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Abstract

This paper addresses the two-agent safety control problem for piecewise continuous systems
with disturbances and imperfect state information. In particular, we focus on a class of systems
that evolve on a partial order and whose dynamics preserve the ordering. While the safety con-
trol problem with imperfect state information is prohibitive for general classes of nonlinear and
hybrid systems, the class of systems considered in this paper admits an explicit solution. We
compute this solution with linear complexity discrete-time algorithms that are guaranteed to ter-
minate. The proposed algorithms are illustrated on a two-vehicle collision avoidance problem and
implemented on a hardware roundabout test-bed.

1 Introduction

In this paper, we consider a class of piecewise continuous systems that evolve on a partial order and
propose an explicit solution to the two-agent safety control problem with imperfect state information.

There has been a wealth of research on safety control for general nonlinear and hybrid systems
assuming perfect state information [37, 43, 46, 47]. In these works, the safety control problem is
elegantly formulated in the context of optimal control and leads to the Hamilton-Jacobi-Bellman
(HJB) equation. This equation implicitly determines the maximal controlled invariant set and the
least restrictive feedback control map. Due to the complexity of exactly solving the HJB equation,
researchers have been investigating approximated algorithms for computing inner-approximations of
the maximal controlled invariant set [29, 30, 41, 47]. Termination of the algorithm that computes the
maximal controlled invariant set is often an issue and work has been focusing on determining special
classes of systems that allow one to prove termination (see [43] and the references therein). The safety
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control problem for hybrid systems has also been investigated within a viability theory approach by a
number of researchers (see [12, 25, 26], for example).

The above cited works focus on control problems with full state information and, as a result, static
feedback control maps are designed. When the state of the system is not fully available for control,
the above approaches cannot be applied. The advances in state estimation for hybrid systems of the
past few years [5, 13–15, 18, 23, 42, 50] have set the basis forthe development of dynamic feedback
(state estimation plus control) for hybrid systems [20, 21,51]. In particular, [51] proposes a solution
to the control problem with imperfect state information forrectangular hybrid automata that admit
a finite-state abstraction. For this case, the problem is shown to have exponential complexity in the
size of the system. This problem is solved by determining themaximal controlled invariant safe set,
that is, the set of all initial information states for which adynamic control law exists guaranteeing
that the current information state never intersects the setof bad states. Since the information state
is a set, the maximal controlled invariant set is aset of sets, making its computation even harder
than for the static feedback problem. As a consequence, for general hybrid systems the dynamic
feedback problem under safety specifications is prohibitive. Dynamic feedback in a special class of
hybrid systems with imperfect discrete state information is presented in [20], however the problem of
computing the maximal controlled invariant set is not considered. Dynamic control of block triangular
order preserving hybrid automata under imperfect continuous state information is considered in [21]
for discrete-time systems, and an algorithm for computing an inner approximation of the maximal
controlled invariant set is proposed. Dynamic feedback fororder preserving systems in continuous
time is considered in [22, 27]. However, in [22] only a cooperative game structure is considered and
in [27] only a competitive game structure is addressed. In [49], dynamic feedback is addressed for a
class of hybrid automata with imperfect state information.

Since for general classes of hybrid systems, the dynamic feedback problem is prohibitive, we con-
sider this problem in a restricted class of hybrid systems, which is still general enough to model
application scenarios of interest. In particular, we focuson a class of hybrid systems whose state and
input spaces have a partial ordering and generate trajectories that preserve this ordering. The problem
is posed as an order preserving game structure, which is an approach that unifies the special cases of
cooperative [22] and competitive [27] game structure between two agents in a general framework. By
exploiting the order preserving property of the flow, we obtain an explicit solution for the maximal
controlled invariant set and for a dynamic control map. We show that the static and dynamic feedback
problems are solved by the same control map, which is computed on the state in the first case and on
a state estimate in the second case. This implies separationbetween state estimation and control for
the class of systems considered. For safety control problems generated by a specific conflict topology,
this solution can be computed in discretetime by linear complexity algorithms, for which we can show
termination.

Dynamical systems whose flow preserves an ordering on the state space with respect to state and
input are called monotone control systems [6]. Monotone control systems have received considerable
attention in the dynamical systems and control literature as several biological processes involving
competing or cooperating species are monotone [45]. More general bio-molecular systems can be
modeled as the interconnection of monotone control systems[7, 8, 24]. There are also a large num-
ber of engineering applications that feature agents evolving on partial orders with order preserving
dynamics. Multi-robot systems engaged in target assignment tasks have been shown to evolve ac-
cording to an order preserving dynamics on the partial orderestablished on the set of all possible
assignments [23]. Railway control networks feature a number of agents (the trains) that evolve on
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Figure 1:(Left) Vehicles approaching a “T” intersection. (Right) The setsCωL andCωH , in whichL = (L1, L2),
H = (H1,H2), andB =]L1,H1[ × ]L2,H2[.

pre-defined paths (the railways) unidirectionally according to the Lomonossoff’s model, which is an
order preserving system on the path [31, 39]. Transportation networks also feature vehicles traveling
unidirectionally on their paths and lanes, which impose an ordering on their motion. In air traffic
networks, the longitudinal motion of each aircraft along its prescribed route can also be modeled by
an order preserving dynamics [32, 40].

In this paper, we illustrate the application of the proposedtechnique to a two-vehicle collision
avoidance problem as found in traffic intersections or modern roundabouts in the presence of modeling
uncertainty, missing communication, and imperfect state information.

Motivating Example. Consider the problem of preventing a collision between two vehicles ap-
proaching an intersection as depicted in the left panel of Figure 1. A collision occurs if the two
vehicles are in the shaded red areaB at the same time. The problem is to design a controller that
guarantees that the vehicles do not collide excluding the trivial solution in which the vehicles stop.
In general, the vehicle states can be subject to large uncertainties as deriving from GPS, for example,
and the dynamic model can be affected by modeling error. For the sake of explaining the basicidea
of our solution, consider the case in which the dynamics of vehicles 1 and 2 are given by ˙x1 = u1,
ẋ2 = u2, respectively, withu1, u2 ∈ [uL, uH] and uL, uH > 0. A more realistic second order hybrid
model for each of the vehicle dynamics will be considered in the simulation section. Assume also
perfect information of the state (x1, x2). Here,x1 andx2 denote the longitudinal displacements of the
vehicles on their paths as shown in the figure. In this coordinate system,B =]L1,H1[ × ]L2,H2[. To
solve the control problem, we seek to compute the set of all initial conditions (x1(0), x2(0)) that are
taken toB for all inputs (u1, u2). This set is called the capture set, denotedC, and is the complement
of the largest controlled invariant set that does not contain B. On the basis of the capture set, we then
seek to design a feedback map that guarantees that any state starting outsideC is kept outsideC.

This general problem can be elegantly formulated as an optimal control problem with terminal cost,
which leads to an implicit solution expressed as the solution of a PDE [37]. In this example, however,
there is a rich structure that can be exploited to obtain an immediate explicit solution without the
need of solving an optimal control problem. In particular, the dynamics of each vehicle preserve the
standard ordering onR, that is, higher initial conditionsxi(0) and higher inputsui lead to higher values
of the statexi(t) for all time. Denote byCωH the set of all initial conditions that are taken toB when
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the input to the system is set toωH := (uL, uH), that is, vehicle 1 applies constantu1 = uL and vehicle
2 applies constantu2 = uH. Similarly, denote byCωL the set of all initial conditions that are taken to
B when the input to the system is set toωL := (uH, uL), that is, vehicle 1 applies constantu1 = uH and
vehicle 2 applies constantu2 = uL. Because the dynamics of the system have the order preserving
properties described above, one can show that the capture set is given by the intersection of these two
sets, that is,C = CωL ∩ CωH (right panel of Figure 1). In practice, this means the following. The
statex is taken toB for all input choices if and only if it is taken toB both when (a) vehicle 1 applies
maximum control and vehicle 2 applies minimum control and (b) vehicle 1 applies minimum control
and vehicle 2 applies maximum control.

The relevance of havingC = CωL ∩ CωH resides in the following key points. First,CωL and
CωH can be easily computed by backward integration without the need of optimizing over the control
values because the controls are fixed. Second, this backwardintegration task can be performed by
simply propagating back through the dynamics the lower and upper bounds ofB, that is,L andH,
respectively, with fixed inputs (refer to the right panel of Figure 1). In discrete-time, this can be
performed by a linear complexity algorithm. Furthermore, checking whether a state (x1, x2) belongs
to eitherCωL or CωH can be performed in finite time because the backward integration of L andH
leads to strictly decreasing sequences: once the decreasing sequences starting inH passes beyond the
point (x1, x2), one has enough information to establish whether (x1, x2) belongs either toCωL or to
CωH . Finally, a feedback map is one that imposes the controlωH = (uL, uH) when the state is inside
CωH and on the boundary ofCωL, while it imposes the controlωL = (uH, uL) when the state is inside
CωL and on the boundary ofCωH (right panel of Figure 1). This way, we provide also a closed form
solution for the feedback map.In this paper, we show that this basic result holds for arbitrary order
preserving dynamics, for the case in which these dynamics are affected by disturbances, and when
only imperfect state information is available.

This paper is organized as follows. In Section 2, we introduce basic definitions and the class
of systems that we consider is introduced in Section 3. In Section 4, we provide a mathematical
statement of the safety control problem. In Section 5, we give the main result of the paper, namely the
computation of the maximal controlled invariant set and therelated dynamic feedback control map.
In Section 6, we present a discrete-time algorithm for computing the maximal controlled invariant set
and the dynamic feedback map. In Section 7, we present an example application involving a two-
vehicle collision avoidance problem at a traffic intersection. Several of the proofs are found in the
Appendix.

2 Notation and Basic Definitions

For the setA ⊂ X with X a normed vector space, denote the complement∼ A := X\A, the interior
Å, the closureA, the closed convex hullco A, the boundary∂A, and the set of all subsets contained
in A by 2A. For x ∈ Rn, denote the Euclidean norm||x||, and the inner product〈y |x〉. For x ∈ Rn

and setA ⊂ Rn, denote the distance fromx to A asd(x,A) := infy∈A ||x− y||. This extends to the
distance between two setsA, B ∈ Rn, whered(A, B) := inf y∈A d(y, B). Let ]a, b[, ]a, b], [a, b] ⊂ R
denote the open, half open, and closed intervals respectively. This notation extends to interval sets
]a, b[, ]a, b], [a, b] ⊂ Rn, where, for example, ]a, b[ := ]a1, b1[ × . . . × ]an, bn[. The open ball of
radiusǫ > 0 centered atx ∈ Rn is denotedB(x, ǫ) := {z ∈ Rn | ||x− z|| < ǫ}. For the setA ⊂ Rn,
we define an open neighborhood about A of radiusǫ > 0 by B(A, ǫ) := {z ∈ Rn | d(z,A) < ǫ}.
Denote the canonical basis vectors ˆei for i ∈ {1, 2, . . . , n}. For x ∈ Rn, denote thei th component by
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Figure 2:The setsA, B ⊂ R2 are o.p.c., while the setsC,D ⊂ R2 are not o.p.c.

xi := 〈x |êi 〉. Denote the canonical projectionτi : Rn → R defined byτi(x) = xi, which naturally
extends to sets. Denote the unit sphereSn and the unit diskDn, whereSn := {x ∈ Rn+1 | ||x|| = 1}
andDn+1 := {x ∈ Rn+1 | ||x|| ≤ 1}. For setsA, B ⊆ Rn we define the binary relationA ≺ B (A � B) if
τ1(A) ∩ τ1(B) is non-empty and for allx ∈ A andy ∈ B such thatx1 = y1, we havex2 < y2 (x2 ≤ y2).

Denote the space ofn-times continuously differentiable functions fromA into B asCn(A, B). We
use the notationF : A ⇉ B to denote a set-valued map fromA into B. For A ⊂ X and f : X → Y,
we define the image ofA under f as f (A) := { f (x) ∈ Y | x ∈ A}. We denote the space of piecewise
continuous signals on A asS(A) := PC(R+,A). Denote the unit intervalI := [0, 1]. For the set
A ⊂ R2, we will call a pathγ ∈ C0(I ,A) simple ifγ is injective. We will call it closed ifγ(0) = γ(1).
We define the Cone at vertexx ∈ Rn with respect toa1, a2, . . . , ak ∈ R

n as Cone{a1,a2,...,ak}(x) :=
{y ∈ Rn | 〈y− x |ai 〉 ≥ 0 ∀ i ∈ {1, 2, . . . , k}} . For x ∈ R2, we use the shorthand notation Cone+(x) :=
Cone{ê1,ê2}(x) ⊂ R2 and Cone−(x) := Cone{−ê1,−ê2}(x) ⊂ R2. We use the following continuity definition
for set-valued maps [11].

Definition 1. For metric spacesA andD, a set-valued mapF : A⇉ D is saidupper hemi-continuous
at x ∈ A if for all ǫ > 0 there isη > 0 such thatF(y) ⊂ B(F(x), ǫ) for all y ∈ B(x, η).

We next introduce a set characterization useful in formulating safety control problems for order
preserving systems.

Definition 2. A pathγ ∈ C0(I ,R2) is said to beorder preserving connected(o.p.c.) if it is simple,
and for allx ∈ R2 Cone+(x) ∩ γ(I ) , ∅ implies that Cone+(x) ∩ γ(I ) is path connected. A setD ⊆ R2

is said o.p.c. if for allx, y ∈ D, there exists aγ ∈ C0(I ,D) such thatγ(0) = x, γ(1) = y andγ is o.p.c.
(Figure 2).

Note that any convex set is trivially o.p.c. A partial order is a set P with a partial order relation “≤”,
which we denote by the pair (P,≤) [19]. In this paper, we are mostly concerned with the partial order
(Rn,≤) defined by component-wise ordering, that is, for allw, z ∈ Rn we have thatw ≤ z if and only
if wi ≤ zi for all i ∈ {1, 2, . . . , n}. Given setsA, B ⊂ Rn, we sayA ≤ B if a ≤ b for all a ∈ A andb ∈ B.
For U ⊆ Rm, we define the partial order (S(U),≤) by component-wise ordering for all time, that is,
for all w, z ∈ S(U) we have thatw ≤ z providedw(t) ≤ z(t) for all t ∈ R+. Suppose (P,≤P) and (Q,≤Q)
are two partially ordered sets. A mapf : P→ Q is an order preserving map providedx ≤P y implies
f (x) ≤Q f (y).
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3 Class of Systems Considered

We consider piecewise continuous systems, with imperfect state information. This includes the set
of hybrid systems with no continuous state reset and no discrete state memory, also referred to as
switched systems [17].

Definition 3. A piecewise continuous systemΣ with imperfect state information is a collectionΣ =
(X,U,O, f , h), in which
(i) X ⊂ Rn is a set of continuous variables;
(ii ) U ⊂ Rm is a set of continuous inputs;
(iii ) O ⊂ X is a set of continuous outputs;
(iv) f : X × U → X is apiecewise continuousvector field;
(v) h : O⇉ X is an output map.

For an output measurementz ∈ O, the functionh(z) returns the set of all states compatible with the
current output. We assumeh is closed valued, that is, for allz ∈ O, h(z) is closed. We assume that
there is a ¯z ∈ O such thath(z̄) = X, corresponding to missing sensory information. We letφ(t, x, u)
denote the flow ofΣ at timet ∈ R+, with initial conditionx ∈ X and inputu ∈ S(U) [35]. Denote the
i th component of the flow byφi(t, x, u).

We restrict the class of piecewise systems to order preserving systems. These systems are defined
on the partial orders (Rn,≤) and (S(U),≤) as follows.

Definition 4. The systemΣ = (X,U,O, f , h) is anorder preservingsystem provided there exist con-
stantsuL, uH ∈ R

m andξ > 0 such that
(i) U = [uL, uH] ⊂ Rm;
(ii ) The flowφ(t, x, u) is an order preserving map with respect to statex and inputu;
(iii ) f1(x, u) ≥ ξ for all (x, u) ∈ X × U;
(iv) For all z ∈ O, h(z) = [inf h(z), suph(z)] ⊆ Rn.

Conditions for establishing order preserving properties of the flow generated by a smooth vector
field f (x, u) have been previously addressed [6]. Sufficient conditions for establishing order preserv-
ing properties of piecewise-affine systems have been addressed in [9]. For systems in whichx1 is
a position (as in the case of the example illustrated in Section 1), condition (iii) guarantees that the
system never comes to a halt. More generally, it enforces theliveness of the system. Condition (iv)
requires that the seth(z) for any measurementz is an interval in the (Rn,≤) partial order. We next
define the parallel composition of two systems as defined in standard references [28].

Definition 5. ForΣ1 = (X1,U1,O1, f 1, h1) andΣ2 = (X2,U2,O2, f 2, h2), we define theparallel compo-
sitionΣ = Σ1||Σ2 := (X,U,O, f , h), in whichX := X1×X2, U := U1×U2, O := O1×O2, f := ( f 1, f 2)
andh := (h1, h2).

For x = (x1, x2) ∈ X1×X2 andu = (u1, u2) ∈ S(U1×U2), we denote the flow of the parallel compo-
sitionΣ1||Σ2 asφ(t, x, u) = (φ1(t, x1, u1), φ2(t, x2, u2)) in whichφ1(t, x1, u1) ∈ X1 andφ2(t, x2, u2) ∈ X2.
We denoteφ j(t, x, u) := (φ1

j (t, x
1, u1), φ2

j (t, x
2, u2)).

We next define a new partial order (S(U),E) on input signals of the parallel composition of two
systems as follows.

Definition 6. Given the parallel compositionΣ = Σ1||Σ2, the input setU = U1 ×U2, andu, v ∈ S(U),
we say thatu E v if u1 ≥ v1 andu2 ≤ v2.
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Proposition 1. ConsiderΣ = Σ1||Σ2 in whichΣ1 andΣ2 are order preserving systems. For x∈ X and
input signalsu, v ∈ S(U) such thatu E v, we have thatφ1(R+, x, u) � φ1(R+, x, v).

The proof is given in the Appendix. This proposition states that if two inputs satisfy the “E”
relation, the trajectories generated by these inputs (withthe same initial condition) must satisfy the
“�” relation, that is, one trajectory will always “lie above” the other in the (x1

1, x
2
1) subspace.

4 Problem Formulation

In order to formulate the control problem, we first specify what inputs ofΣ = Σ1||Σ2 are controlled and
what are uncontrolled (disturbances). This is performed byintroducing a two-player game structure
on the parallel composition of the two systems as follows.

Definition 7. A two-player piecewise continuous game structureis a tupleG = (Σ,Ω,∆, ϕ,B) in
which

(i) Σ = Σ1||Σ2 = (X,U,O, f , h) is the parallel composition of two piecewise continuous systems;

(ii) Ω,∆ ⊂ Rm× Rm are the control and disturbance sets, respectively;

(iii) ϕ : Ω × ∆→ U is the game input map;

(iv) B ⊂ X is a set of bad states.

The disturbanceδ ∈ ∆ and the controlω ∈ Ω determine the inputu = (u1, u2) of Σ through the map
ϕ, that is, we have thatu = ϕ(ω, δ). Extend the mapϕ to operate on signals byϕ(ω, δ) := u where
u is the signal such thatu(t) = ϕ(ω(t), δ(t)). We denote the flow of the game byφ(t, x, ϕ(ω, δ)). We
will say that the disturbanceδ wins the game if the flow ofG entersB, while the controllerω wins
the game if the flow ofG never entersB.

Definition 8. A game structureG = (Σ,Ω,∆, ϕ,B) is anorder preservinggame structure provided

(i) Σ = Σ1||Σ2 with Σ1 andΣ2 order preserving systems;

(ii) ∆ := [δ1
L, δ

1
H] × [δ2

L, δ
2
H] := [δL, δH] andΩ := [ω1

L, ω
1
H] × [ω2

L, ω
2
H] := [ωL, ωH];

(iii) The game inputϕ(ω, δ) = (ϕ1(ω1, δ1), ϕ2(ω2, δ2)) is an order preserving map with respect to
controlω and disturbanceδ;

(iv) B := {x ∈ Rn × Rn | (x1
1, x

2
1) ∈ B} with B an o.p.c. set.

The order preserving property ofϕ can be interpreted as follows. For the control signalsω,w ∈
S(Ω) and disturbance signalsδ, d ∈ S(∆), if we have thatω ≤ w andδ ≤ d, thenϕ(ω, δ) ≤ ϕ(w, d).
Similarly, ω E w andδ E d impliesϕ(ω, δ) E ϕ(w, d). The utility of this formulation lies in the
ability to model cooperation and competition between two agents under a simple unified framework.
For a cooperative scenario, in which both systemsΣ1 andΣ2 are affected by the control but not by the
disturbance, we letϕcoop(ω, δ) := ω. For a competitive scenario, in which systemΣ2 is an adversary
while systemΣ1 is completely controlled, we haveϕcomp(ω, δ) := (ω1, δ2). The more general case,
in which both systemsΣ1 andΣ2 are affected by control and disturbance, could represent model
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uncertainty for example. An instance of each case is presented in Section 7. One can easily check
that the example proposed in Section 1 is an order preservinggame structure in whichϕ = ϕcoop.

In the reminder of this paper, we assume (unless stated otherwise) that the flow ofG is continuous
with respect to initial condition, with respect to input, and with respect to time. Continuity conditions
for the flow of a hybrid system have been previously investigated by, for example, [36] and the ref-
erences therein. For the compact set of initial conditionsA ⊂ X, we assume that the set-valued flow
φ(t,A,S(U)) is compact and upper hemi-continuous with respect to time. This property is satisfied,
for example, in systems generated by the differential inclusion ˙x ∈ f (x,U), in which f (x,U) is a
Marchaud map (see Theorem 3.5.2 in [10], and Corollary 4.5 in[44]). Note that, given a differential
inclusion ẋ ∈ f (x,U), the closed convex hull generates a differential inclusion ˙x ∈ cof (x,U), which
is Marchaud provided that it is upper hemi-continuous and bounded above by some linear affine func-
tion, that is,|| f (x,U)|| ≤ c(||x|| + 1). This allows for the over-approximation of a given systemwith
another one that has the desired properties of the set-valued flow.

Given a game structureG , we consider the problem of designing a controller that on the basis of the
output information guarantees that the flow ofG never enters the bad set of statesB for all disturbance
choices. For stating the control problem with imperfect state information, denote by ˆx(t, x̂0,ω, z) the
set of all possible states at timet compatible with the set of initial conditions ˆx0 ⊂ X and measurable
signalsω andz. More formally,

x̂(t, x̂0,ω, z) := {x ∈ X | ∃ x0 ∈ x̂0 andδ ∈ S(∆) s.t.φ(t, x0, ϕ(ω, δ)) = x and

φ(τ, x0, ϕ(ω, δ)) ∈ h(z(τ)) ∀ τ ∈ [0, t]}.

The set ˆx(t, x̂0,ω, z) is called the information state [33] and we will denote it byx̂(t) when x̂0, ω

andz are clear from the context. We note that if the set of initial conditionsx̂0 is compact, then the
information state ˆx(t, x̂0,ω, z) is compact by the compactness of the set-valued flow and the closed
value property of the output maph(z).

Problem 1. (Dynamic Feedback Safety Control Problem)Given a game structureG , determine the
set

W̄ :=
{

A ∈ 2X | ∃ ω ∈ S(Ω) s.t.∀ z ∈ S(O) and∀ t ∈ R+ we have ˆx(t,A,ω, z) ∩ B = ∅
}

and a set-valued mapG : 2X ⇉ Ω such that for initial convex setsA ∈ W̄, we have ˆx(t,A,ω, z)∩B = ∅
for all t ∈ R+ andz ∈ S(O) whenω(τ) ∈ G(x̂(τ,A,ω, z)) for all τ ∈ R+.

This problem can be interpreted as one of determining the setof all initial state uncertaintiesA ∈
2X for which a control map exists, that on the basis of the measurable signals, guarantees that the
information state never intersectsB.

Problem 2. (Static Feedback Safety Control Problem)Given a game structureG with O = X andh
the identity map, determine the set

W := {x ∈ X | ∃ ω ∈ S(Ω) s.t.∀ δ ∈ S(∆) and∀ t ∈ R+ we haveφ(t, x, ϕ(ω, δ)) < B}

and a set-valued mapg : X⇉ Ω such that for initial conditionsx ∈ W, we have thatφ(t, x, ϕ(ω, δ)) <
B for all δ ∈ S(∆) andt ∈ R+ whenω(τ) ∈ g(φ(τ, x, ϕ(ω, δ))) for all τ ∈ R+.

This problem can be interpreted as one of determining the setof all initial statesx ∈ X for which a
static feedback map exists such that the flow of the system never entersB for all possible disturbance
signalsδ.
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5 Problem Solution

In this section, we propose the solution to Problems 1 and 2 byfirst computing the complement to the
setsW̄ andW, then explicitly computing a dynamic and a static feedback map.

5.1 Computation of the SetsW̄ andW

ConsiderC := X\W. This set is named thecapture setas it represents the set of all initial states
for which no matter what control is applied, there is a disturbance that drives the flow intoB. It is
mathematically represented as

C = {x ∈ X | ∀ ω ∈ S(Ω),∃ δ ∈ S(∆) and t ∈ R+ s.t.φ(t, x, ϕ(ω, δ)) ∈ B} .

For a fixed control signal ¯ω ∈ S(Ω), we define therestricted capture setCω̄ to be the capture set
when the control signal is fixed to ¯ω. Mathematically, it is expressed as

Cω̄ = {x ∈ X | ∃ δ ∈ S(∆) and t ∈ R+ s.t.φ(t, x, ϕ(ω̄, δ)) ∈ B} .

The restricted capture sets form the basis for our solution to Problems 1 and 2. In the simple example
presented in Section 1, two restricted capture sets of relevance,CωH andCωL, are represented in Figure
1. More generally, for an order preserving game structure define the constant controlωL := (ω1

H, ω
2
L)

andωH := (ω1
L, ω

2
H), and corresponding control signalsωL(t) := ωL andωH (t) := ωH for all t ∈ R+.

For allω ∈ S(Ω), we have that

ωL E ω E ωH . (1)

Similarly, define the constant disturbanceδL := (δ1
H, δ

2
L) andδH := (δ1

L, δ
2
H), and corresponding dis-

turbance signalsδL(t) := δL andδH(t) := δH for all t ∈ R+. For allδ ∈ S(∆), we have that

δL E δ E δH . (2)

We now state the main results of this paper.

Lemma 1. Consider order preserving game structureG = (Σ,Ω,∆, ϕ,B) with a convex set A⊂ X. Let
ω ∈ S(Ω) andγ ∈ C0(I ,R2) o.p.c. withinf τ1(A) < maxτ1(γ(I )). Then,γ(I )∩

⋃

δ∈S(∆) φ1(t,A, ϕ(ω, δ)) =
∅ for all t ∈ R+ if and only ifφ1(R+,A, ϕ(ω, δL)) ≻ γ(I ) or φ1(R+,A, ϕ(ω, δH )) ≺ γ(I ).

Lemma 1 states that the flow in the (x1
1, x

2
1) subspace generated from the convex set of initial con-

ditions A and controlω can avoid an o.p.c. pathγ(I ) for all disturbance signals if and only if the
disturbance signalδL takes the trajectory ofφ1 aboveγ(I ) or the disturbanceδH takes the trajectory
of φ1 belowγ(I ). This result can be generalized to connected setsA ⊂ X such thatτ1,2(A) is convex,
that is, to cases whereonly the projection of the setA onto the subspaceX1 need be convex.

Theorem 1. Consider order preserving game structureG = (Σ,Ω,∆, ϕ,B) with a convex set A⊂ X.
Then, the following statements are equivalent

(i) A ∩ CωL , ∅ and A∩ CωH , ∅;

(ii) For all ω ∈ S(Ω), there existδ ∈ S(∆) and t∈ R+ such thatφ(t,A, ϕ(ω, δ)) ∩ B , ∅.
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Proof. (⇐ Contrapositive) By the definition of the restricted captureset, we have that ifA∩ CωL =
∅ thenφ(t,A, ϕ(ωL, δ)) ∩ B = ∅ for all t ∈ R+ andδ ∈ S(∆). Similarly, if A ∩ CωH = ∅ then
φ(t,A, ϕ(ωH , δ)) ∩ B = ∅ for all t ∈ R+ andδ ∈ S(∆).

(⇒ Construction) Consider an arbitraryω ∈ S(Ω). SinceA ∩ CωL , ∅ and A ∩ CωH , ∅,
the definition of the restricted capture set implies that there arex, y ∈ A, δ1, δ2 ∈ S(∆) and t1, t2 ∈
R+ such thatφ(t1, x, ϕ(ωL, δ1)) ∈ B andφ(t2, y, ϕ(ωH , δ2)) ∈ B. Let ν, κ ∈ R2 be such thatν =
φ1(t1, x, ϕ(ωL, δ1)) andκ = φ1(t2, y, ϕ(ωH , δ2)). Sinceκ, ν ∈ B and B is an o.p.c. set, there exists an
o.p.c. pathγ ∈ C0(I , B) with γ(0) = κ andγ(1) = ν.

From equations (1)-(2) and the order preserving property ofϕ with respect to controlω and distur-
banceδ, we have thatϕ(ωL, δ1) E ϕ(ω, δH). From Proposition 1, we have thatφ1(R+, x, ϕ(ωL, δ1)) �
φ1(R+, x, ϕ(ω, δH)). Sinceφ1(t1, x, ϕ(ωL, δ1)) = ν ∈ γ(I ) andx ∈ A, this in turn implies that

φ1(R+,A, ϕ(ω, δH)) ⊀ γ(I ). (3)

From equations (1)-(2) and the order preserving property ofϕ with respect to controlω and distur-
banceδ, we have thatϕ(ω, δL) E ϕ(ωH , δ2). From Proposition 1, we have thatφ1(R+, y, ϕ(ω, δL)) �
φ1(R+, y, ϕ(ωH , δ2)). Since alsoφ1(t2, y, ϕ(ωH , δ2)) = κ ∈ γ(I ) andy ∈ A, we have that

φ1(R+,A, ϕ(ω, δL)) ⊁ γ(I ). (4)

Note thaty1 < κ1 from condition (iii) of Definition 4, implying that infτ1(A) < maxτ1(γ(I )).
Therefore, equations (3)-(4) and Lemma 1 imply thatγ(I ) ∩

⋃

δ∈S(∆) φ1(t,A, ϕ(ω, δ)) , ∅ for somet ∈
R+. This in turn implies, sinceγ(I ) ⊂ B, that there arēδ ∈ S(∆) andt ∈ R+ such thatφ1(t,A, ϕ(ω, δ̄))∩
B , ∅. This leads toφ(t,A, ϕ(ω, δ̄)) ∩ B , ∅. Since this holds for arbitraryω ∈ S(Ω), we have
completed the proof. �

Corollary 1. For an order preserving game structureG = (Σ,Ω,∆, ϕ,B), we have thatC = CωH ∩
CωL.

Proof. (⊂) This follows from the definition ofC. (⊃) Suppose we have that the initial condition
x ∈ CωH ∩ CωL . Consider any input signalω ∈ S(Ω). Sinceτ1,2({x}) is trivially convex, by Theorem
1 there areδ ∈ S(∆) andt ∈ R+ such thatφ(t, {x}, ϕ(ω, δ)) ∩ B , ∅, implying x ∈ C. �

Theorem 1 states that an initial convex state uncertainty istaken to intersectB independently of the
control input if and only if it intersects both restricted capture setsCωH andCωL. By the corollary, a
known initial state is taken toB independently of the control input if and only if it is in bothCωH and
CωL.

5.2 The Control Map

For an order preserving game structureG , if an initial convex state uncertaintyA does not intersect
bothCωH andCωL , from Theorem 1 a controlω exists such thatφ(t,A, ϕ(ω, δ)) never intersectsB
for all δ. Since x̂(t,A,ω, z) ⊆

⋃

δ∈S(∆) φ(t,A, ϕ(ω, δ)), there must also exist a controlω such that
x̂(t,A,ω, z) never intersectsB. We thus construct such a control as a feedback map from the current
state uncertainty ˆx. For this purpose, define for an elementZ ∈ 2X, the set-valued mapG : 2X ⇉ Ω as

G(Z) :=































ωL if Z ∩ CωH , ∅ andZ ∩ ∂CωL , ∅ andZ ∩ CωL = ∅
ωH if Z ∩ CωL , ∅ andZ ∩ ∂CωH , ∅ andZ ∩ CωH = ∅
ωL if Z ∩ ∂CωH , ∅, Z ∩ ∂CωL , ∅ andZ ∩ (CωH ∪ CωL) = ∅
Ω otherwise.

(5)
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We call the pair (G ,G) a control system, where given the initial conditionsA ⊂ X and measure-
mentz ∈ S(O), the control system (G ,G) generatesthe feedbackωcl ∈ S(Ω) and theclosed-loop
information state ˆxcl(t,A,ωcl, z). The feedback must satisfy the set-valued mapG for all time, namely
ω

cl(t) ∈ G(x̂cl(t,A,ωcl, z)) for all t ∈ R.
We next show that the control system (G ,G), whereG is an order preserving game structure andG

is given by (5), generates a closed-loop information state that never intersectsB provided the initial
conditionsA ⊂ X are compact, connected, andA∩ CωH = ∅ or A∩ CωL = ∅.

Theorem 2. Let G = (Σ,Ω,∆, ϕ,B) be an order preserving game structure,(G ,G) be the control
system generated by the static set-valued feedback (5), andlet A ⊂ X be compact and convex. If
A∩CωH = ∅ or A∩CωL = ∅, then for arbitraryz ∈ S(O) we have that̂xcl(t,A,ωcl, z)∩B = ∅ for all
t ∈ R+ under(G ,G).

Proof. First, note that if ˆxcl(t,A,ωcl, z)∩ Cω = ∅ for someω ∈ S(Ω), then necessarily ˆxcl(t,A,ωcl, z)∩
B = ∅ becauseB ⊂ Cω. Thus, we show that ifA∩ CωH = ∅ or A∩ CωL = ∅, thenx̂cl(t,A,ωcl, z) ∩
CωH = ∅ or x̂cl(t,A,ωcl, z) ∩ CωL = ∅ for all t ∈ R+.

We proceed by constructing a modified control system (G , Ĝ) with a dynamic set-valued map̂G,
that differs fromG only if the argumentZ ⊂ X is such thatZ ∩ CωL , ∅ and Z ∩ CωH , ∅.
Denote the closed-loop information state generated by the modified control system as ˆycl(t,A,ωcl, z).
We will show thatŷcl(t,A,ωcl, z) ∩ CωL = ∅ or ŷcl(t,A,ωcl, z) ∩ CωH = ∅ for all t ∈ R+. We
then show that this implies that the feedback generated by the modified control system (G , Ĝ) is no
different from the feedback generated by the original control system (G ,G). Thus, we also have that
x̂cl(t,A,ωcl, z) ∩ CωL = ∅ or x̂cl(t,A,ωcl, z) ∩ CωH = ∅ for all t ∈ R+.

We now define the dynamic set-valued feedbackĜ : R+ × S(2X) ⇉ Ω as follows. For the time
varying setZ ⊂ S(2X) and timet ∈ R+, we defineĜ(t,Z) as

Ĝ(t,Z) :=

{

G(Z(t)) if Z(t) ∩ CωL = ∅ or Z(t) ∩ CωH = ∅
G(Z(t∗)) else, wheret∗ := sup{ζ ∈ [0, t] | Z(ζ) ∩ CωL = ∅ or Z(ζ) ∩ CωH = ∅}.

(6)

We will now show that the closed-loop information state ˆycl(t,A,ωcl, z) generated by the control
system (G , Ĝ) never intersects bothCωH andCωL at a single timet ∈ R.

We proceed by contradiction. Suppose that given the measurementz ∈ S(O), there exists a time
t1 > 0 and feedback ¯ωcl ∈ S(Ω) generated by (G , Ĝ) such that ˆycl(t1,A, ω̄cl, z) ∩ CωH , ∅ and
ŷcl(t1,A, ω̄cl, z) ∩ CωL , ∅. Define the times

tL := inf {t ∈ [0, t1] | ŷ
cl(ζ,A, ω̄cl, z) ∩ CωL , ∅ ∀ ζ ∈ [t, t1]} (7)

tH := inf {t ∈ [0, t1] | ŷ
cl(ζ,A, ω̄cl, z) ∩ CωH , ∅ ∀ ζ ∈ [t, t1]}. (8)

Let the maximum of these two times bēt := max{tL, tH }. We must have one of the following cases:
(I) tL > tH ; (II) tL < tH ; (III) tL = tH .

Case(I). From definition (8),tH < t̄ implies thatŷcl(t̄,A, ω̄cl, z) ∩ CωH , ∅. We first show that
ŷcl(t̄,A, ω̄cl, z) ∩ CωL = ∅.

Suppose that ˆycl(t̄,A, ω̄cl, z)∩CωL , ∅. By the definition of the closed-loop information state, there
existsx0 ∈ A and a disturbanceδ ∈ S(∆) such thatφ(t̄, x0, ϕ(ω̄cl, δ)) ∈ CωL andφ(τ, x0, ϕ(ω̄cl, δ)) ∈
ŷcl(τ,A, ω̄cl, z) for all τ ∈ [0, t̄]. For notation, letν := φ(t̄, x0, ϕ(ω̄cl, δ)). Since the flow is continuous
with respect to initial conditions, one can show thatB open implies thatCωL is open. Therefore,
we can findǫ > 0 such thatB(ν, ǫ) ⊂ CωL. By the continuity of the flow with respect to time, we
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can findη > 0 such that ift ∈] t̄ − η, t̄], thenφ(t, x0, ϕ(ω̄cl, δ)) ∈ B(ν, ǫ) ⊂ CωL. This implies that
ŷcl(t,A, ω̄cl, z) ∩ CωL , ∅ for all t ∈] t̄ − η, t̄], thus contradictinḡt = tL as the infimum in (7).

We next show that ˆycl(t̄,A, ω̄cl, z)∩∂CωL , ∅. Suppose that instead ˆycl(t̄,A, ω̄cl, z)∩∂CωL = ∅. For
notation, let ˆy0 := ŷcl(t̄,A, ω̄cl, z). SinceA is compact, ˆycl(t,A, ω̄cl, z) is compact for allt andz. Now
consider the distanceγ := d(∂CωL , ŷ0). If γ = 0, then the intersection must be non-empty, as both sets
are closed. Therefore, we assume thatγ > 0. By the upper hemi-continuity of the set-valued flow,
there existsη > 0 such that for allt ∈ [ t̄, t̄+ η[, we have thatφ(t, ŷ0,S(U)) ⊂ B(ŷ0, γ/2). By the defini-
tion of the closed-loop information state, for allt ≥ t̄ we have that ˆycl(t,A, ω̄cl, z) ⊂ φ(t, ŷ0,S(U)). This
implies that for allt ∈ [ t̄, t̄+η[ we haveŷcl(t,A, ω̄cl, z)∩CωH = ∅, sinced(ŷcl(t,A, ω̄cl, z),CωH ) > γ/2 >
0. This contradicts̄t = tL as given in equation (7), hence we must have that ˆycl(t̄,A, ω̄cl, z)∩∂CωL , ∅.

We have thus shown that ˆycl(t̄,A, ω̄cl, z)∩CωH , ∅, ŷcl(t̄,A, ω̄cl, z)∩∂CωL , ∅ andŷcl(t̄,A, ω̄cl, z)∩
CωL = ∅. From the definition of the modified dynamic set-valued feedback mapĜ given in (6), we
must necessarily have that ¯ω

cl(t̄) = ωL = Ĝ(ŷcl(t̄,A, ω̄cl, z)). From definitions (7) and (8), we therefore
have that ˆycl(t,A, ω̄cl, z) ∩ CωH , ∅ andŷcl(t,A, ω̄cl, z) ∩ CωL , ∅ for all t ∈ [ t̄, t1]. Therefore, by the
definition of Ĝ in equation (6), we have that ¯ωcl(t) = ωL = Ĝ(ŷcl(t,A, ω̄cl, z)) for all t ∈ [ t̄, t1]. Let
v ∈ ŷcl(t1,A, ω̄cl, z) ∩ CωL and choosew ∈ ŷcl(t̄,A, ω̄cl, z) such thatφ(t1 − t̄,w, ϕ(ωL, δ)) = v for some
δ ∈ S(∆) (note that such aw exists by the definition of the information state ˆy). Sincev ∈ CωL and
ω(t) = ωL for all t ∈ [ t̄, t1], we must have thatw ∈ CωL by the definition ofCωL. This leads to a
contradiction, since we assumed that ˆycl(t̄,A, ω̄cl, z) ∩ CωL = ∅. As a consequence, such a timet1 for
which Case(I) holds cannot exist.

For Case(II), an equivalent argument holds by interchangingωL withωH , andCωL with CωH , then
showing that this leads to a contradiction oftH as defined in (8).

For Case(III), the argument is similar. First, it can be shown that ŷcl(t̄,A, ω̄cl, z) ∩ ∂CωL , ∅
and ŷcl(t̄,A, ω̄cl, z) ∩ ∂CωH , ∅ by a continuity argument (similar to the one made in Case(I)). The
proof proceeds as in Case(I) with the eventual contradiction regarding the definitionCωL, and thus
contradicting the existence oftL andtH as defined in (7) and (8) respectively.

Therefore ˆycl(t,A, ω̄cl, z) ∩ CωH = ∅ or ŷcl(t,A, ω̄cl, z) ∩ CωL = ∅ must hold for allt ∈ R+ un-
der any control ¯ωcl ∈ S(Ω) generated by (G , Ĝ). From the definition ofG in (5), it must be that
G(ŷcl(t,A, ω̄cl, z)) = Ĝ(ŷcl(t,A, ω̄cl, z)) for all t ∈ R+. This implies that for every closed-loop infor-
mation state ˆxcl(t,A,ωcl, z) and feedbackωcl generated by the control system (G ,G), there is a corre-
sponding feedback ¯ωcl and closed-loop information state ˆycl(t,A, ω̄cl, z) generated by the control sys-
tem (G , Ĝ) such that ¯ωcl = ωcl andŷcl(t,A, ω̄cl, z) = x̂cl(t,A,ωcl, z). This implies that ˆxcl(t,A,ωcl, z) ∩
CωH = ∅ or x̂cl(t,A,ωcl, z) ∩ CωL = ∅ for all t ∈ R+. Therefore, the closed-loop information state
generated by the control system (G ,G) satisfies ˆxcl(t,A,ωcl, z) ∩ B = ∅ for all t ∈ R+. �

We can thus summarize the solutions to Problem1 and Problem 2in the two following theorems,
respectively.

Theorem 3. (Solution to Problem 1) For an order preserving game structure G = (Σ,Ω,∆, ϕ,B), a
convex set̂x0 ⊂ X is inW̄ if and only if x̂0 ∩ CωH = ∅ or x̂0 ∩ CωL = ∅. Furthermore, ifx̂0 ∈ W̄ is
also compact, then a dynamic feedback map G: 2X ⇉ Ω is given by (5).

Proof. By Theorem 1, there exists a control signalω ∈ S(Ω) such thatφ(t, x̂0, ϕ(ω, δ))∩B = ∅ for all
δ ∈ S(∆) and allt ∈ R+ if and only if x̂0∩CωH = ∅ or x̂0∩CωL = ∅. Assuming thatz is the worst-case
observation signal, that is,z(t) = z̄ for all t ∈ R+, we have that ˆx(t, x̂0,ω, z) =

⋃

δ∈S(∆) φ(t, x̂0, ϕ(ω, δ))
for all t ∈ R+. Therefore, there is a control signalω ∈ S(Ω) such that ˆx(t, x̂0,ω, z) ∩ B = ∅ for all
t ∈ R+ if and only if x̂0 ∩ CωH = ∅ or x̂0 ∩ CωL = ∅. By the definition ofW̄, we thus have that
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x̂0 ∈ W̄ if and only if x̂0∩CωH = ∅ or x̂0∩CωL = ∅. Since the set of initial conditions ˆx0 is compact,
Theorem 2 further shows that the feedback mapG given by expression (5) maintains ˆx(t, x̂0,ω, z) with
ω(τ) ∈ G(x̂(τ, x̂0,ω, z)) for all τ ∈ R+ not intersectingB for all t ∈ R+. �

Theorem 4. (Solution to Problem 2) For an order preserving game structure G = (Σ,Ω,∆, ϕ, B), the
setW of Problem 2 is given byW = X\(CωH ∩ CωL). A feedback map g: X⇉ Ω is given by

g(x) :=































ωH if x ∈ CωL andx ∈ ∂CωH
ωL if x ∈ CωH andx ∈ ∂CωL
ωL if x ∈ ∂CωH andx ∈ ∂CωL
Ω otherwise.

Proof. Direct consequence of Corollary 1 and Theorem 2, in whichA is a singleton. �

Since the static feedback mapg is equal to the dynamic feedback mapG once this map is evaluated
on the statex, a separation principle holds for the game structureG between state estimation and
control. This implies that the solution of the dynamic feedback problem does not present additional
computational difficulties with respect to the solution of the static feedback problem. Specifically,
both solutions rely only on the ability to compute the restricted capture setsCωL andCωH . These two
sets, as opposed to the original sets of interestW andW̄, can be computed by backward integration
with the control input fixed. Furthermore, if the bad setB satisfies additional geometric assumptions
(Section 6), then this computation only requires the disturbance signalsδL andδH . Therefore, no
min/max optimization problem needs to be solved as it is usually performed when directly computing
W. In addition to this simplification, the order preserving properties ofG along with additional
assumptions allow the construction of discrete-time linear complexity algorithms for the computation
of the restricted capture setsCωL andCωH . These algorithms are presented in the next section.

6 Algorithms

By virtue of Theorems 3 and 4, the dynamic and static control Problems 1 and 2 can be solved by
only computing the setsCωH andCωL . For a class of order preserving systems in discrete-time,
we introduce an algorithm for computing the restricted capture setCω. This algorithm has linear
complexity with respect to the number of continuous variables.

The restrictions on the game structureG imposed are:

Assumption (a) f i(xi , ui) has no dependency onxi
1;

Assumption (b) The bad setB is given byB := {x ∈ X | (x1
1, x

2
1) ∈ B},with B := ]L,H[⊂ R2.

This structure off i(xi , ui) is found, for example, in vector fields derived from Newton’s laws with
no position dependent forces (such as gravity). The bad setB generated by the open rectangle set
B can represent, for example, the set of all collision configurations between two agents evolving on
intersecting paths. IfB is a more general bounded o.p.c. set, a rectangular over-approximation can be
employed.
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6.1 Discrete-Time Model

Seeking digital implementation, we illustrate the algorithm in discrete-time. For agenti ∈ {1, 2},
denote the state spacēXi := Xi

2× . . .×Xi
n, the corresponding state ¯xi ∈ X̄i, and the set of discrete-time

signalsD : N → U i as D(U i). Define the discretization of the system (employing forward Euler
approximation) for agenti ∈ {1, 2} with step size∆T > 0, inputui ∈ D(U i) and stepn ∈ N as

xi[n+ 1] = xi[n] + ∆T f i(xi [n], ui[n]).

For the indexn ∈ N, initial conditionxi ∈ Xi, and input signalui ∈ D(U i), we denote the discrete-
time flowΦi : N × Xi × D(U i)→ Xi asΦi(n, xi , ui), which satisfies

Φi(n+ 1, xi , ui) = Φi(n, xi , ui) + ∆T f i(Φi(n, xi , ui), ui[n− 1]) for all n ∈ N, (9)

whereΦi(0, xi, ui) = xi. We assume the discrete flowΦi is continuous with respect to inputui ∈

D(U i). Let zi ∈ D(O) be the output measurement. From Definition 4, the output mapis given by
hi(zi[n]) = [inf hi(zi[n]), suphi(zi[n])]. The j th component of the flow is denoted asΦi

j(n, x
i , ui)

For the parallel composition of two systemsΣ = Σ1||Σ2, the discretization and discrete-time flow
extend to

∆T f(x[n], u[n]) := (∆T f1(x1[n], u1[n]),∆T f2(x2[n], u2[n]))

Φ(n, x, u) := (Φ1(n, x1, u1),Φ2(n, x2, u2)).

The game input map, as in Definition 7, easily extends to discrete-time control signalsω ∈ D(Ω) and
disturbance signalsδ ∈ D(∆) asu[n] = ϕ(ω[n], δ[n]).

From Assumption (a), it follows that for an initial condition (x1, x̄) ∈ X and inputu ∈ D(U), we
have that

Φ1(n, x, u) = x1 + Φ1(n, (0, x̄), u) for all n ∈ N, (10)

where the state (0, x̄) represents the initial conditionx with the statex1 set to zero. This property
implies that the flow projected onto the subspaceX1 has no dependency on the statex1 other than the
initial condition.

6.2 Restricted Capture SetCω Computation

The definition of the discrete-time capture set is the same asin continuous time, however now the
index n ∈ N replaces timet ∈ R+, and the discrete signalδ ∈ D(∆) replaces the continuous signal
δ ∈ S(∆). This is mathematically represented as

Cω = {x ∈ X | ∃ n ∈ N, ∃ δ ∈ D(∆) s.t.Φ(n, x, ϕ(ω, δ)) ∈ B}.

To compute the restricted capture set, we introduce the sequences{Li(n, xi ,ωi)}, {Hi(n, xi,ωi)} ⊂ Xi
1

generated with the statexi ∈ Xi and constant control inputωi ∈ D(Ωi). These sequences are defined
as

Li(n, xi,ωi) := Li − Φi
1(n, (0, x̄

i), ϕi(ωi , δi
H))

Hi(n, xi,ωi) := Hi − Φi
1(n, (0, x̄

i), ϕi(ωi, δi
L)).
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We can combine these sequences fori ∈ {1, 2} and defineL(n, x,ω) := (L1(n, x1,ω1), L2(n, x2,ω2)),
H(n, x,ω) := (H1(n, x1,ω1),H2(n, x2,ω2)).

The sequence{L(n, x,ω)}n∈N represents the backward integration ofL with state (0, x̄), control
input ω and constant disturbance inputδH. The sequence{H(n, x,ω)}n∈N represents the backward
integration ofH with state (0, x̄), control inputω and constant disturbance inputδL. We use both
these sequences to define a sequence of rectangle sets as{]L(n, x,ω),H(n, x,ω)[}k∈N ⊂ R2.

We introduce Algorithm 1, which can be used to compute the restricted capture setCω, by recur-
sively computing the elements of the sequence{]L(n, x,ω),H(n, x,ω)[}n∈N. To accommodate the case
of state uncertainty (Section 6.3), the input of Algorithm 1is asetx̂ ⊂ X rather than a singletonx ∈ X.

Algorithm 1 C̃ω = CaptureSetSlice( ˆx,ω)

Input : (x̂,ω) ∈ 2X × D(Ω)

n = 1
loop

Termination met when the sequence H(n, inf x̂,ω) is no longer in the set Cone+(inf x̂1).
if inf x̂1 ≤ H(n, inf x̂,ω) and inf x̂1 < ]L(n, supx̂,ω),H(n, inf x̂,ω)[ then

n = n+ 1
else

return C̃ω =
⋃

k≤n]L(k, supx̂,ω),H(k, inf x̂,ω)[.
end if

end loop

Output : C̃ω ⊂ X1.

We can interpret Algorithm 1 as the backward propagation of the rectangle set ]L,H[ with control
signalω and all disturbances. This, in turn, by the order preservingproperties of the discrete-time
flow with respect to the input, only requires the upper boundδH and the lower boundδL. To show
terminationof Algorithm 1, we note that condition (iii) of Definition 4 implies that the sequence
{H(n, x,ω)}n∈N is strictly monotonically decreasing without limit for anyx ∈ X andω ∈ D(Ω).
Therefore, there must be some finiten ∈ N such that inf ˆx1 � H(n, inf x̂,ω), implying termination of
Algorithm 2.

Claim 1.

Cω =
{

x ∈ X | x1 ∈ C̃ω = CaptureSetSlice({x},ω)
}

.

Proof. DenoteS :=
{

x ∈ X | x1 ∈ C̃ω = CaptureSetSlice({x},ω)
}

. We show first thatCω ⊆ S and
then thatCω ⊇ S.

(⊆) Let x ∈ Cω, then by the definition ofCω we have that there isδ ∈ D(∆) andn̄ ∈ N such that
L ≤ Φ1(n̄, x, ϕ(ω, δ)) ≤ H. From equation (10), we have that

L −Φ1(n̄, (0, x̄), ϕ(ω, δ)) ≤ x1 ≤ H − Φ1(n̄, (0, x̄), ϕ(ω, δ)). (11)

From the order preserving property of the game input map withrespect to the disturbance and by the
order preserving property of the discrete-time flow with respect to the input, we have that

Φ1(n̄, (0, x̄), ϕ(ω, δL)) ≤ Φ1(n̄, (0, x̄), ϕ(ω, δ)) ≤ Φ1(n̄, (0, x̄), ϕ(ω, δH )). (12)
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Therefore, from expressions (11) and (12), we have that

x1 ≤ H −Φ1(n̄, (0, x̄), ϕ(ω, δ)) ≤ H − Φ1(n̄, (0, x̄), ϕ(ω, δL)) = H(n̄, x,ω)

x1 ≥ L −Φ1(n̄, (0, x̄), ϕ(ω, δ)) ≥ L − Φ1(n̄, (0, x̄), ϕ(ω, δH)) = L(n̄, x,ω),

which imply x ∈ S.
(⊇) Let x ∈ S, for agenti ∈ {1, 2} we have thatxi

1 ≤ Hi(n̄, xi ,ωi) = Hi − Φi
1(n̄, (0, x̄

i), ϕi(ωi , δi
L))

and xi
1 ≥ Li(n̄, xi ,ωi) = Li − Φi

1(n̄, (0, x̄
i), ϕi(ωi, δi

H)) for somen̄ ∈ N. We can rearrange these in-
equalities to giveΦi

1(n̄, (0, x̄
i), ϕi(ωi , δi

L)) ≤ Hi − xi
1 andΦi

1(n̄, (0, x̄
i), ϕi(ωi , δi

H)) ≥ Li − xi
1. If either

Φi
1(n̄, (0, x̄

i), ϕi(ωi, δi
L)) ≥ Li − xi

1 or Φi
1(n̄, (0, x̄

i), ϕi(ωi , δi
H)) ≤ Hi − xi

1, we have that there is a dis-
turbanceδ such thatxi

1 + Φ
i
1(n̄, (0, x̄), ϕi(ωi , δi))) = Φi

1(n̄, x
i , ϕ(ω, δ)) ∈]Li ,Hi[. If neither of these

two cases is satisfied, the following inequalities are satisfied: Φi
1(n̄, (0, x̄

i), ϕ(ωi, δi
L)) < L − x1 and

Φi
1(n̄, (0, x̄

i), ϕi(ωi, δi
H)) > H − x1. SinceΦi

1(n̄, (0, x̄
i), ϕi(ωi , ·)) : D(∆i) → Xi

1 is a continuous function
andD(∆i) is a connected metric space with∆i = [δi

L, δ
i
H], by the intermediate value theorem there

must beδi ∈ D(∆i) such thatΦi
1(n̄, (0, x̄

i), ϕi(ωi, δi)) = w ∈]Li − xi
1,H

i − xi
1[. As a consequence, for

such aδi we have thatxi
1 + Φ

i
1(n̄, (0, x̄

i), ϕi(ωi , δi)) = Φi
1(n̄, x

i, ϕi(ωi , δi)) ∈ ]Li ,Hi[. Since this holds
for arbitraryi ∈ {1, 2}, we have shown thatx ∈ Cω. �

Note that the setsCω are 2n dimensional. Claim 1 shows that these high dimensional setscan be
computed by just computing a sequence of lower{L(n, x,ω)}n∈N and upper{H(n, x,ω)}n∈N bounds in
X1, which are parameterized by the 2n state variablesx. For any fixed value ofx ∈ X, the union
of intervals∪n∈N]L(n, x,ω),H(n, x,ω)[ over all n ∈ N represents the two dimensional slice ofCω
corresponding to the statex.

The boundary of the capture set∂Cω must be reinterpreted, as now the discrete-time flow can enter
the interior of the capture set without touching the boundary. We provide a definition of the capture
set boundary∂Cω as

∂Cω := {x ∈ X\Cω | ∃ δ ∈ ∆ s.t.x+ ∆T f(x, ϕ(ω, δ)) ∈ Cω}. (13)

According to this definition, a state outside of the restricted capture set is said to be on the boundary of
the restricted capture set, if there is some disturbance such that the state is mapped inside the capture
set in one step.

6.3 Dynamic Feedback Implementation

Since the dynamics of the system are order preserving with respect to the state and to the input, we
construct a state estimator that keeps track of only the lower and upper bounds of the information state
similar to the estimator proposed in [23]. Let∨x̂ := supx̂ and∧x̂ := inf x̂ denote the upper and lower
bounds, respectively, of the set of possible current statesx̂ (the sup and inf are taken component-wise
in accordance to the partial ordering defined on (X,≤)). Then, a state estimate ˆx[n] is constructed
with Algorithm 2, by only updating the upper and lower boundsof x̂[n − 1]. To construct the state
estimate, first the previous state estimate is mapped forward under the discrete update map with the
control input supplied and all possible disturbances. Then, the measurement is used to further restrict
the set of all possible compatible states. Conditions leading to estimator convergence are provided in
[23] for a class of systems.
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Algorithm 2 x̂[n] = StateEstimate( ˆx[n− 1],ω[n− 1], z[n])

Input : (x̂[n− 1], z[n]) ∈ 2X × O

Update state estimate.
∨x̂[n] = inf{∆T f(∨x̂[n− 1], ϕ(ω[n− 1], δH)), suph(z[n])}.
∧x̂[n] = sup{∆T f(∧x̂[n− 1], ϕ(ω[n− 1], δL)), inf h(z[n])}.

Return state estimate with upper and lower bounds.
return x̂[n] = [∧x̂[n],∨x̂[n]] .

Output : x̂[n] ⊂ X.

To implement the closed-loop feedbackG : 2X ⇉ U given by equation (5) from Section 5.2, one
must check whether the state estimate ˆx[n] intersectsCωH andCωL. Since the sequenceL(k, x,ω) is
order reversing in the argumentx, a sufficient condition guaranteeing that ˆx[n] ∩ Cω = ∅ is that

x̂1[n] ∩
⋃

k∈N

]L(k,∨x̂[n],ω),H(k,∧x̂[n],ω)[ = ∅. (14)

We introduce Algorithm 3, which can be used to compute the feedbackω[n] generated by the
set-valued mapG by using the current state ˆx[n] and the state prediction ˆx[n+ 1].

We can interpret Algorithm 3 as the discrete-time implementation of the set-valued mapG, as
defined in (5). The algorithm is comprised of a series of steps. First, capture set slices are constructed
with Algorithm 1 for the state prediction. If the state prediction x̂[n+ 1] has non-empty intersection
with each restricted capture set, as established by equation (14), then the state estimate ˆx[n] either has
non-empty intersection or is on the boundary of each restricted capture set. The state estimate ˆx[n]
is on the boundary of a restricted capture set, as defined in (13), if the state estimate ˆx[n] has empty
intersection with the corresponding capture set slice constructed with Algorithm 1. If the intersection
is non-empty, then the state estimate ˆx[n] has non-empty intersection with the restricted capture set.
Lastly, control is evaluated with the set-valued mapG based on the restricted capture set membership
established.

The closed-loop control system is implemented with Algorithm 4, where the feedback and state
estimate are given by (ω[n], x̂[n]) = ControlSystem( ˆx[n− 1], z[n]). We can summarize Algorithm 4
as follows. First, the state estimate is constructed with Algorithm 2. Next, a state prediction is con-
structed by mapping the current state estimate forward withall possible disturbance signals. Finally,
control is evaluated with Algorithm 3 based on current stateestate estimate and state prediction.

7 Simulation and Experimental Results

In this section, we illustrate the application of the algorithms outlined in Section 6 to the two-vehicle
collision avoidance problem introduced in Section 1, in which we now consider disturbances, imper-
fect state information, and higher order piecewise continuous vehicle dynamics.

In-vehicle cooperative active safety and related technologies continue to be examined world-wide
by government and industry consortium, such as the Crash Avoidance Metrics Partnership (CAMP)
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Algorithm 3 ω = FeedbackMap( ˆx[n+ 1], x̂[n])

Input : (x̂[n+ 1], x̂[n]) ∈ 2X × 2X

Construct capture set slices for state prediction.
C̃ωL = CaptureSetSlice( ˆx[n+ 1],ωL), C̃ωH = CaptureSetSlice( ˆx[n+ 1],ωH )

Check if predicted statêx[n+ 1] intersects both capture set slices.
if x̂[n+ 1] ∩ C̃ωL , ∅ and x̂[n+ 1] ∩ C̃ωH , ∅ then

Construct capture set slices for current state.
C̃ωL = CaptureSetSlice( ˆx[n],ωL), C̃ωH = CaptureSetSlice( ˆx[ j],ωH)

Determine control according to equation (5).
if x̂1[n] ∩ C̃ωL = ∅ and x̂1[n] ∩ C̃ωH , ∅ then
ω = ωL

else if x̂1[n] ∩ C̃ωL , ∅ and x̂1[n] ∩ C̃ωH = ∅ then
ω = ωH

else
ω = ωL

end if

else
No control specified.
ω ∈ Ω

end if

Output : ω ⊂ Ω.

Algorithm 4 (ωcl[n], x̂[n]) = ControlSystem( ˆx[n− 1], z[n])

Input : (x̂[n− 1], z[n]) ∈ 2X × O

Update state estimate.
x̂[n] = StateEstimate( ˆx[n− 1], z[n])

Construct state prediction.
x̂[n+ 1] = [∆T f(∨x̂[n], ϕ(ω[n], δL)),∆T f(∧x̂[n], ϕ(ω[n], δH))]

Compute closed-loop feedback.
ω

cl[n] = FeedbackMap( ˆx[n+ 1], x̂[n])

Output : (ωcl[n], x̂[n]) ∈ Ω × 2X

[2], the Vehicle Infrastructure Integration Consortium (VIIC) [3, 4] in the U.S., the Car2Car Commu-
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Figure 3: Vehicles approaching a “T” intersection. A collision occurs if two vehicles are in the set B at the
same time.

nications Consortium in Europe [1], the Advanced Safety Vehicle project 3 (ASV3) in Japan, and by
university research centers such as the Virginia Tech Transportation Institute (VTTI) and the Califor-
nia PATH. In the near future, ITS is expected to become more comprehensive by connecting vehicles
with each other and with the surrounding road infrastructure through vehicle-to-vehicle (V2V) and
vehicle-to-infrastructure (V2I) wireless communication.

Here, we consider three different scenarios. In the first scenario, the cooperative case, we assume
V2V communication. The two vehicles thus share informationand cooperate to prevent a potential
collision. In the second scenario, the competitive case, weassume that the two vehicles cannot com-
municate with each other, for example, only one of the two vehicles is equipped with the on-board
active safety system. This scenario is of high interest, as any realistic deployment of cooperative ac-
tive safety systems will not be universally equipped on all vehicles. The third scenario assumes V2V
communication and thus cooperation between the two vehicles. However, we assume that the dy-
namic model of the vehicles is subject to modeling uncertainty. For this combined case, experimental
results on a concrete in-lab implementation are presented.In all of these three cases, we consider the
traffic intersection instance depicted in Figure 3 as a reference.

The longitudinal dynamics of each vehicle along its path canbe modeled employing Newton’s
laws. Letp ∈ R denote the longitudinal displacement along the vehicle path. The longitudinal vehicle
dynamics can thus be written as

p̈ = [R2/(Jw +MR
2)]( fw − fbrake−

ρair

2
CDAf v

2 −CrrMg−Mgsin(θroad)),

in whichR is the tire radius,Jw is the wheel inertia,M is the mass of the vehicle,fw = τwRwhereτw is
the drive shaft output torque,fbrake is the brake force,ρair is the air density,CD is the drag coefficient,
Af is the projected front area of the vehicle,v is the longitudinal vehicle velocity,Crr is the rolling
resistance coefficient,g is the gravity constant, andθroad is the road gradient. For more details on this
model, the reader is referred to [48] and to the references therein. For automatic driving,fw and fbrake
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are control inputs to the longitudinal dynamics of the vehicle. Assuming that the road is flat and that
the air drag term is negligible, we can re-write the longitudinal dynamics as

p̈ = a u+ b, (15)

in whichu = fw− fbrake is the total force, which is the control input to the vehicle,a = R2/(Jw+MR
2),

andb = −R2/(Jw +MR
2) CrrMg.

For vehiclei ∈ {1, 2}, we denote (see Figure 3) the longitudinal displacement along its path byxi
1

and the longitudinal speed byxi
2. As a consequence, the longitudinal dynamics for vehiclei ∈ {1, 2}

can be re-written as

ẋi
1 = xi

2

ẋi
2 = aiui + bi.

In order to prevent the vehicle from stopping (to prevent thetrivial solution in which the vehicles come
to a stop) and from exceeding a maximum speed (to respect roadspeed limitations), we consider the
hybrid system depicted in Figure 4. For each vehicle subsystemΣi, we choose forzi ∈ R2 an output

Figure 4: Hybrid system modeling the vehicle systemΣi for i ∈ {1, 2}. In the diagram, we have defined
γi := aiui + bi .

maph(zi) = [zi
1 − d1, zi

1 + d1] × [zi
2 − d2, zi

2 + d2] (a continuous set-valued function), in whichzi is a
pair of position/speed measurements assumed to be continuous in time,d1 models uncertainty on the
position measurement, andd2 models uncertainty on the speed measurement. Whiled2 is practically
close to zero as the on-board speed measurements are quite accurate,d1 can be quite large due to GPS
positioning error. One can verify that systemsΣi are order preserving systems, and the differential
inclusion generated by all inputs is Marchaud.

The corresponding discrete-time dynamical system with time step∆T is given by

xi
1[n+ 1] = xi

1[n] + ∆T xi
2[n]

xi
2[n+ 1] = xi

2[n] + ∆Tγi ,

in which γi = aiui + bi in the central mode of Figure 4 andγi = 0 in the right and left modes of the
same figure.

The bad setB is constructed with the rectangle setB = ]L1,H1[ × ]L2,H2[.

7.1 The Cooperative Case

In the cooperative case, we have thatu = (u1, u2) = ϕcoop(ω, δ) = (ω1, ω2), that is, both of the agents
are controlled and (u1, u2) ∈ Ω = [ω1

L, ω
1
H] × [ω2

L, ω
2
H]. We implement the algorithms of Section 6
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to compute the restricted capture setsCωL andCωH . Figure 5 shows snapshots in the position plane
of the trajectory of the set [∧x̂,∨x̂] for the closed-loop system. As soon as the set [∧x̂,∨x̂] hits the
intersection of the two restricted capture setsCωL andCωH , the safety control acts and, as a result,
set [∧x̂,∨x̂] slides along the boundary of the capture set until it passesB. Note that the setsCωL and
CωH are each four dimensional. The plots of Figure 5 show slices of such sets in the position plane
corresponding to the value of the current speeds.

7.2 The Competitive Case

In the competitive case, we have thatu = (u1, u2) = ϕ(ω, δ) = (ω1, δ2), that is, the first agent is
controlled while the second one is not and (u1, u2) ∈ [ω1

L, ω
1
H]× [δ2

L, δ
2
H]. We implement the algorithms

of Section 6 to compute the restricted capture setsCωL andCωH . Figure 6 shows snapshots in the
position plane of the trajectory of the set [∧x̂,∨x̂] for the closed-loop system.

7.3 The Combined Case: Experimental Results

In order to show the suitability of the proposed algorithms for real-time applications, we implemented
the algorithms on the in-scale roundabout test-bed shown inFigure 7. The vehicles are equipped with
an on-board computer running Linux Fedora core, wireless (802.11b), speed and position sensors,
and a motion controller that translates desired torque commands for the wheels into a PWM signal
applied to the DC motor. This guarantees that the vehicle responds to torque commands (calculated
in the on-board computer) through a second order dynamics ofthe type of equation (15). For a
detailed description of the vehicles, the reader is referred to [48]. The dynamical parameters for
each vehicle were experimentally determined and resulted in the longitudinal dynamics model ¨pi =

aiτi +bi +Di = f i
2((pi , ṗi), ϕ(τi,Di)), in whichτi ∈ [0, 100] is the percentage torque control command

applied to the wheels from the motor,a1 = 1.20 cm/sec2, b1 = −0.90cm/sec2, a2 = 1.26 cm/sec2,
b2 = −1.15 cm/sec2,D1 ∈ [0.6, 19.1] cm/sec2, andD2 ∈ [0.85, 24.85] cm/sec2. A torque command of
100% corresponds to a torque of 0.09 N m. The termsDi incorporate uncertainty that has been added
to the model to take into account the parameter identification error. The limits on the speeds are taken
asvmax = 80 cm/sec andvmin = 25 cm/sec. The speedsvmax andvmin given in the guard conditions in
Figure 4 are maintained through the employment of a proportional derivative (PD) speed control. The
longitudinal dynamics model corresponds to a game modelG in whichui = ϕi(ωi , δi) = (ω

1+δ1

2 , ω
2+δ2

2 )
with ωi ∈ [0.0, 200.0], δ1 ∈ [0.6, 19.1] 2/a1, andδ2 ∈ [0.85, 24.85] 2/a2.

Vehicle control has two main components: maintaining the vehicles on the corresponding round-
about paths and applying the appropriate control torquesω to the longitudinal dynamics to prevent
collisions at pointC (Figure 7). In general, the longitudinal and lateral dynamics of a vehicle are
coupled. However, since the radii of the paths are much greater than the length of the vehicles and the
speeds are low, it is possible to assume low coupling. This allows us to decouple the path following
task, using a steering control input, from the longitudinaldynamics control, using the torque control
inputω.

When no special torque command is required to guarantee safety (the last case of the control map
in Theorem 4), a cruise control algorithm comes into effect to maintain the vehicle speeds about pre-
defined set points. For the roundabout implementation, vehicle 1 tracks a speed of 0.4 m/s, while
vehicle 2 tracks a speed of 0.5 m/s. A PD controller is employed for this tracking task. These speeds
were selected such that the vehicles would be able to accelerate and decelerate as much as possible
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Figure 5: The cooperative case. The above plots depict snapshots of the dynamic evolution of the closed-
loop system. The system considered hasai = 1 andbi = −.5 for i ∈ {1, 2}, with vmin = .25m/sec and
vmax = .8m/sec. We choose∆T = .1 sec,B =]4, 6[×R×]4, 6[×R, Ω = [0, 1] × [0, 1], x0 = (1.5, .5, 1, .5),
x̂0 = [.5, 2.5]× [.4, .6]× [0, 2]× [.4, .6]. The measurementszare generated randomly with a uniform probability
distribution in the interval [x(t)− (1, .1, 1, .1), x(t) + (1, .1, 1, .1)] so thath(z) = [z− (1, .1, 1, .1), z+ (1, .1, 1, .1)].
The grey box represents the projection of ˆx(t) onto the (x1

1, x
2
1) plane, with the black asterisk representing

the state of the system projected onto the (x1
1, x

2
1) plane. The red box represents the projection ofB onto

the (x1
1, x

2
1) plane, the slice ofCωL corresponding to the current speeds is shown in green and theslice of

CωH corresponding to the current speeds is shown in purple. Plots of the velocities, controls, disturbances,
estimation error‖ ∧ x̂− ∨x̂‖, and inputs are depicted in the lower panels.

while staying in the speed range enforced by the speed limiter. The range of speeds was selected based
on the geometry of the roundabout such that the capture setC does not extend beyond the reference
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Figure 6: The competitive case. The above plots depict snapshots of the dynamic evolution of the closed-
loop system. The system considered hasai = 1 andbi = −.5 for i ∈ {1, 2}, with vmin = .25m/sec and
vmax = .8m/sec. We choose∆T = .1 sec,B =]4, 6[×R×]4, 6[×R, Ω = [0, 1] × [0, 1], ∆ = [0, 1] × [0, 1],
x0 = (−6, .5,−10, .5), x̂0 = [−7,−5] × [.4, .6] × [−11,−12] × [.4, .6]. The measurementsz are generated
randomly with a uniform probability distribution in the interval [x(t) − (1, .1, 1, .1), x(t) + (1, .1, 1, .1)] so that
h(z) = [z− (1, .1, 1, .1), z+ (1, .1, 1, .1)]. The grey box represents the projection of ˆx(t) onto the (x1

1, x
2
1) plane,

with the black asterisk representing the state of the systemprojected onto the (x1
1, x

2
1) plane. The red box

represents the projection ofB onto the (x1
1, x

2
1) plane, the slice ofCωL corresponding to the current speeds

is shown in green and the slice ofCωH corresponding to the current speeds is shown in purple. Plots of the
velocities, controls, disturbances, estimation error‖ ∧ x̂− ∨x̂‖, and inputs are depicted in the lower panels.

point on either path. If this were not the case, the vehicles may apply control to avoid the bad set on
the first pass, only to end up in the capture set for the second pass, thus making it impossible to avoid
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Figure 7:Roundabout test-bed (left). The longitudinal displacements of the vehicles with respect to a reference
point along their corresponding paths are indicated byp1 and p2. The bad setB is a disk about point C. The
vehicles (right).

a collision.

(a) After 98.2 sec (b) After 99.8 sec (c) After 100.8 sec (d) After 101.2 sec

(e) After 102.4 sec (f) After 104.3 sec (g) After 105.4 sec (h) After 106.5 sec

Figure 8: Experiment data showing the trajectory in the position plane of the vehicles configuration as it
approaches a potential collision scenario. The red box is the projection ofB in the position plane. In each
panel, the green set represents a slice of the four dimensional setCωH corresponding to the current vehicles
speeds. The yellow set represents a slice of the four dimensional setCωL corresponding to the current vehicles
speeds. The red dot indicates the current vehicles positions. Control is applied at (d) to avoid the capture set,
and the vehicles resume normal operation after passing the bad set (in (g) and (h)). The capture set slices are
updated at every iteration on the basis of the vehicles speeds.

Figure 8 illustrates the trajectory of the vehicle configuration projected onto the position plane,
when avoiding a collision in one instance of the collision avoidance algorithm. The setsCωL andCωH
are four dimensional. In the figure, we show the slices of these sets in the position plane corresponding
to the current speeds of the vehicles.
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8 Conclusions and Future Work

Since the dynamic feedback problem for general hybrid systems with imperfect state information
is prohibitive, we focused on a restricted class of systems,which is still relevant for modeling a
number of application scenarios. In particular, we focusedon a class of hybrid systems with order
preserving dynamics. For this class of systems, we have presented an explicit solution to the safety
control problem with imperfect state information. We have provided linear complexity discrete-time
algorithms for computing this solution. We have shown the application of these algorithms to a two-
vehicle collision avoidance scenario at a traffic intersection. The experimental results confirm the
suitability of these algorithms for fast real-time computation.

There are a number of future research avenues to be explored in the context of imperfect state
information. Specifically, we will consider the extension of this approach to hybrid dynamics with
discrete state memory. Also, this work has focused on two-player games. We seek to extend it to
multi-agent games and apply it to multi-vehicle collision avoidance scenarios at traffic intersections.
In this case, we expect that the two-vehicle collision avoidance algorithm will be employed as a
primitive to construct the solution of the multi-vehicle collision avoidance problem.
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2005.

[37] J. Lygeros, C. J. Tomlin, and S. Sastry. Controllers forreachability specifications for hybrid
systems.Automatica, 35(3):349–370, 1999.

[38] J. R. Munkres.Topology. Prentice Hall, second edition, 2000.

[39] J. Pachl.Railway operation and control. VTD Rail Publishing, 2002.

[40] R. Raffard, S. Waslander, A. Bayen, and C. Tomlin. A cooperative distributed approach to
multi-agent eulerian network control: Application to air traffic management. InAIAA Guidance,
Navigation, and Control Conference and Exhibit, 2005.

[41] E. De Santis, M. D. Di Benedetto, and L. Berardi. Computation of maximal safe sets for switch-
ing systems.IEEE Trans. Automatic Control, 49(2):184–195, 2004.

[42] E. De Santis, M. D. Di Benedetto, and G. Pola. On observability and detectability of continuous-
time linear switching systems. InConf. on Decision and Control, pages 5777–5782, 2003.

27



[43] O. Shakernia, G. J. Pappas, and S. Sastry. Semi-decidable synthesis for triangular hybrid sys-
tems. InHybrid Systems: Computation and Control,Lecture Notes in Computer Science, vol.
2034, M. D. Di Benedetto and A. Sangiovanni-Vincentelli (Eds.), Springer Verlag, 2001.

[44] G. V. Smirnov. Introduction to the Theory of Differential Inclusions. American Mathematical
Society, 2002.

[45] H. L. Smith.Monotone Dynamical Systems. Mathematical Surveys and Monographs. American
Mathematical Society, 1995.

[46] C. J. Tomlin, J. Lygeros, and S. Sastry. A game theoreticapproach to controller design for hybrid
systems.Proceedings of the IEEE, 88(7):949–970, 2000.

[47] C. J. Tomlin, I. Mitchell, A. M. Bayen, and M. Oishi. Computational techniques for the verifi-
cation of hybrid systems.Proceedings of the IEEE, 91(7):986–1001, 2003.

[48] R. Verma, D. Del Vecchio, and H. Fathy. Development of a scaled vehicle with longitudi-
nal dynamics of a HMMWV for an its testbed.IEEE/ASME Transactions on Mechatronics,
13(1):46–57, 2008.

[49] R. Verma and D. Del Vecchio. Continuous control of hybrid automata with imperfect mode
information assuming separation between state estimationand control. InConf. on Decision
and Control, pages 3175 – 3181, 2009.

[50] R. Vidal, A. Chiuso, S. Soatto, and S. Sastry. Observability of linear hybrid systems. InHybrid
Systems: Computation and Control,Lecture Notes in Computer Science, vol. 2623, O. Maler
and A. Pnueli (Eds.), Springer Verlag, pages 526–539, 2003.

[51] M. De Wulf, L. Doyen, and J.-F. Raskin. A lattice theory for solving games of imperfect infor-
mation. Hybrid Systems: Computation and Control,Lecture Notes in Computer Science, vol.
3927, J. Hespanha and A. Tiwari (Eds.), Springer-Verlag, pages 153–168, 2006.

9 Appendix: Proof of Lemmas and Propositions

9.1 Proof of Lemma 1.

Before giving the proof, we need the following intermediateresults.

Proposition 2. Consider order preserving game structureG = (Σ,Ω,∆, ϕ,B) and let x∈ X, ω ∈
S(U), δ ∈ S(∆) and γ ∈ C0(I ,R2) o.p.c. where x11 ≤ maxτ1(γ(I )). Then, we have that either
φ1(R+, x, ϕ(ω, δ)) ≻ γ(I ) or φ1(R+, x, ϕ(ω, δ)) ≺ γ(I ) if and only ifφ1(R+, x, ϕ(ω, δ)) ∩ γ(I ) = ∅.

Proof. (⇒) Follows from the definition of the≺ relation.
(⇐) Suppose{φ1(R+, x, ϕ(ω, δ)) ≻ γ(I ) or φ1(R+, x, ϕ(ω, δ)) ≺ γ(I )} does not hold. The hypothesis

φ1
1(0, x

1, ϕ1(ω1, δ1)) ≤ supτ1(γ(I )) and condition (iii) of Definition 4 imply that there existα1, α2 ∈ I
and t1, t2 ∈ R+ such thatφ1(t1, x, ϕ(ω, δ)) � γ(α1) andφ1(t2, x, ϕ(ω, δ)) � γ(α2). For simplifying
notation, letζ(t) := φ1(t, x, ϕ(ω, δ)). Without loss of generality, assumeα1 ≤ α2, defineχ ∈ R2

whereχ1 := min
{

γ1(α1), γ1(α2)
}

andχ2 := min{φ2
1(t1, x

2, ϕ2(ω2, δ2)), γ2(α2)}. Next, we defineΓ12 :=

28



Figure 9:Three Cases.

γ([α1, α2]). By the construction ofχ, we have thatγ(α1), γ(α2) ∈ Cone+(χ), which implies thatΓ12 ⊂

Cone+(χ) by the definition of o.p.c. We now consider the three possible cases: (Case I)t1 = t2, (Case
II) t1 < t2, and (Case III)t1 > t2.

(Case I) Supposet1 = t2, implying γ(α2) � ζ(t1) � γ(α1). Consider the open half spaceA :=∼
Cone{e1}(χ) ⊂ R2 which is trivially path connected, and the setÃ := A ∪ γ(α1) ∪ γ(α2). The setÃ
is also path connected, implying the existence of a path ¯γ ∈ C0(I , Ã) such that ¯γ(0) = γ(α1) and
γ̄(1) = γ(α2) whereγ̄ is simple. SinceΓ12 ⊂ Cone+(χ), and Cone{−ê1}(χ)∩ Cone+(χ) = ∅ by definition
of the cone, we must have thatA∩ Γ12 = ∅. This implies that ¯γ(I ) only intersectsΓ12 at γ̄(0) andγ̄(1),
allowing us to re-parameterize ¯γ(I ) ∪ Γ12 with a simple closed curve (see Figure 9).

This simple closed curve, by the Jordan Curve Theorem [38], partitionsR2 into two sets,D bounded
and∼ D unbounded. By construction,D is such thatζ(t1) ∈ D and∂D = Γ12∪ γ̄(I ). Condition (iii) of
Definition 4 implies that||ζ(t)|| → ∞ ast → ∞. Thus,ζ([ t̄,∞)) ∩ ∂D must be non-empty becauseD
is a bounded set. Since condition (iii) of Definition 4 implies thatζ([ t̄,∞))∩ Ã is empty and ¯γ(I ) ⊂ Ã,
we must have thatζ([ t̄,∞)) ∩ Γ12 , ∅. This in turn impliesφ1(R+, x, ϕ(ω, δ)) ∩ γ(I ) , ∅.

(Case II) Supposet1 < t2. This along with condition (ii) of Definition 4 implies thatγ1(α1) < γ1(α2).
We assume thatζ(t1) � γ(I ) andζ(t2) � γ(I ), otherwise we would be back to (Case I). Define the sets
S1 := Cone{ê1,−ê2}(γ(α2)) andS2 := Cone+(χ). DefineA := S̊1 ∪ (∼ S2) andÃ := A∪ γ(α1) ∪ γ(α2).
Sinceγ is an o.p.c. path,Γ12 ⊂ Cone+(χ) andΓ12 ∩ S1 = ∅, we must have thatΓ12 ∩ A = ∅. The set
Ã is path connected, implying the existence of ¯γ ∈ C0(I , Ã) with γ̄(0) = γ(α1), γ̄(1) = γ(α2) andγ̄
simple. SinceA ∩ Γ12 = ∅, γ̄(I ) ∪ Γ12 can be re-parameterized with a simple closed curve (see
Figure 9). This curve, by the Jordan Curve Theorem, forms a bounded setD, whereζ(t1) ∈ D by
construction. Condition (ii) and (iii) of Definition 4 alongwith the decoupling of the dynamics imply
that ζ([t1,∞]) ∩ A = ∅ andζ([t1,∞]) ∩ ∂D , ∅. Sinceγ̄ ⊂ A, we have thatζ([t1,∞]) ∩ Γ12 , ∅.
Therefore,φ1(R+, x, ϕ(ω, δ)) ∩ γ(I ) , ∅.

(Case III) Supposet2 < t1, which along with condition (iii) of Definition 4 implies that γ1(α2) <
γ1(α1). We assume thatζ(t1) � γ(I ) andζ(t2) � γ(I ), otherwise we would be back to (Case I). Define
the setsP := Cone{e1}(χ), R := Cone{e1,−e2}(γ(α1)), H := Cone(+)(χ)\R̊, A := P\H, and Ã := A ∪
γ(α1)∪γ(α2). The setÃ is path connected, implying the existence of ¯γ whereγ̄ ∈ C0(I , Ã) with γ̄(0) =
γ(α1), γ̄(1) = γ(α2) andγ̄ simple. Observe thatA ∩ Γ12 = ∅, thusγ̄(I ) ∪ Γ12 can be re-parametrized
with a simple closed curve. We invoke the Jordan Curve Theorem to construct the bounded setD,
whereζ(t1) ∈ D by construction (Figure 9). By construction, we also have that ζ(t2) < D. Thus, the
uniform continuity of the flow with respect to time impliesζ([t2, t1]) ∩ ∂D , ∅. Condition (iii) of
Definition 4 implies thatζ([t2, t1]) ⊂ H, thus implyingζ([t2, t1]) ∩ Ã = ∅. Since∂D = Γ12 ∪ γ̄(I ) and
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γ̄(I ) ⊂ Ã, we must haveζ([t2, t1]) ∩ Γ12 , ∅. This implies thatζ([t2, t1]) ∩ γ(I ) , ∅, giving the desired
resultφ1(R+, x, ϕ(ω, δ)) ∩ γ(I ) , ∅.

Therefore, we have shown for each caseφ1(R+, x, ϕ(ω, δ)) ∩ γ(I ) , ∅, completing the proof. �

Proposition 2 states that the flowφ generated from the initial conditionx, controlled inputω and
disturbanceδ can avoid an o.p.c. pathγ in the (x1

1, x
2
1) subspace if and only if the trajectory ofφ1

lies aboveγ(I ) or if the trajectory ofφ1 lies belowγ(I ). Another intermediate result is needed before
stating the proof of Lemma 1.

Proposition 3. Consider order preserving game structureG = (Σ,Ω,∆, ϕ,B), x ∈ X, ω ∈ S(U)
andγ ∈ C0(I ,R2) o.p.c. with x11 ≤ maxτ1(γ(I )). If

⋃

δ∈S(∆) φ1(R+, x, ϕ(ω, δ)) ∩ γ(I ) = ∅, then either
φ1(R+, x, ϕ(ω, δL)) ≻ γ(I ) or φ1(R+, x, ϕ(ω, δH )) ≺ γ(I ).

Proof. The assumption thatγ(I ) ∩
⋃

δ∈S(∆) φ1(R+, x, ϕ(ω, δ)) = ∅ implies
(a)φ1(R+, x, ϕ(ω, δL))∩ γ(I ) = ∅ and (b)φ1(R+, x, ϕ(ω, δH))∩ γ(I ) = ∅. From Proposition 2, we have
that (a) implies either

φ1(R+, x, ϕ(ω, δL)) ≻ γ(I ) (16)

or φ1(R+, x, ϕ(ω, δL)) ≺ γ(I ). (17)

Similarly, Proposition 2 along with (b) implies either

φ1(R+, x, ϕ(ω, δH)) ≻ γ(I ) (18)

or φ1(R+, x, ϕ(ω, δH)) ≺ γ(I ). (19)

If (16) is satisfied, we immediately obtain the result. Similarly, if (17) and (19) are satisfied the result
also follows. Therefore, we are left with showing that relations (17) and (18) are not both possible. By
contradiction, assume they are both possible and define the constant signalsδ2

L(t) := δ2
L, δ2

H(t) := δ2
H,

δ
1
L(t) := δ1

L, andδ1
H(t) := δ1

H for all t ∈ R+. Then, there is (α1, α2) ∈ γ(I ), ta > 0, andtb > 0
such thatφ2

1(ta, x
2, ϕ2(ω2, δ2

L)) < α2 andφ2
1(tb, x

2, ϕ2(ω2, δ2
H)) > α2. Sinceφ1

1(ta, x
1, ϕ1(ω1, δ1

H)) =
α1 = φ1

1(tb, x
1, ϕ1(ω1, δ1

L)), the order preserving property ofϕ in its arguments imply thatta ≤ tb. For
fixed x2 andω2, define the functionΦ2

1 : [ta, tb] × S(∆2) → R by Φ2
1(t, δ

2) := φ2
1(t, x

2, ϕ2(ω2, δ2)).
This is a continuous function from a connected metric space into the reals. Therefore, we can apply
the intermediate value theorem to state that there is a pairt̄ ∈ [ta, tb] and δ̄

2
∈ S(∆2) such that

Φ2
1(t̄, δ̄

2
) = α2.

Property (iii) of Definition 4 further implies that the orderingφ1
1(t̄, x

1, ϕ1(ω1, δ1
H)) > α1 and ordering

φ1
1(t̄, x

1, ϕ1(ω1, δ1
L)) < α1 must hold. For fixedx1 andω1, define the mapΦ1

1 : S(∆1) → R by
Φ1

1(δ
1) := φ1

1(t̄, x
1, ϕ1(ω1, δ1)). This is a continuous function from a connected metric space to the

reals, therefore we can apply again the intermediate value theorem to conclude that there isδ̄
1
∈ S(∆1)

such thatΦ1
1(δ̄

1
) = α1.

As a consequence, we have thatφ1(t̄, x, ϕ(ω, (δ̄
1
, δ̄

2
))) = (α1, α2) ∈ γ(I ) for (δ1, δ2) ∈ S(∆). This in

turn contradicts the assumption that
⋃

δ∈S(∆) φ1(R+, x, ϕ(ω, δ)) ∩ γ(I ) = ∅.
�

Proposition 3 states that the flowφ generated from the initial conditionx and controlled inputω
will avoid an o.p.c. pathγ in the (x1

1, x
2
1) subspace if and only if the trajectory ofφ1 generated with the

disturbance signalδL lies aboveγ(I ) or if the trajectory ofφ1 generated with the disturbance signal
δH lies belowγ(I ).
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Figure 10:Geometry ofφ1(t, x, ϕ(ω, δH )) andφ1(t, y, ϕ(ω, δL)).

Proof. (Lemma 1) (⇐) For every disturbanceδ ∈ S(∆), we have thatδL E δ E δH . From Proposition
1, it follows that for everyx ∈ A and t ∈ R+, we have thatφ(t, x, ϕ(ω, δL)) - φ(t, x, ϕ(ω, δ)) -
φ(t, x, ϕ(ω, δH)). Therefore, the result follows directly from the assumption.

(⇒) Suppose{φ1(R+,A, ϕ(ω, δL)) ≻ γ(I ) or φ1(R+,A, ϕ(ω, δH )) ≺ γ(I )} does not hold. Then
there must existx, y ∈ A, α1, α2 ∈ I , and t1, t2 > 0 such thatφ1(t1, x, ϕ(ω, δL)) ≺ γ(α1) and
φ1(t2, y, ϕ(ω, δH)) ≻ γ(α2) (the relation is strict, otherwise the result is immediate). We assume
thatφ1(R+, x, ϕ(ω, δL)) ≺ γ(I ), otherwise Proposition 2 implies thatφ1(R+, x, ϕ(ω, δL)) ∩ γ(I ) , ∅.
Likewise, Proposition 2 implies we must have
φ1(R+, y, ϕ(ω, δH )) ≻ γ(I ). Furthermore, unlessφ1(R+, y, ϕ(ω, δL)) ≻ γ(I ) is satisfied, the previous
statement along with Proposition 3 implies thatφ1(R+, y, ϕ(ω, δL)) ∩ γ(I ) , ∅. Figure 10 shows the
resulting geometry of the flow. Let ¯α ∈ I be such thatτ1(γ(I )) ≤ τ1(γ(ᾱ)). Condition (iii) of Defi-
nition 4 leads tox1

1 < φ1
1(t1, x

1, ϕ1(ω, δL)) ≤ γ1(ᾱ) andy1
1 < φ1

1(t2, y
1, ϕ1(ω, δL)) ≤ γ1(ᾱ). Consider

H := co{x, y} ⊂ A, since convexity is preserved under projection [16], condition (iii) of Definition 4
implies there isT > 0 such that

φ1
1(0, τ1(H), ϕ1(ω1, δ1

L)) < γ1(ᾱ) < φ1
1(T, τ1(H), ϕ1(ω1, δ1

L)). (20)

We seek to show thatγ(ᾱ) ∈ φ1([0,T],H, ϕ(ω, δL)). DefineK := [0,T] × H ⊂ R+ × R2n and let
Θ : K → R2 be the map defined byΘ(t, z) := φ1(t, z, ϕ(ω, δL)) for (t, z) ∈ K. We proceed by breaking
this proof into three steps:

(i) Construct fromΘ a mapψ : S1 → S1;

(ii) Show that the degree ofψ is nonzero;

(iii) Show that the degree ofψ being nonzero implies

thatγ(ᾱ) ∈ Θ(K).

(i) Denote the four corners of∂K : h1 = (0, x), h2 = (T, x), h3 = (T, y), h4 = (0, y). Define the sets
A1 := co({h1, h2}) ∪ co({h2, h3}) andA2 := co({h3, h4}) ∪ co({h4, h1}). Consider the standard covering
map ofS1 p : R → S1, in which p(z) := (cos(2πz), sin(2πz)). Define the homeomorphismf :
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Figure 11:The Mappingψ.

(a) Commuting Diagram (b) Four Quadrants ofS1

Figure 12:Tools used to find degψ.

D1 → K, such thatf (p(0)) = h1, f (p(.25)) = h2, f (p(.5)) = h3, and f (p(.75)) = h4. SinceΘ is a
continuous function, we have thatΘ(∂K) defines a closed curve. Assume thatγ(ᾱ) < Θ(∂K) and let
g : R2\γ(ᾱ)→ S1 be the continuous map defined by

g(z) :=
z− γ(ᾱ)
‖z− γ(ᾱ)‖

, ∀z ∈ R2\γ(ᾱ). (21)

Defineψ ∈ C0(S1, S1) asψ(x) := g ◦ Φ ◦ f (x) for all x ∈ S1 (see Figure 11).
(ii) To compute the degree ofψ, we consider the lift̃ψ : I → R wherep ◦ ψ̃ = ψ ◦ p (see Figure

12(a)). The degree ofψ is defined as degψ := ψ̃(1) − ψ̃(0) (see [34] for details). We introduce the
setsS1

I := p([0, .25]), S1
II := p([.25, .5]), S1

III := p([.5, .75]), S1
IV := p([.75, 1]) (see Figure 12(b)). Let

κ1 := ψ̃(0) and note thatp(κ1) = ψ(p(0)) = g(Θ(h1)), which must be inS1
III , sinceΘ(h1) < γ(ᾱ). Let

κ2 = ψ̃(.5) and note thatp(κ2) = ψ(p(.5)) = g(Θ(h3)). From (20) and condition (iii) of Definition 4,
we have thatγ(ᾱ) < Θ(h3). This inequality along with the definition ofg imply thatg(Θ(h3)) ∈ S1

I . As
a consequence, we havep(κ2) ∈ S1

I , implying thatκ1 , κ2.

We next show thatκ2 > κ1. SinceΘ ◦ f (p([0, .5])) = Θ(A1), equation (20) along with condition (iii)
of Definition 4 implies thatΘ(A1) ≺ γ(ᾱ). This implies thatψ(p([0, .5])) = g(Θ(A1)) ⊂ S1

I ∪S
1
IV ∪S

1
III .

Therefore, ifψ(p(ζ)) cannot enterS1
II for all ζ ∈ [0, .5], thenκ1 < κ2 by the definition of p.

Finally, let κ3 := ψ̃(1). We show thatκ2 < κ3. SinceΘ ◦ f (p([.5, 1])) = Θ(A2), from (20) and
Condition (ii) of Definition 4 we have thatΘ(A2) ≻ γ(ᾱ). This, along with Condition (iii) of Definition
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(4) implies thatψ(p([.5, 1])) = g(Θ(A2)) ⊂ S1
I ∪ S

1
II ∪ S

1
III . Therefore, ifψ(p(ζ)) cannot enterS1

IV for
all ζ ∈ [.5, 1], thenκ2 < κ3 from the definition ofp.

We have shown thatκ1 < κ2 < κ3. As a consequence, degψ = ψ̃(1)− ψ̃(0) = κ3 − κ1 , 0.
(iii) Now suppose we extend the mapψ to ψ̄ ∈ C0(D1, S1), whereψ̄(x) := g◦Θ◦ f (x) for all x ∈ D1.

By Lemma 3.5.7 in [34], if a continuous functionh : S1 → S1 extends to a continuous functionH :
D1→ S1, then degh must be zero. However, we found the degree ofψ to be non-zero, implying thatψ
cannot extend tōψ. SinceΘ( f (D1)) is well defined, we must have thatg(Θ( f (D1))) is undefined. Since
g(z) is defined for allz ∈ R2\γ(ᾱ), we must have thatγ(ᾱ) ∈ Θ( f (D)). This implies thatγ(ᾱ) ∈ Θ(K) =
φ1([0,T],H, ϕ(ω, δL)) ⊂

⋃

δ∈S(∆) φ1(R+,A, ϕ(ω, δ)). Therefore,
⋃

δ∈S(∆) φ1(R+,A, ϕ(ω, δ)) ∩ γ(I ) , ∅.
�
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