists, that on the basis of the medersignals, guarantees that the
information state never interseds

Problem 2. (Static Feedback Safety Control Proble@iyen a game structuré with O = X andh
the identity map, determine the set

W ={xeX|JweS(Q)s.t.¥YdeS(A)andV¥ t € R, we havep(t, X, p(w, ) ¢ B}

and a set-valued map: X =3 Q such that for initial conditiong € ‘W, we have thap(t, X, ¢(w, 8)) ¢
B for all 6 € S(A) andt € R, whenw(7) € g(¢(r, X, ¢(w, 6))) for all 7 € R,.

This problem can be interpreted as one of determining thefsak initial statesx € X for which a
static feedback map exists such that the flow of the systemrmaterd for all possible disturbance
signalsd.



5 Problem Solution

In this section, we propose the solution to Problems 1 andfzdtycomputing the complement to the
setsW andW, then explicitly computing a dynamic and a static feedbaelpm

5.1 Computation of the SetsW and ‘W

ConsiderC := X\‘W. This set is named theapture sefas it represents the set of all initial states
for which no matter what control is applied, there is a diséunce that drives the flow int®. It is
mathematically represented as

C={XxeX|VweS(Q),A6c S(A) and t € R, s.t.¢(t, X, o(w, 9)) € B}.

For a fixed control signab € S(Q), we define theestricted capture saf, to be the capture set
when the control signal is fixed . Mathematically, it is expressed as

Co={xeX|3A6eS(A)and t € R, s.t. ¢(t, X, ¢(w, §)) € B}.

The restricted capture sets form the basis for our soluadtroblems 1 and 2. In the simple example
presented in Section 1, two restricted capture sets ofast®C,,,, andC,,,, are represented in Figure
1. More generally, for an order preserving game structufieel¢he constant contral; := (wi, w?)
andwy, = (wi, w?), and corresponding control signals (t) := w, andwx(t) := wy forallt € R, .
For allw € S(Q2), we have that

Wy Aw < wy. Q)

Similarly, define the constant disturbante:= (6}, 6?) anddy := (6,62), and corresponding dis-
turbance signal8 (t) := 6, anddx(t) := o4 for all t € R,. For all§ € S(A), we have that

0,460 <26y. (2)
We now state the main results of this paper.

Lemma 1. Consider order preserving game structdfe= (Z, Q, A, ¢, B) with a convex set & X. Let
w € S(Q) andy e C°(I,R?) 0.p.c. withinf 71(A) < maxra(y(1)). Theny(1)NUsesa) P1(t, A, p(w, 6)) =
O forallt e R, ifand only if¢p1 (R, A, o(w, 7)) > y(I) or p1(R,, A, p(w, 64)) < ¥(I).

Lemma 1 states that the flow in thel(x?) subspace generated from the convex set of initial con-
ditions A and controlw can avoid an o.p.c. patAl) for all disturbance signals if and only if the
disturbance signali, takes the trajectory af, abovey(l) or the disturbancé,, takes the trajectory
of ¢1 belowy(l). This result can be generalized to connected AetsX such thatr; »(A) is convex,
that is, to cases wheomly the projection of the seék onto the subspac€;, need be convex.

Theorem 1. Consider order preserving game struct@e= (X, Q, A, ¢, B) with a convex set & X.
Then, the following statements are equivalent

M A mCa)L # (0 and An Ca),H # 0;
(i) Forall w e S(Q), there exist € S(A) and te R, such that(t, A, p(w, §)) N B # 0.
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Proof. (& Contrapositive) By the definition of the restricted captse¢ we have that RN Ce, =
0 theno(t, A, p(ws,0)) NB = 0 forallt € R, andd € S(A). Similarly, if AN Cg,, = 0 then
o(t, A, p(wq, 6)) NB =0 forallt € R, andé € S(A).

(= Construction) Consider an arbitraty € S(2). SinceAN Cw, # 0 andAN Cw,, # 0,
the definition of the restricted capture set implies thatdheex,y € A, 61,0, € S(A) andty, t; €
R, such thatp(ty, X, o(w,, 61)) € B and ¢(tz, Y, (w4, 82)) € B. Let v,k € R? be such thav =
d1(t1, X, p(wy, 61)) andk = ¢1(tz, Y, p(wey, 62)). Sincex,v € Band B is an o0.p.c. set, there exists an
0.p.c. pathy € C(1, B) with y(0) = x andy(1) = v.

From equations (1)-(2) and the order preserving properiywith respect to contrab and distur-
banced, we have thab(w,, 1) < ¢(w, d4). From Proposition 1, we have that(R ., X, o(wz, 61)) <
1Ry, X, o(w, dg)). Sincepy(ty, X, p(wy, 61)) = v € (1) andx € A, this in turn implies that

1R, A o(w, 6x)) £ ¥(1). 3)

From equations (1)-(2) and the order preserving properiywith respect to contrab and distur-
banced, we have thap(w, 6,) < p(wx, 8>). From Proposition 1, we have thai(R,, Y, ¢(w, 67)) <
P1(R+, Y, p(wn, 62)). Since alsab(tz, Y, p(wy, 62)) = « € ¥(I) andy € A, we have that

PR, A o(w, 61)) # ¥(1). (4)

Note thaty; < «; from condition (iii) of Definition 4, implying that int,(A) < maxty(y(l)).
Therefore, equations (3)-(4) and Lemma 1 imply hd) N Uses(a) #1(t, A ¢(w, 6)) # 0 for somet €
R,. Thisinturnimplies, sincg(l) c B, that there aré € S(A) andt € R, such tha,(t, A, ¢(w, d))N
B # 0. This leads tas(t, A, ¢(w,d)) N B # 0. Since this holds for arbitrarp € S(Q2), we have
completed the proof. O

Corollary 1. For an order preserving game structugé = (X, Q, A, ¢, B), we have thaC = Cw,, N
Cow,-

Proof. (c) This follows from the definition ofC. (o) Suppose we have that the initial condition
X € Cw,, N Cw,. Consider any input signab € S(2). Sincery,({x}) is trivially convex, by Theorem
1 there aréy € S(A) andt € R, such thaw(t, {x}, p(w, d)) N B # 0, implying x € C. O

Theorem 1 states that an initial convex state uncertairigkisn to intersedd independently of the
control input if and only if it intersects both restrictecotare set€,,, andCe,. By the corollary, a
known initial state is taken tB independently of the control input if and only if it is in bath,,, and
Cw,-

5.2 The Control Map

For an order preserving game structéfeif an initial convex state uncertain# does not intersect
bothCew,, andCew,, from Theorem 1 a contrab exists such thap(t, A, ¢(w, 6)) never intersect8
for all 6. SinceX(t, A, w,2) € Usesw) ¢(t, A ¢(w, 0)), there must also exist a contral such that
X(t, A, w, z) never intersectB. We thus construct such a control as a feedback map from thentu
state uncertainty. For this purpose, define for an elem@&nt 2%, the set-valued map : 2X =3 Q as

wr ifZNCw, #0andZNdCw, # 0 andZNCw, =0
ifZNCw, #0andZnNiCew,, # 0 andZNCw,, =0

] wx
G(2) = wry FZNdCw, #0,ZNCw, # dandZN (Cw, YCw,) =0 ©)
Q otherwise
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We call the pair ¢, G) a control systemwhere given the initial condition8 c X and measure-
mentz € S(0), the control system, G) generateshe feedbackw® € S(Q) and theclosed-loop
information state®(t, A, w®, z). The feedback must satisfy the set-valued i@dpr all time, namely
w(t) € G(X(t, A, %, 2)) for all t € R.

We next show that the control systef,(G), where¥ is an order preserving game structure &d
is given by (5), generates a closed-loop information stadé never intersect8 provided the initial
conditionsA c X are compact, connected, aAth Cy,, = 0 or AN Ce, = 0.

Theorem 2. Let¥ = (Z,Q, A, ¢, B) be an order preserving game structu(e/, G) be the control
system generated by the static set-valued feedback (5)leaddc X be compact and convex. If
ANCew, =00r ANCew, = 0, then for arbitraryz € S(O) we have thak®(t, A, w®,z) N B = 0 for all

t € R, under(¢, G).

Proof. First, note that ik (t, A, w®, 2)N Ce = 0 for somew € S(Q), then necessariy{t, A, w®, 2)N
B = 0 becaus® c C. Thus, we show that iA N Cg,, = 0 or AN Ce, = 0, thenx®(t, A, w®,2) N
Cw, =00r &t A w',2)NCey, =0forallteR,.

We proceed by constructing a modified control systéinQ®) with a dynamic set-valued map,
that difers fromG only if the argumenZ c Xis such thaZ N Cyw, # 0 andZ N Cw,, # 0.
Denote the closed-loop information state generated by thaifirad control system ag'(t, A, , 2).
We will show thaty®(t, A, w®,2) N Cw, = 0 or Y¥(t, A w®,2) N Cw, = 0 forallt e R,. We
then show that this implies that the feedback generated dynibdified control systeniq, G) is no
different from the feedback generated by the original contrstiesy (4, G). Thus, we also have that
(A w0, 2)NCw, =0 or Lt A w',2) NCy, =0forallteR,.

We now define the dynamic set-valued feedbéck R, x S(2¥) = Q as follows. For the time
varying seZ c S(2X) and timet € R, we defineG(t, Z) as

Gtz | BZO) 20N Co, =00 Z0) 1 Car, =0 3
(2):=1 Gz(t) else, wherd := sz € [0,] | Z(2) N Cw, = O Z(2) N Cen, =0}, ©)

We will now show that the closed-loop information statét;A, w®, z) generated by the control
system &, G) never intersects both,,, andCy, at a single time € R.

We proceed by contradiction. Suppose that given the mememiz € S(O), there exists a time
t; > 0 and feedbackn™ € S(Q) generated by¥,G) such thaty®(t;, A, @®,2) N Cw,, # 0 and
¥(t1, A, 0%, 2) N Ce, # 0. Define the times

ty inf{t € [0,t,] | (. A @™, 2) NCew, # 0OV € [t. 1]} (7)
ty = inf{te[0,t] 197, A @™, 2)NCuw, #0V e[t} (8)

Let the maximum of these two times be= maxt,, tx}. We must have one of the following cases:
(l) ty > ty; (”) ty <ty (”l) ty = ty.

Case(l). From definition (8) < t implies thaty®(t, A, @®,2) N Ce,, # 0. We first show that
V(LA 09, 2)NCw, = 0.

Suppose thaTt, A, @, Z)NC, # 0. By the definition of the closed-loop information state rthe
existsxy € A and a disturbancé € S(A) such thaw(t, Xo, ¢(0®, 8)) € Cw, ande(z, %o, p(@®, 8)) €
(7, A, 0%, 2) for all 7 € [0,t]. For notation, let := ¢(t, X0, (0, 8)). Since the flow is continuous
with respect to initial conditions, one can show tBabpen implies thaCy,, is open. Therefore,
we can finde > 0 such thaB(v,e) ¢ Cw,. By the continuity of the flow with respect to time, we
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can findp > 0 such that ift €]t — n, ], then¢(t, X, p(@®, 8)) € B(v,€) C Cw,. This implies that
¥t A w0, 2)NCew, # 0 forallt €]t — n, 1], thus contradicting = t, as the infimum in (7).

We next show thay*'(t, A, 0, 2) NdCw, # 0. Suppose that insteadl(t, A, w,2) NdCw, = 0. For
notation, letyy := ¥°(t, A, %, 2). SinceA is compacty(t, A, »°, z) is compact for alt andz. Now
consider the distance:= d(0Cw,, Yo). If y = 0, then the intersection must be non-empty, as both sets
are closed. Therefore, we assume that 0. By the upper hemi-continuity of the set-valued flow,
there existg > 0 such that for alt € [t, t + 5[, we have thaw(t, ¥, S(U)) < B(Jo, v/2). By the defini-
tion of the closed-loop information state, for aft t we have thay®(t, A, 0%, 2) c ¢(t, $o, S(U)). This
implies that for alk € [t, t+n[ we havey®(t, A, @, 2)NCew,, = 0, sinced(¥°'(t, A, 0%, 2),Cw,,) > ¥/2 >
0. This contradicts = t, as given in equation (7), hence we must haveyfét A, 0, 2)NdCw, # 0.

We have thus shown thg t, A, 0@, 2) N C,, # 0, J°'(t, A, 0%, 2)N3Cw, # 0 andy*'(t, A, 0, )N
Cw, = 0. From the definition of the modified dynamic set-valued femiibmapG given in (6), we
must necessarily have thaf!(t) = = G(§°(t, A, @°, 2)). From definitions (7) and (8), we therefore
have thay®(t, A, &, 2) N C,, # 0 andyC t,A % 2)NCw, # 0 forallt € [t,t;]. Therefore, by the
definition of G in equation (6), we have thai®(t) = w, = GEF!(t, A, @, 2)) for all t € [t,t,]. Let
ve (t, A 0¥, 2) N Cw, and choosav € §¥(t, A, 0%, 2) such thawp(t; — t, w, p(w, 8)) = v for some
0 € S(A) (note that such & exists by the definition of the information stafe Sincev € C¢, and
w(t) = w, forall t € [t t1], we must have thal e Cw, by the definition ofC¢),. This leads to a
contradiction, since we assumed thaft; A, 0, z) N Cq, = 0. As a consequence, such a titpéor
which Case(l) holds cannot exist.

For Case(ll), an equivalent argument holds by interchan@ipwith w¢, andCy,, with Cg,,, then
showing that this leads to a contradictiontgfas defined in (8).

For Case(lll), the argument is similar. First, it can be shdwaty®(t, A, ©*,2) N dCw, # 0
andy®(t, A, 0%, 2) N 0Cw,, # 0 by a continuity argument (similar to the one made in Case{he
proof proceeds as in Case(l) with the eventual contradiaggarding the definitio®@,,, and thus
contradicting the existence of andty, as defined in (7) and (8) respectively.

Thereforey(t, A, 0,2) N Cw,, = 0 ory(t, A, @,2) N Cw, = 0 must hold for allt € R, un-
der any contro™ e S(Q) generated by, G). From the definition ofz in (5), it must be that
GEA(t, A, @, 2)) = GEF\(t, A, @, 2)) for all t € R,. This implies that for every closed-loop infor-
mation statec®(t, A, 0%, z) and feedback® generated by the control systeff,G), there is a corre-
sponding feedback® and closed-loop information stay(t, A, w®, z) generated by the control sys-
tem ¢, G) such thaw® = w® andy®'(t, A, 0%, z) = &(t, A, 0%, Z). This implies thatc(t, A, ', 2) N
Cw, = 0or L, A w®, 2) N Cw, = 0forallt € R,. Therefore, the closed-loop information state
generated by the control systeff,G) satisfies<(t, A, w®,z) "nB = @ forall t € R,. O

We can thus summarize the solutions to Problem1 and Problenth2 two following theorems,
respectively.

Theorem 3. (Solution to Problem 1) For an order preserving game streetd = (£, Q, A, ¢, B), a
convex seky X isinW if and only if% N Cew,, = 0 or X, N Cw, = 0. Furthermore, if%, € W is
also compact, then a dynamic feedback map28 = Q is given by (5).

Proof. By Theorem 1, there exists a control sigaaké S(Q) such thaw(t, X, ¢(w, )) N B = 0 for all
0 € S(A) and allt € R, ifand only if %,NCew,, = 0 or %NCw, = 0. Assuming thaz is the worst-case
observation signal, that ig(t) = zfor all t € R, we have thak(t, X, w, z) = Uses) (L, X0, (@, 8))
for all t € R,. Therefore, there is a control signale S(Q) such thatx(t, X, w,z) N B = 0 for all
t e R, ifand only if X% N Cw,, = 0 or X N Cw, = 0. By the definition of W, we thus have that
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Xo € W if and only if %,NCew,, =0 0r%NCew, = 0. Since the set of initial conditions is compact,
Theorem 2 further shows that the feedback i@agpven by expression (5) maintairé, %o, w, z) with
w(1) € G(X(1, X0, w, 2)) for all T € R, not intersectind forallt € R,. O

Theorem 4. (Solution to Problem 2) For an order preserving game streetd = (X, Q, A, ¢, B), the
set'W of Problem 2 is given by = X\(Cw,, N Cw,). A feedback map gX =3 Q is given by

wy If XeCw, andx € 0Cw,,
wy 1If XeCup, andx e dCw,

9 =1 6, if X€ dCan, andx € ICo,
Q otherwise
Proof. Direct consequence of Corollary 1 and Theorem 2, in wiiiéh a singleton. O

Since the static feedback mgjs equal to the dynamic feedback m@mnce this map is evaluated
on the statex, a separation principle holds for the game structdrbetween state estimation and
control. This implies that the solution of the dynamic feack problem does not present additional
computational dficulties with respect to the solution of the static feedbaablem. Specifically,
both solutions rely only on the ability to compute the res&d capture setSy, andCe,,. These two
sets, as opposed to the original sets of inteidésandW, can be computed by backward integration
with the control input fixed. Furthermore, if the bad Besatisfies additional geometric assumptions
(Section 6), then this computation only requires the distoce signal$ , andd4,. Therefore, no
min/max optimization problem needs to be solved as it is usualtfopmed when directly computing
W. In addition to this simplification, the order preservingperties of¢ along with additional
assumptions allow the construction of discrete-time lire@aplexity algorithms for the computation
of the restricted capture s&fg,, andCe,,. These algorithms are presented in the next section.

6 Algorithms

By virtue of Theorems 3 and 4, the dynamic and static controbPms 1 and 2 can be solved by
only computing the set€,, andC,. For a class of order preserving systems in discrete-time,
we introduce an algorithm for computing the restricted gepisetCy. This algorithm has linear
complexity with respect to the number of continuous vagabl

The restrictions on the game struct@emposed are:

Assumption (a) f'(X,u') has no dependency od;
Assumption (b) The bad s&tis given byB := {x € X | (x}, x3) € B}, with B :=]L, H[c R%

This structure off'(x, u') is found, for example, in vector fields derived from Newwmtdws with

no position dependent forces (such as gravity). The ba® gginerated by the open rectangle set
B can represent, for example, the set of all collision configans between two agents evolving on
intersecting paths. IB is a more general bounded o.p.c. set, a rectangular oveodppation can be
employed.
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6.1 Discrete-Time Model

Seeking digital implementation, we illustrate the aldamitin discrete-time. For agemte {1,2},
denote the state spaxé:= X} x...x X!, the corresponding stat € X', and the set of discrete-time
signalsD : N — U' asD(U"). Define the discretization of the system (employing fodvEuler
approximation) for agenite {1, 2} with step sizeAT > 0, inputu’ € D(U') and stepn € N as

[N+ 1] = X[n] + AT £ (34[n], u'[n]).

For the index € N, initial conditionx' € X', and input signali' € D(U'), we denote the discrete-
time flow®' : N x X' x D(U') — X' as®'(n, X, u'), which satisfies

@'(n+1,%X,u) = d'(n, X, u) + AT f/(@'(n, X, u"), u'[n—1]) for all n € N, (9)

where®'(0, X, u’) = x. We assume the discrete flobl is continuous with respect to input e
D(U"). LetZ e D(O) be the output measurement. From Definition 4, the output ingiven by
h'(Z[n]) = [inf H'(Z[n]), suph'(Z[n])]. The j™ component of the flow is denoted @4(n, X, u')

For the parallel composition of two systemis= X!||x?, the discretization and discrete-time flow
extend to

AT f(Xnl,u[n)) := (AT f1OA[N], ut[n)), AT F2(2[n], u?[n]))
o(n, x,u) = (P(n, xt ub), d*(n, X2, u?)).

The game input map, as in Definition 7, easily extends to eisetime control signal® € D(Q2) and
disturbance signals € D(A) asu[n] = ¢(w[N], 6[N]).

From Assumption (a), it follows that for an initial conditidx;, X) € X and inputu € D(U), we
have that

®i(n,x,u) = X+ D(n, (0,X),u) forallne N, (20)

where the state (&) represents the initial condition with the statex; set to zero. This property
implies that the flow projected onto the subspXg¢éas no dependency on the stafiether than the
initial condition.

6.2 Restricted Capture SetC,, Computation

The definition of the discrete-time capture set is the sama asntinuous time, however now the
indexn € N replaces timé¢ € R,, and the discrete signéle D(A) replaces the continuous signal
6 € S(A). This is mathematically represented as

Cw={xeX|dAneN, 3§ € D(A) s.t.d(n, X, p(w, 9)) € B}.

To compute the restricted capture set, we introduce thessegs{L'(n, X, ')}, {H'(n, X, ')} ¢ X|
generated with the staté € X' and constant control inpus' € D(Q'). These sequences are defined
as

L'(n, X, w") L' — @l(n, (0, X), ¢' (', 8},))
H'(n,X,w') = H' —®\(n,(0,X),¢(w',6))).
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We can combine these sequencesifar{l, 2} and defineL(n, x, w) := (L*(n, X, w?), L?(n, X2, w?)),
H(n, X, w) = (HY(n, X}, wl), H3(n, X2, w?)).

The sequencélL(n, X, w)}nen represents the backward integrationlofvith state (0x), control
input w and constant disturbance inpt)j. The sequencéH(n, X, )}y represents the backward
integration ofH with state (0X), control inputw and constant disturbance inpiit. We use both
these sequences to define a sequence of rectangle $pteas, w), H(N, X, w)[}ken < R?.

We introduce Algorithm 1, which can be used to compute theiotsd capture saf,, by recur-
sively computing the elements of the sequefjtén, X, w), H(Nn, X, )[}nar. TO accommodate the case
of state uncertainty (Section 6.3), the input of Algorithiis AsetX c X rather than a singletaxe X.

Algorithm 1 C, = CaptureSetSlice(w)
Input: (X, w) € 2X x D(Q)

n=1
loop
Termination met when the sequencgHhf X, w) is no longer in the set Conénf X,).
if inf X, < H(n,Iinf X, w) and infx; ¢ |L(n, supX w), H(n, inf X, w)[ then
n=n+1
else
return Co = Uyen] L(K, SUPX, w), H(K, inf X, w)[.
end if
end loop

Output: Cg C X;.

We can interpret Algorithm 1 as the backward propagatiomefrectangle set] H[ with control
signalw and all disturbances. This, in turn, by the order preserpirggerties of the discrete-time
flow with respect to the input, only requires the upper bodndnd the lower bound,. To show
terminationof Algorithm 1, we note that condition (iii) of Definition 4 ipties that the sequence
{H(Nn, X, w)}nav is strictly monotonically decreasing without limit for any € X andw € D(Q).
Therefore, there must be some finte N such that infx; £ H(n, inf X, w), implying termination of
Algorithm 2.

Claim 1.

Co = {x€ X | x € C = CaptureSetSlicéx), w)}
Proof. DenoteS := {x eX|xeCy= CaptureSetSIice((},w)}. We show first thaCq < S and
then thatCy 2 S.

(©) Let x € Cw, then by the definition o, we have that there i& € D(A) andn € N such that
L < @4(Nn, X, ¢(w, 8)) < H. From equation (10), we have that

L- (Dl(r_]’ (O, )_(), ‘10(0), 6)) <X < H - (Dl(ﬁ, (O’ )_()’ QO((,(), 6)) (11)

From the order preserving property of the game input map regpect to the disturbance and by the
order preserving property of the discrete-time flow withpess to the input, we have that

®1(n, (0, %), p(w, 61)) < D11, (0, %), p(w, 6)) < D1(N, (0,X), p(w, 6)). (12)
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Therefore, from expressions (11) and (12), we have that

X < H = @4(n, (0, X), ¢(w, 6))
X1 > L —®@1(n, (0, %), p(w, 6))

H = ®4(n, (0,X), p(w, 6)) = H(N, X, )
L - (Dl(r_]’ (O’ )_()’ QD((L), 67‘()) = L(r_]a X, w)’

IV IA

which imply x € S.

(2) Letx € S, for agenti € {1,2} we have thak, < H'(n, X, ') = H - @(n, (0, X), ¢' (', 8)))
andx, > L'(0, X, ') = L' — @ (1, (0,X), ¢ (', 8y)) for somen e N. We can rearrange these in-
equalities to giveb! (i, (0, X), ¢'(w', 6))) < H' — X and®! (1, (0, X), ¢'(w', 6)})) > L' — X, If either
@i(n, (0,X), ¢' (', 6)) > L' = x, or @i(n, (0, X), ¢'(w',6})) < H' - x;, we have that there is a dis-
turbances such thatx; + @} (n, (0, X), ¢'(w',8"))) = (N, X, ¢(w,d)) €]L',H'[. If neither of these
two cases is satisfied, the following inequalities are gats @\ (n, (0, X), p(w',8)) < L - x; and
@ (n, (0, X), ¢'(w', 8)) > H — x;. Sinced! (1, (0,X), ¢/(&', ) : D(A") — X; is a continuous function
andD(A") is a connected metric space with = [4},6},], by the intermediate value theorem there
must bes' € D(A') such tha! (, (0, X), ¢'(w', §')) = w €]L' — X, H' — X [. As a consequence, for
such as' we have thak, + @\ (n, (0, X), ¢'(w', ")) = @\ (N, X, ¢'(', ")) € ]L', H'[. Since this holds
for arbitraryi € {1, 2}, we have shown thate C. O

Note that the set§, are 2 dimensional. Claim 1 shows that these high dimensionalcsetde
computed by just computing a sequence of loyt€n, X, )}y and uppefH(n, X, w)}new bounds in
X1, which are parameterized by the &tate variablex. For any fixed value ok € X, the union
of intervalsUnay]L(N, X, w), H(n, X, w)[ over alln € N represents the two dimensional slice@f)
corresponding to the state

The boundary of the capture g&t., must be reinterpreted, as now the discrete-time flow cam ente
the interior of the capture set without touching the boupd®e provide a definition of the capture
set boundarylC¢ as

0Cw ={Xe X\Cw | A6 € As.t.x+ AT f(X, ¢(w, 5)) € Cw}- (13)

According to this definition, a state outside of the restdiatapture set is said to be on the boundary of
the restricted capture set, if there is some disturbande thiat the state is mapped inside the capture
set in one step.

6.3 Dynamic Feedback Implementation

Since the dynamics of the system are order preserving wsibei to the state and to the input, we
construct a state estimator that keeps track of only therlawe upper bounds of the information state
similar to the estimator proposed in [23]. LeX := supXandAX := inf X denote the upper and lower
bounds, respectively, of the set of possible current stafése sup and inf are taken component-wise
in accordance to the partial ordering defined #n<))). Then, a state estimatg¢n] is constructed
with Algorithm 2, by only updating the upper and lower boumdx[n — 1]. To construct the state
estimate, first the previous state estimate is mapped fdrwader the discrete update map with the
control input supplied and all possible disturbances. THemeasurement is used to further restrict
the set of all possible compatible states. Conditions fegath estimator convergence are provided in
[23] for a class of systems.
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Algorithm 2 X[n] = StateEstimate{h — 1], w[n — 1], Z[n])
Input: ({n-1],Zn]) € 2Xx O

Update state estimate.
vX[Nn] = Inf{AT f(VX[n — 1], p(w[n — 1], 64)), suph(Z[n])}.
AX[N] = sUpgAT f(AX[N - 1], ¢(w[n — 1], 6.)), Inf h(Z[n])}.

Return state estimate with upper and lower bounds.
return X[n] = [AX[n], VX[n]].

Output: X[n] c X.

To implement the closed-loop feedbaBk 2* = U given by equation (5) from Section 5.2, one
must check whether the state estimgtg intersectsCy,,, andCe,. Since the sequendgk, X, w) is
order reversing in the argumexta suficient condition guaranteeing thgin] N C¢ = 0 is that

falnl 0 1Lk vRIn], @), Hik AN, @)] = 0. (14)
keN

We introduce Algorithm 3, which can be used to compute theldaek w[n] generated by the
set-valued mafs by using the current statgr] and the state predictioxni + 1].

We can interpret Algorithm 3 as the discrete-time impleragan of the set-valued ma@, as
defined in (5). The algorithm is comprised of a series of stEpst, capture set slices are constructed
with Algorithm 1 for the state prediction. If the state pretebn X[n + 1] has non-empty intersection
with each restricted capture set, as established by equd#, then the state estimagg] either has
non-empty intersection or is on the boundary of each restticapture set. The state estimgfe]
is on the boundary of a restricted capture set, as definedBin ifthe state estimategri] has empty
intersection with the corresponding capture set slicetcoated with Algorithm 1. If the intersection
is non-empty, then the state estimafg] has non-empty intersection with the restricted captute se
Lastly, control is evaluated with the set-valued niapased on the restricted capture set membership
established.

The closed-loop control system is implemented with Aldorit4, where the feedback and state
estimate are given byJ(n], X[n]) = ControlSystemX[n — 1], z[n]). We can summarize Algorithm 4
as follows. First, the state estimate is constructed witpoAthm 2. Next, a state prediction is con-
structed by mapping the current state estimate forward a&lithossible disturbance signals. Finally,
control is evaluated with Algorithm 3 based on current séstate estimate and state prediction.

7 Simulation and Experimental Results

In this section, we illustrate the application of the alfums outlined in Section 6 to the two-vehicle
collision avoidance problem introduced in Section 1, inallhive now consider disturbances, imper-
fect state information, and higher order piecewise comtuswvehicle dynamics.

In-vehicle cooperative active safety and related tecthgie®continue to be examined world-wide
by government and industry consortium, such as the Crasidamoe Metrics Partnership (CAMP)
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Algorithm 3 w = FeedbackMap(h + 1], X[n])
Input: (X[n+ 1], X[n]) € 2% x 2%

Construct capture set slices for state prediction.
Cw, = CaptureSetSlice{f + 1], w ), CwH = CaptureSetSlice(h + 1], wy)

Check if predicted staté{n + 1] intersects both capture set slices.
if Xin+1]NCew, #0and X[n+1]NCy,, # 0then

Construct capture set slices for current state.
Cw, = CaptureSetSlice{f], w,), CwH = CaptureSetSlice{]], w)

Determine control according to equation (5).
if X[n] NCew, =0 andX;[n] N Cey,, # 0 then

W = Wy
else if x,[n] N Cw, # 0 and % [n] N Cg,, = 0 then
w = Wy
else
W = Wy
end if
else
No control specified.
weQ
end if
Output: w C Q.

Algorithm 4 (w®[n], X[n]) = ControlSystenX[n — 1], z[n])
Input: (X[n-1],z[n)) € 2Xx O

Update state estimate.
X[n] = StateEstimate{h — 1], z[n])

Construct state prediction.
X[n+ 1] = [AT f(vXn], e(w[n], 61)), AT F(AX[N], ¢(w[n], 61))]

Compute closed-loop feedback.
w°[n] = FeedbackMapq{h + 1], X[n])

Output: (w®[Nn], X[N]) € Q x 2%

[2], the Vehicle Infrastructure Integration Consortium|i@) [3, 4] in the U.S., the Car2Car Commu-
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Figure 3: Vehicles approaching a “T” intersection. A collision ocglif two vehicles are in the set B at the
same time.

nications Consortium in Europe [1], the Advanced Safetyidetproject 3 (ASV3) in Japan, and by
university research centers such as the Virginia Tech Ppratetion Institute (VTTI) and the Califor-
nia PATH. In the near future, ITS is expected to become mongpeehensive by connecting vehicles
with each other and with the surrounding road infrastrietarough vehicle-to-vehicle (V2V) and
vehicle-to-infrastructure (V2I) wireless communication

Here, we consider threeftrent scenarios. In the first scenario, the cooperative easassume
V2V communication. The two vehicles thus share informatod cooperate to prevent a potential
collision. In the second scenario, the competitive caseasgeme that the two vehicles cannot com-
municate with each other, for example, only one of the twaalek is equipped with the on-board
active safety system. This scenario is of high interestngg@alistic deployment of cooperative ac-
tive safety systems will not be universally equipped on ahieles. The third scenario assumes V2V
communication and thus cooperation between the two vehid#owever, we assume that the dy-
namic model of the vehicles is subject to modeling uncetyakor this combined case, experimental
results on a concrete in-lab implementation are preseinall of these three cases, we consider the
traffic intersection instance depicted in Figure 3 as a reference.

The longitudinal dynamics of each vehicle along its path barmodeled employing Newton’s
laws. Letp € R denote the longitudinal displacement along the vehicle.pehbe longitudinal vehicle
dynamics can thus be written as

p = [RZ/(‘JW + MRZ)]( fw - fbrake_ %CDAfVZ - Crng - Mg Sin(eroad)),

in whichR is the tire radius),, is the wheel inertiaM is the mass of the vehiclé, = ,R wherer,, is
the drive shaft output torque,ake iS the brake forcey,; is the air densityCp is the drag coicient,
A: is the projected front area of the vehicleis the longitudinal vehicle velocityG,, is the rolling
resistance cdcient,g is the gravity constant, artth,.q is the road gradient. For more details on this
model, the reader is referred to [48] and to the referencaeitih. For automatic drivind,, and fyake

19



are control inputs to the longitudinal dynamics of the vehidssuming that the road is flat and that
the air drag term is negligible, we can re-write the longmadildynamics as

p=au+b, (15)

in whichu = f,,— fyrakeis the total force, which is the control input to the vehiee; R?/(J,+ MR?),
andb = —-R?/(Jy + MR?) C; Mg.

For vehiclei € {1,2}, we denote (see Figure 3) the longitudinal displacememtggits path byx;
and the longitudinal speed bg. As a consequence, the longitudinal dynamics for vehield1, 2}
can be re-written as

o=
X, = au+b.
In order to prevent the vehicle from stopping (to preventtivéal solution in which the vehicles come

to a stop) and from exceeding a maximum speed (to respectpzadi limitations), we consider the
hybrid system depicted in Figure 4. For each vehicle subsyst, we choose foZ € R? an output

xé = Umin
vt <0

T R——
T1 =12
b A
1‘2 =
1'12 S (Uminavmaz)

7'=0 v >0

F_igure 4: Hybrid system modeling the vehicle systéhfor i € {1,2}. In the diagram, we have defined
v i=ad +b.

maph(z) = [Z, — di, Z, + di] X [Z, - dp, Z, + d;] (a continuous set-valued function), in whighis a
pair of positiorispeed measurements assumed to be continuous indjmegdels uncertainty on the
position measurement, angd models uncertainty on the speed measurement. Vdhike practically
close to zero as the on-board speed measurements are quitatagl; can be quite large due to GPS
positioning error. One can verify that systefisare order preserving systems, and th@edential
inclusion generated by all inputs is Marchaud.

The corresponding discrete-time dynamical system witle stepAT is given by

xi[n+1] X [n] + AT %,[n]
%[n+1] = X[n] + ATy,

in whichy' = a'u' + b' in the central mode of Figure 4 and = 0 in the right and left modes of the
same figure.
The bad seB is constructed with the rectangle &t LY, HY[ x ]L?, H?[.

7.1 The Cooperative Case

In the cooperative case, we have that (U, U?) = ¢eoopw, 8) = (', w?), that is, both of the agents
are controlled anduf, u?) € Q = [w], w}] X [w?, w?]. We implement the algorithms of Section 6
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to compute the restricted capture s€ts, andC,,. Figure 5 shows snapshots in the position plane
of the trajectory of the set\X, vVX] for the closed-loop system. As soon as the s&¢ [X] hits the
intersection of the two restricted capture s€ts, andCy,,, the safety control acts and, as a result,
set [AX, vX] slides along the boundary of the capture set until it paBse¢ote that the setS,, and
Cw,, are each four dimensional. The plots of Figure 5 show sli¢esich sets in the position plane
corresponding to the value of the current speeds.

7.2 The Competitive Case

In the competitive case, we have that= (U, U?) = ¢(w,d) = (w',6?), that is, the first agent is
controlled while the second one is not and, (%) € [w}, w},] x[62, 64]. We implement the algorithms
of Section 6 to compute the restricted capture 6gbs andC,,. Figure 6 shows snapshots in the
position plane of the trajectory of the sety, vX] for the closed-loop system.

7.3 The Combined Case: Experimental Results

In order to show the suitability of the proposed algorithorsréal-time applications, we implemented
the algorithms on the in-scale roundabout test-bed shoWwigure 7. The vehicles are equipped with
an on-board computer running Linux Fedora core, wirele82.@Lb), speed and position sensors,
and a motion controller that translates desired torque canais for the wheels into a PWM signal
applied to the DC motor. This guarantees that the vehiclgorads to torque commands (calculated
in the on-board computer) through a second order dynamit¢eeofype of equation (15). For a
detailed description of the vehicles, the reader is refetoe[48]. The dynamical parameters for
each vehicle were experimentally determined and resuttéle longitudinal dynamics mode| =

at +b' + D' = fi((p, p), ¢(r', D)), inwhicht' € [0, 100] is the percentage torque control command
applied to the wheels from the mota® = 1.20 cmiseé, b' = —-0.90cm'seé, a2 = 1.26 cnysed,

b? = —1.15 cnyseé, D' € [0.6,19.1] cnysed, andD? e [0.85, 24.85] cnyse€. A torque command of
100% corresponds to a torque of 0.09 N m. The tefhscorporate uncertainty that has been added
to the model to take into account the parameter identifinagroor. The limits on the speeds are taken
aSVmax = 80 cnmisec and/pi, = 25 cmsec. The speeds,.x andvy,n given in the guard conditions in
Figure 4 are maintained through the employment of a propaatiderivative (PD) speed control. The
longitudinal dynamics model corresponds to a game mgdalwhichu' = ¢'(w', ¢') = (%, @)
with ' € [0.0,2000], 6* € [0.6,19.1] 2/a', ands? € [0.85, 24.85] 2/a2.

Vehicle control has two main components: maintaining th@ales on the corresponding round-
about paths and applying the appropriate control torgués the longitudinal dynamics to prevent
collisions at pointC (Figure 7). In general, the longitudinal and lateral dynzsof a vehicle are
coupled. However, since the radii of the paths are muchgréaan the length of the vehicles and the
speeds are low, it is possible to assume low coupling. Thasvalus to decouple the path following
task, using a steering control input, from the longitudidhamics control, using the torque control
inputw.

When no special torque command is required to guarantety gttie last case of the control map
in Theorem 4), a cruise control algorithm comes infieet to maintain the vehicle speeds about pre-
defined set points. For the roundabout implementation,cleeldi tracks a speed of 0.4/sn while
vehicle 2 tracks a speed of 0.53nA PD controller is employed for this tracking task. Theseesls
were selected such that the vehicles would be able to aatelend decelerate as much as possible
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Figure 5: The cooperative case. The above plots depict snapshot® afyttemic evolution of the closed-
loop system. The system considered has= 1 andb' = -5 fori e {1,2}, with vmin = .25nysec and
Vmax = .8nysec. We choos&T = .1 sec,B =]4,6[xRx]4,6[xR, Q = [0,1] x [0,1], Xo = (15,.5,1,.5),
X0 = [.5,2.5]x[.4, .6]x[0, 2] x[.4, .6]. The measuremenizare generated randomly with a uniform probability
distribution in the interval(t) — (1,.1,1,.1), x(t) + (1,.1,1,.1)] so thath(2) = [z—(1,.1,1,.1),z+ (1,.1,1, .2)].
The grey box represents the projectionxgf) onto the ((i, xi) plane, with the black asterisk representing
the state of the system projected onto tb(%, 1@ plane. The red box represents the projectiorBodnto
the (x}, xi) plane, the slice o€, corresponding to the current speeds is shown in green ansliteeof
Cw,, corresponding to the current speeds is shown in purple.s Blothe velocities, controls, disturbances,
estimation erroff A X— VX||, and inputs are depicted in the lower panels.

while staying in the speed range enforced by the speed lindite range of speeds was selected based
on the geometry of the roundabout such that the captur@é dees not extend beyond the reference
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Figure 6: The competitive case. The above plots depict snapshotseadythamic evolution of the closed-
loop system. The system considered has= 1 andb' = -5 fori e {1,2}, with vmin = .25nysec and
Vmax = .8nysec. We choos@&T = .1 sec,B =]4,6[xRx]4,6[xR, Q = [0,1] x [0,1], A = [0, 1] x [0, 1],

Xo = (-6,.5,-10,.5), X9 = [-7,-5] x [.4,.6] x [-11, -12] x [.4,.6]. The measurementsare generated
randomly with a uniform probability distribution in the erval [x(t) — (1,.1,1,.1), x(t) + (1,.1,1,.1)] so that
h(2 =[z-(1.1,1,.1),z+ (1,.1,1,.1)]. The grey box represents the projectionxf) onto the ((i, x%) plane,
with the black asterisk representing the state of the sysmjected onto the><€, x%) plane. The red box
represents the projection & onto the ((i, xi) plane, the slice o€, corresponding to the current speeds
is shown in green and the slice 6f,,, corresponding to the current speeds is shown in purple s Bfathe
velocities, controls, disturbances, estimation ejfrark — vX||, and inputs are depicted in the lower panels.

point on either path. If this were not the case, the vehiclag apply control to avoid the bad set on
the first pass, only to end up in the capture set for the secass] thus making it impossible to avoid
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Figure 7:Roundabout test-bed (left). The longitudinal displacetmenthe vehicles with respect to a reference
point along their corresponding paths are indicatecoband p,. The bad seB is a disk about point C. The
vehicles (right).

a collision.
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Figure 8: Experiment data showing the trajectory in the position elafi the vehicles configuration as it
approaches a potential collision scenario. The red boxegptbjection ofB in the position plane. In each
panel, the green set represents a slice of the four dimeadssetC,,, corresponding to the current vehicles
speeds. The yellow set represents a slice of the four dimealsseiC,, corresponding to the current vehicles
speeds. The red dot indicates the current vehicles paositiGontrol is applied at (d) to avoid the capture set,
and the vehicles resume normal operation after passingathesdt (in (g) and (h)). The capture set slices are
updated at every iteration on the basis of the vehicles speed

Figure 8 illustrates the trajectory of the vehicle configiora projected onto the position plane,
when avoiding a collision in one instance of the collisionig@ance algorithm. The set%,, andCw,,
are four dimensional. In the figure, we show the slices ofdlsess in the position plane corresponding
to the current speeds of the vehicles.
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8 Conclusions and Future Work

Since the dynamic feedback problem for general hybrid systeith imperfect state information
is prohibitive, we focused on a restricted class of systemisch is still relevant for modeling a
number of application scenarios. In particular, we focused class of hybrid systems with order
preserving dynamics. For this class of systems, we havempi@s an explicit solution to the safety
control problem with imperfect state information. We havevided linear complexity discrete-time
algorithms for computing this solution. We have shown thgliaption of these algorithms to a two-
vehicle collision avoidance scenario at affi@intersection. The experimental results confirm the
suitability of these algorithms for fast real-time comgida.

There are a number of future research avenues to be explorde icontext of imperfect state
information. Specifically, we will consider the extensidntlois approach to hybrid dynamics with
discrete state memory. Also, this work has focused on twgey games. We seek to extend it to
multi-agent games and apply it to multi-vehicle collisiolo@lance scenarios at ffa intersections.
In this case, we expect that the two-vehicle collision asaike algorithm will be employed as a
primitive to construct the solution of the multi-vehiclellesion avoidance problem.
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9 Appendix: Proof of Lemmas and Propositions

9.1 Proof of Lemma 1.

Before giving the proof, we need the following intermediegsults.

Proposition 2. Consider order preserving game structife= (X, Q, A, ¢,B) and let xe X, w €
S(U), 6 € S(A) andy € C°(I,R?) o.p.c. where X < maxti(y(l)). Then, we have that either
P1(R+, X, p(w, 8)) > ¥(1) or ¢1(R+, X, p(w, 6)) < (1) if and only ifp1(R+, X, p(w, 6)) N ¥(l) = 0.

Proof. (=) Follows from the definition of the relation.

(&) Supposépi(R,, X, ¢(w, d)) > y(I) or p1(R,, X, p(w, 6)) < y(1)} does not hold. The hypothesis
$1(0, X!, p1(w?, 6) < supri(y(1)) and condition (iii) of Definition 4 imply that there exist, a? € |
andty,t; € R, such thatps(ti, X, o(w, 8)) < y(at) and ¢ (tz, X, (@, 8)) > y(a?). For simplifying
notation, letZ(t) := ¢1(t, X, p(w, §)). Without loss of generality, assunaé < o?, definey € R?
wherey; = min{yy(et), y2(e?)} andy. := min{g2(ts, X2, ¢*(w?, §%)), y2(a?)). Next, we defind’y :=
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y([e?, @?]). By the construction of, we have thay(a?l), y(e?) € Cone.(y), which implies thal';, C
Cone (y) by the definition of 0.p.c. We now consider the three possibalses: (Caset) = t,, (Case
Il) t; < tp, and (Case llI}; > t,.

(Case ) Suppost = t,, implying y(a?) < {(t)) < y(a?). Consider the open half spage:=
Conge,(v) c R? which is trivially path connected, and the set= A U y(a') U y(a?). The setA
is also path connected, implying the existence of a path C°(I, A) such thaty(0) = y(e!) and
¥(1) = y(a?) whereyis simple. Sincé’;, ¢ Cone.(y), and Congg,(x)N Cone (y) = 0 by definition
of the cone, we must have thatI'1, = 0. This implies that(I) only intersectd’;, aty(0) andy(1),
allowing us to re-parameteriz€l) U I';» with a simple closed curve (see Figure 9).

This simple closed curve, by the Jordan Curve Theorem [28itipnsR? into two setsD bounded
and~ D unbounded. By constructioB, is such that(t;) € D andoD = I';, Uy(l). Condition (iii) of
Definition 4 implies thaf|¢(t)]| — co ast — co. Thus,Z([t, 0)) N D must be non-empty becaube
is a bounded set. Since condition (iii) of Definition 4 imgligats ([t, o)) N Ais empty and/{l) c A,
we must have that([t, )) N1, # 0. This in turn impliespi(R,, X, o(w, 8)) N y(1) # 0.

(Case Il) Supposg < t,. This along with condition (ii) of Definition 4 implies thai(a?) < y1(a?).
We assume thaf(t;) < y(I) and{(tz) > (1), otherwise we would be back to (Case I). Define the sets
S; = Conegg, &, (y(@?)) andS, := Cone (y). DefineA := S, U(~ Sy andA := AU y(ab) U y(a?).
Sincey is an o.p.c. path;, ¢ Cone (y) andl';; N'S; = 0, we must have thdt;, N A = 0. The set
Ais path connected, implying the existenceyo& TO(I, A) with y(0) = y(a?), 7(1) = y(?) andy
simple. SinceA N Ty, = 0, y(l) U I'i; can be re-parameterized with a simple closed curve (see
Figure 9). This curve, by the Jordan Curve Theorem, formsumtted seD, wherel(t;) € D by
construction. Condition (ii) and (iii) of Definition 4 alongith the decoupling of the dynamics imply
that £([ty, 0]) N A = 0 and([t;, ]) N dD # 0. Sincey c A, we have that([t;,]) N T, # 0.
Thereforeg:(R,, X, o(w, 6)) N y(l) £ 0.

(Case Ill) Supposé& < t;, which along with condition (iii) of Definition 4 implies tha; (e?) <
y1(at). We assume thaf(t;) < y(1) andZ(ty) > y(1), otherwise we would be back to (Case I). Define
the setsP := Conge,(x), R := Conge, e, (y(@), H = Conem(,\g)\R A = P\H, andA := AU
y(@t)Uy(a?). The setA is path connected, implying the existence afherey € C°(1, A) with 7(0) =
y(a?),¥(1) = y(a?) andy simple. Observe thaa N T, = 0, thusy(l) U 'y, can be re-parametrized
with a simple closed curve. We invoke the Jordan Curve Thedoeconstruct the bounded g8t
where(l(t;) € D by construction (Figure 9). By construction, we also haw &{t,) ¢ D. Thus, the
uniform continuity of the flow with respect to time impli€§[t,, t;]) N dD # 0. Condition (iii) of
Definition 4 implies that([t,, t1]) c H, thus implyingZ([to, t]) N A = 0. SincedD = I';, U y(1) and
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¥(1) c A, we must haveé([t,, t1]) N1, # 0. This implies that/([t,, t]) N y(1) # 0, giving the desired
resultg,(R,, X, o(w, 6)) N y(l) # 0.
Therefore, we have shown for each casgR ., X, p(w, 8)) N y(l) # 0, completing the proof. O

Proposition 2 states that the flafvgenerated from the initial conditioxy controlled inputw and
disturbanced can avoid an o.p.c. pathin the (x}, x2) subspace if and only if the trajectory ¢f
lies abovey(l) or if the trajectory ofp, lies belowy(l). Another intermediate result is needed before
stating the proof of Lemma 1.

Proposition 3. Consider order preserving game structige = (£,Q,A,¢,B), x € X, w € S(U)
andy € C%(I,R?) o.p.c. with % < maxzy(y(1)). If Usesa) #1(Rs, X, @(w, 6)) N ¥(1) = 0, then either
¢1(R+’ X, ‘)0((1), 6.[)) > 7(') or ¢1(R+’ X, ‘)0((1), 6‘/‘()) < ’}/(I )

Proof. The assumption that(l) N Uses(a) #1(R+, X, ¢(w, 6)) = 0 implies

@) o1 (R, X, o(w, 67)) Ny(l) = 0 and (b)p1(R,, X, (w, d4)) Ny(l) = 0. From Proposition 2, we have
that (a) implies either

1R+, X, p(w, b)) > (1) (16)
or  $1(Re, X pw,6,)) <¥(1). 17)
Similarly, Proposition 2 along with (b) implies either
P1(R+, X, (@, 641)) > ¥(1) (18)
or  $1(Rs, X p(w, 64)) < ¥(1). (19)

If (16) is satisfied, we immediately obtain the result. Sarly, if (17) and (19) are satisfied the result
also follows. Therefore, we are left with showing that rielas (17) and (18) are not both possible. By
contradiction, assume they are both possible and defineotistant signalé?(t) := 62, 63 (t) := 63,

6L (t) = &, andéy(t) = of for all t € R,. Then, there isd¢*,a?) € y(I), t, > 0, andt, > 0O
such thatp(t,, X2, p?(w? 67)) < a? and ¢3(ty, X2, p?(w?, 63)) > a?. Sincegl(ts, Xt X (w?, 6y)) =

at = ¢l(ty, X4, pH(w?, 81)), the order preserving property ofin its arguments imply that, < t,. For
fixed x? and w?, define the functiomd? : [t,, t)] X S(A%) — R by ®2(t,6°) := $3(t, X2, ¢ (w?, 67)).
This is a continuous function from a connected metric spatethe reals. Therefore, we can apply
the intermediate value theorem to state that there is atpairt,, ty] and & € S(A?) such that
D2(t,67) = 2.

Property (iii) of Definition 4 further implies that the ordieg ¢1(t, X, ¢*(w?, 61;)) > o* and ordering
PL(t, XL, Y (wh, 81)) < o must hold. For fixedx! and w?, define the mapb! : S(AY) — R by
D(6Y) = gt ¥, p1(w?, 6Y). This is a continuous function from a connected metriccepta the
reals, therefore we can apply again the intermediate vakaém to conclude that therasise S(AY)
such thab(6") = o,

As a consequence, we have that, X, p(w, (8%, 8Y))) = (a*, a?) € (1) for (8, 6%) € S(A). This in
turn contradicts the assumption thdg.s) ¢1(R+, X, ¢(w, 8)) N ¥(1) = 0.

O

Proposition 3 states that the flatvgenerated from the initial conditiomand controlled inputv
will avoid an o.p.c. patly in the (x;, X2) subspace if and only if the trajectory ¢f generated with the
disturbance signai, lies abovey(l) or if the trajectory ofp,; generated with the disturbance signal
04 lies belowy(l).
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Proof. (Lemma ) (<) For every disturbancé& € S(A), we have thad , < § < 6. From Proposition
1, it follows that for everyx € A andt € R,, we have thaw(t, X, p(w, 6,)) < o, X p(w,d)) <
o(t, X, o(w, d4)). Therefore, the result follows directly from the assuioipt

(=) Supposepi(R,, A p(w,d,)) > y(I) or p1(R,, A, p(w, %)) < y(l)} does not hold. Then
there must exisk,y € A, al,a® € |, andty,t, > 0 such thatp(ty, X, o(w, 6,)) < v(et) and
(62, Y, o(w, 64)) > y(a?) (the relation is strict, otherwise the result is immediat®Ve assume
that ¢1(R,, X, p(w, 67)) < y(1), otherwise Proposition 2 implies that(R., X, p(w,d,)) N y(1) # 0.
Likewise, Proposition 2 implies we must have
01(R, Y, o(w, 64)) > y(1). Furthermore, unlesg;(R,,Y, ¢(w, b)) > y(I) is satisfied, the previous
statement along with Proposition 3 implies tha(R ., y, o(w, 6 ) N y(l) # 0. Figure 10 shows the
resulting geometry of the flow. Let € | be such that,(y(l)) < 71(y(a)). Condition (iii) of Defi-
nition 4 leads tax} < ¢i(ty, X4 ¢ (w, 81)) < yi(@) andyr < ¢i(tz, Vi, ¢*(w, 61)) < yi(a). Consider
H := Co{x,y} C A, since convexity is preserved under projection [16], cbadi(iii) of Definition 4
implies there isT > 0 such that

$1(0, 1(H), p*(w*, 6%)) < y1(@) < ¢1(T, 71(H), ¢*(w*, 6%)). (20)

We seek to show that(a) € ¢1([0, T], H, ¢(w, 6,)). DefineK = [0,T] x H c R, x R*" and let
0 : K — R? be the map defined b®(t, 2) := ¢1(t, z p(w, 6 )) for (t, 2) € K. We proceed by breaking
this proof into three steps:

(i) Construct from® a mapy : S — S%;

(i) Show that the degree of is nonzero;

(i) Show that the degree af being nonzero implies
thaty(a) € O(K).

(i) Denote the four corners @K : h; = (0,%), h, = (T, x), hs = (T,y), hy = (0,y). Define the sets
A; = Co({hy, hy}) U co(fhy, hs}) and A, := To({hs, hs}) U TO({hy, h;}). Consider the standard covering
map ofS* p : R — S, in which p(2) := (coq2r2), sin(2r2)). Define the homeomorphisrh :
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Figure 12:Tools used to find deg.

D! — K, such thatf(p(0)) = hy, f(p(.25)) = hy, f(p(.5)) = hs, and f(p(.75)) = h,. Since® is a
continuous function, we have th@(dK) defines a closed curve. Assume thét) ¢ ©(0K) and let
g: R?\y(a) — S* be the continuous map defined by

. z—y(a) 2
00 i= =L o V2 € FAY(@), (21)

Definey € CO(S?, S1) asy(X) := go @ o f(X) for all x € S* (see Figure 11).

(ii) To compute the degree ¢f, we consider the liffy : | — R wherepo ¢ = o p (see Figure
12(a)). The degree af is defined as deg:= (1) — ¥(0) (see [34] for details). We introduce the
setsS! := p([0, .25]), S}, := p([.25,.5]), St, = p([.5,.75]), S}, = p([.75, 1]) (see Figure 12(b)). Let
k1 := ¥(0) and note thap(x,) = ¥(p(0)) = g(®@(h,)), which must be irbl,, , since®(hy) < y(a). Let
k> = ¥(.5) and note thap(x,) = ¥(p(.5)) = g(@(hs)). From (20) and condition (iii) of Definition 4,
we have thay(a) < ®(hs). This inequality along with the definition efimply thatg(®(h)) € Si. As
a consequence, we hapé,) € St, implying thatk; # .

We next show that, > «;. Since® o f(p([0, .5])) = ®(A1), equation (20) along with condition (iii)
of Definition 4 implies tha®(A;) < y(a). This implies thaty(p([0, .5])) = g(@(A;)) c StUSH, USL, .
Therefore, ifiy(p(¢)) cannot enteg, for all £ € [0, .5], thenk; < k, by the definition of p.

Finally, letk; := ¢(1). We show that, < «3. Since® o f(p([.5,1])) = O(A), from (20) and
Condition (ii) of Definition 4 we have th&(A,) > y(«). This, along with Condition (iii) of Definition
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(4) implies thaty(p([.5, 1])) = 9(@(Az)) c St U S}, U St . Therefore, ifiy(p(¢)) cannot entes}, for
all £ € [.5, 1], thenk, < k3 from the definition ofp.

We have shown that < &, < k3. As a consequence, dgg= (1) — ¥(0) = k3 — &1 # 0.

(iii) Now suppose we extend the magto y € C°(D?, S1), wherey(X) := go®o f(X) for all x € D,
By Lemma 3.5.7 in [34], if a continuous functidn: S* — S extends to a continuous functidi :
D! — St then dedh must be zero. However, we found the degreg tf be non-zero, implying that
cannot extend tg. Since®(f(D?)) is well defined, we must have thg@®(f (D*'))) is undefined. Since
9(2) is defined for alk € R?\y(a), we must have that(@) € ®(f(D)). This implies thay(a) € O(K) =

#$1([0, T, H, (@, 01)) C Usesa) 91(R+, A, p(w, 6)). Therefore) Jsesn) #1(R+, A, o(w, 6)) N y(1) # 0.
O
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