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Introduction

Animation of field line motion is a significant help in developing
intuition about electromagnetic fields, as the shape of field lines is a
remarkable guide to their dynamical effects.

We are producing 3D animations which illuminate the physics of
electromagnetic phenomena in a visually compelling way.  We shoot
video of actual demonstrations and animate those demonstrations,
including field lines.

These are not cartoons--the field configurations and dynamics are
calculated quantitatively.  We use a commercial animation package
(Kinetix 3D Studio MAX 2.5) with the field lines embedded in the
animation as 3D objects (tubes).

Here, we discuss the concept of field line motion and how to define
that motion in a physically meaningful (but not unique) way.  We
also give examples of experiments and animations in the areas of
magnetoquasistatics and dipole radiation, and provide the supporting
physics and mathematics.

The experiments and animations discussed here are
available at

web.mit.edu/jbelcher/www/anim.html

and will be shown at this meeting in

Paper FC6--Wed Jan 13 at 4 pm
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Field Line Motion In Magnetoquasistatics

Magnetic field lines are defined in the usual way--that is, dy / dx = By / Bx , etc.  We make no attempt to

have the density of field lines correspond to field strength (this is impossible in 2D projections of 3D fields

in any case1).  How do we define field line motion?  Consider the following thought experiment.  We have

a solenoid carrying current provided by the emf of a battery.  The axis of the solenoid is vertical.  We place

the entire apparatus on a cart, and move the cart horizontally at a constant velocity V.  Our intuition is that

the magnetic field lines associated with the currents in the solenoid should move with their source, i.e.,

with the cart.

How do we make this intuition quantitative?  First, we realize that in the laboratory frame there will be a

"motional" electric field given by E = −V × B .  We then imagine placing a low energy test electric charge in

the magnetic field of the solenoid, at its center.  The charge will gyrate about the field and the center of

gyration will move in the laboratory frame because it E × B  drifts (v = E × B / B2 ) in the −V × B  electric

field.  This drift velocity is just V.  That is, the test electric charge "hugs" the "moving" field line, moving

at the velocity our intuition expects.   In the more general case (e.g., two sources of field moving at

different velocities), the motion we show in our computer visualizations has the same physical basis:

The motion of a given field line in our quasistatic animations
is what we would observe in watching the motion of low
energy test electric charges spread along that field line.

We also use this definition of the motion of file lines in situations which are not quasistatic, for example

dipole radiation in the induction and radiation zones.  In this case (but not in the quasistatic cases) the

calculated motion of the field lines is non-physical, as their speed exceeds that of light in some regions.

However, animations of the field line motion is still useful, as the direction of that motion indicates the

direction of energy flow.
Calculating Field Line Motion In Magnetoquasistatics

To calculate field line motion consistent with our definition above, we need to insure that our velocity

field is flux preserving 2,3,4 .  For any general vector field G(x,y,z,t), the flux of that field through an open

surface S  bounded by a contour C which moves with velocity v(x,y,z,t) is given by

1Wolf, A., S.J. Van Hook, E.R. Weeks, "Electric field line diagrams don't work", Am. J. Phys., 64 , 714
(1996).
2Stern, David P., "The Motion of Magnetic Field Lines", Sp. Sci. Rev., 6 , 147-173 (1966).
3Vasyliunas, V. M., "Non uniqueness of magnetic field line motion:, J. Geophy. Res.,   77 ,  6271-6274
(1972).
4Rossi, B. and S. Olbert, Introduction to the Physics of Space  (McGraw-Hill, London, 1970) p. 382.
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d

dt
G

S
∫ ⋅ dS =

G
t

S
∫ ⋅ dS + (∇⋅ G)v

S
∫ ⋅ dS − (v

C
∫ × G) ⋅ dl                                       (1)

If we apply this equation to B(x,y,z,t) and use ∇⋅ B = 0  and 
B
t

= −∇× E , we have

d

dt
B

S
∫ ⋅ dS = − (E + v

C
∫ × B) ⋅ dl                                                           (2)

If we then define the motion of our contours so that the magnetic flux through the surfaces they bound is

constant as a function of time, and consider circular contours and fields with azimuthal symmetry, then

equation (2) guarantees that their motion satisfies E + v × B = 0 , which is the same as v = E × B / B2 ,

assuming that v  and B  are perpendicular (justified by the fact that there is no meaning to the motion of a

field line parallel to itself).  This is just the drift velocity of low energy test electric monopoles that we refer

to above.  This definition of field line motion is not unique (see Vasyliunas3).

To show how this works in practice, consider an animation of the motion of the field lines of a magnet

levitating above a disk with zero resistance (Figure 1).  The magnet is constrained to move only on the axis

of the disk, and the dipole moment of the magnet is also constrained to be parallel to that axis.  The magnet

will be repelled by eddy currents in the disk, and at some point there will be a balance between the

downward force of gravity and the upward force of repulsion.  We then consider small displacements about

this equilibrium position, which will be periodic.  The field lines themselves are given by Davis and Reitz5,

and have azimuthal symmetry.  How do we trace the motion of a field line?

We do this by starting our integration very close to the magnet at a constant angle from the vertical axis,

following a given field line out from that point.  To animate a line, we use the same starting angle at every

point in the oscillation.  The field line traced out will be different when the magnet is at different distances

from the disk.  But the flux inside any open surface whose bounding contour is defined by the intersection

of a horizontal plane and the field line when rotated azimuthally will have constant flux inside it, since

∇⋅ B = 0 .  Therefore the motion of the field line so defined satisfies the prescription we have given above,

and reflects the drift motion of low energy test electric charges spread along it.

Examples Of Animations:  I.  Faraday's Law
We have developed a series of Faraday's Law animations involving the fields of a permanent magnet,

represented by a 3D dipole, and the fields of a nonmagnetic conducting ring carrying current induced by the

motion of the magnet.  We now discuss the physics and mathematics involved in calculating the current in

the ring and the dynamics of the motion of the magnet, if that is appropriate.  The animations are: (1) a

magnet moved by an experimenter through a coil of wire; (2) a permanent magnet falling through a

nonmagnetic conducting ring with resistance (including zero resistance).

5Davis, L. C. and J. R. Reitz, "Solution to Potential Problems near a Conducting Semi-Infinite Sheet or
Conducting Disk", Am. J. Phys. 39 , p. 1255 (1971).
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Equation of Motion
We have a 3D dipole with dipole moment = ˆ z .  It moves on the axis of a circular loop of radius a,

resistance R, inductance L, with inductive time constant L/R.  It moves downward under the influence of

gravity.  We constrain the motion to be along the z-axis, and the magnetic dipole moment to be parallel to

that axis.  The equation of motion is

m
d2z

dt2 = −mg +
dBz

dz
                                                          (3)

where Bz is the field due the current I in the ring (taken to be positive in the direction show on the sketch).

The expression for Bz is

Bz = oIa2

2(a2 + z2)3/2                                         (4)

so that equation (3) is

m
d2z

dt2 = −mg −
3 oIa2

2

z

(a2 + z2)5/2                        (5)

An Equation for I from Faraday's Law

Faraday's Law is

E ⋅ dl∫ = −
d

dt
Bdipole + Bring[ ]⋅dA∫ = −

d

dt
Bdipole ⋅ dA∫ − L

dI

dt
    (6)

where L is the inductance of the ring.  If E = J , where  is the

resistivity of the ring and J is the current density, then E ⋅ dl∫ = J ⋅dl∫ = I dl / A = IR∫ , with

R = dl / A∫  where R is the resistance of the ring.  So we have

IR =− L
dI

dt
−

d

dt
Bdipole ⋅ dA∫                                                             (7)

We now need to determine the magnetic flux through the ring due to the dipole field.  To do this

we calculate the flux through a spherical cap of radius a2 + z2

with an opening angle given  given by sin = a / a2 + z2  (this

is the same as the flux through the ring because ∇⋅ B = 0 ).  The

flux through a spherical cap only involves the radial component of

the dipole field, given by

Br = o

2

cos

r3

Bdipole ⋅ dA∫ = o

2

cos

r3 2 r2 sin d∫

Bdipole ⋅ dA∫ = − o

r
cos d cos∫ = o

2

a2

a2 + z2( )3/2
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Using this expression for the flux in (7), and assuming that   = Mo  is constant in time, yields

IR = −L
dI

dt
+

3 oa2Mo

2

z

a2 + z2( )5/2
dz

dt
                                                  (8)

Equations (5) and (8) are our coupled ordinary differential equations which determine the dynamics of the

situation when the magnet is falling toward the ring under the influence of gravity.

Dimensionless Form of the Equation When The Motion Is Specified

Before we consider the general case, in which the dynamics of the magnet are coupled to the current in

the ring, let us first consider the simpler case where the motion of the magnet is specified.  In the

animations involving moving the magnet in and out of the coil, the magnet is at rest, then moves at constant

speed, and is then at rest again.  The current in the ring is determined by solving (8) given this as input.
We assume that the magnet is moved at constant speed vo  along the x-axis in the time interval 0 < t < tm ,

and is at rest otherwise The position of the magnet at time t is x(t).  We measure all distances in terms of the
distance a, and all times in terms of the time a / vo .  We define the dimensionless quantities

′ x =
x

a
′ t =

t

a / vo

=
L

o a
′ I =

I

Io

, where Io = o Mo

a L
                            (9)

In terms of these variables, our equation (8) is
d ′ I 

d ′ t 
= −K ′ I +

dG(x' (t' ))

d ′ t 
where K =

R

L

a

vo

and G( ′ x ) = −
1

2

1

(1+ ′ x 2 )3/2              (10)

Given the position of the magnet as a function of time, and the value of the dimensionless parameter K , we

can solve equation (10) for the dimensionless current in the coil as a function of time.  Once we have

chosen our dimensionless parameter K, and  the initial conditions, and solved our differential equation for

I'(t'), how much freedom do we have in choosing the absolute value of the current?  It can be shown that

the overall shape of the magnetic field topology is determined once we make the one remaining choice of

the dimensionless constant λ (eq. (9)), which up to this point we have not chosen (we have only picked

values of K  and the position of the magnet as a function of time to solve our dimensionless equation).

Once that choice is made, we have no additional

freedom to affect the field topology.   In all of our

animations, we have chosen to be 2.

As an example of a numerical solution to

equation (10), we show a solution in Graph 1 for

the case where K = 1, and we have moved the

magnet from x' = 0.5 to x' = 2.5.  Figure 2, which

is one frame of an animation of this process, shows the field configuration at an instant of time before

the magnet comes to rest.  The field lines have a hard time "getting through" the coil, since the sense
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of the current in the coil is such as to try to keep the number of field lines threading the coil from

decreasing.  Thus the field lines get "hung up" in the coil as they try to move through it.  The intuitive

sense that one gets in watching this animation is that the agent moving the magnet must do work to

pull the field lines "through" the coil.  This is a difficult point to get across in any other way.  Figure

3 shows a similar case, except that we have taken K = 0.3 in this case (lower coil resistance, cf.

equation (10)).  Whereas Figure 2 shows many field lines but only in a single plane, Figure 3 shows

one field line repeated many times in azimuth, to give a feel for its 3D character.

Dimensionless Form of the Falling Magnet Equations

We now put our more general coupled equations (5) and (8) into dimensionless form.  We measure all
distances in terms of the distance a, and all times in terms of the time a / g  and define

′ z =
z

a
′ t =

t

a / g
=

R

L

a

g
= o Mo( )2

Lmga3 ′ I =
I

Io

, where Io =
mga 2

o Mo

                 (11)

The time a / g  is roughly the time it would take the magnet to fall under the influence of gravity through a

distance a starting from rest.  The current Io is roughly the current in the ring that is required to produce a

force sufficient to offset gravity when the magnet is a distance a above the ring.  In terms of these variables,

our equations (5) and (8) are
d2 ′ z 

d ′ t 2 = −1 − F( ′ z ) ′ I               
d ′ I 

d ′ t 
= − ′ I + F( ′ z )

d ′ z 

d ′ t 
                          (12)

with                                                              F( ′ z ) =
3

2

′ z 

(1+ ′ z 2 )5/2                                                           (13)

If we define the speed ′ v = d ′ z / d ′ t , then we can write three coupled first-order ordinary differential

equations for the triplet ( ′ z , ′ v , ′ I ), using (12) and (13).

d ′ z 

d ′ t 
= ′ v 

d ′ v 

d ′ t 
= −1− F( ′ z ) ′ I 

d ′ I 

d ′ t 
= − ′ I + F( ′ z ) ′ v                       (14)

Given initial conditions for ( ′ z , ′ v , ′ I )and values of the parameters ( , )  (cf. eq. (11)) we use (14) to

calculate the derivatives.  For a given time step ∆ ′ t we can then calculate new values of ( ′ z , ′ v , ′ I ).  As

before, the overall shape of the magnetic field topology is totally determined once we make the one

remaining choice of the dimensionless constant , which up to this point we have not chosen (we have only

to pick values of  and to solve our dimensionless equation).  Once that choice is made, we have no

additional freedom to affect the field topology.   In all of our animations, we have chosen to be 2.

Conservation of Energy

If we multiply (5) by v =
dz

dt
 and (8) by I, after some algebra, we find that

d

dt
1
2 mv2 + mgz + 1

2 LI 2[ ] = −I2R                                                  (15)

which expresses conservation of energy for the falling magnet plus the magnetic field of the ring.  If R = 0,

there is no dissipation of energy.  For some values of the parameters, the magnet will levitate above the
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ring, as shown in one of our animations.  For other values, the magnet can fall through the ring, as shown

in another animation.  But in no case can the total magnet flux through the ring change.

We show some examples of numerical solutions to equations (14).  The first of these (shown in

Graph 2 to the right) is for ( , )  values equal to

(1, 35), with the magnet starting from rest at z' =

3, and the current in the ring initially zero.  As the

magnet falls, the current in the ring builds up in a

sense so as to keep the flux through the ring from

increasing.  After the magnet falls through the

ring, the current reverses direction so as to keep

the flux through the ring from decreasing.  When

the magnet is above the ring, the sense of the

current is to slow the magnet, as is also the case when the magnet is below the ring.  The current is not

zero just as the magnet crosses through the ring because of the inductance of the ring.  Figure 4 shows

many field lines in a plane after the magnet has fallen below the ring.  The shape of the field lines

implies that the field is transmitting an upward force on the magnet (tension parallel to the field).

Figure 5 is a frame at the same time as Figure 4, except instead of showing many field lines in a single

plane we show one field line repeated many times in azimuth.

In Graph 3 below, we show a solution for the case where the resistance of the ring is zero, i.e.  ( , )

values equal to (0, 25).  For these parameters, the magnet falls through the ring.  Graph 4

again shows a solution for the case where the resistance of the ring is zero, ( , )  values equal to (0, 35),

but in this case the magnet levitates above the ring with a period of 5.14 dimensionless time units.

We can also find solutions where the motion of the magnet is periodic and the magnet is suspended

below a ring with zero resistance.  Graph 5 on the next page shows a solution for ( , )  values equal to

(0, 18), where now we start the magnet out at z' = 0 with zero current in the ring.  The motion of the
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magnet is periodic with a period of 5.28 dimensionless time units.  Figure 6 shows one frame of an

animation of this  motion when the magnet is at its lowest point, suspended below the ring by the tension in

the field lines.

Examples Of Animations:  II. Dipole Radiation
If m(t) is the time dependent magnetic dipole moment, the equation for the magnetic field for magnetic

dipole radiation (including the quasistatic, induction, and radiations terms) is

B(r,t ) = o

4

1

r3 3ˆ n (m ⋅ ˆ n ) − m[ ]  +
1

cr2 3ˆ n ( ˙ m ⋅ ˆ n ) − ˙ m [ ] +
1

rc2 ( ˙ ̇ m x ˆ n )x ˆ n 
 
 
 

 
 
 

                      quasi-static                   induction               radiation

                   (16)

where the expression on the right is evaluated at the retarded time t' = t - r/c.  We have animated this field

using the approach discussed above, for the case when the dipole moment is a constant plus a sinousoidally

varying function, e.g., m(t ) = ˆ z Mo 1 + cos(
2 t

T
) 

 
 
 
, with  = 0.1 .  Figure 7 shows an frame from the

animation of the motion of the field line whose equatorial crossing point for the average dipole moment
ˆ z Mo  is at cT.

This animation is carried out using the approach discussed above, which means that the local velocity of

the field line is given by v = E × B / B2 .  Unlike the magnetoquasistatic cases discussed above, in some

regions the resulting motion of the field lines is non-physical, in that this velocity exceeds the speed of

light.  However, even though the motion is non-physical, it is useful pedagogically, in that the direction of

motion of a field line indicates the direction of energy flow (but not the magnitude of the energy flow, of

course), since v = E × B / B2  is parallel to the Poynting vector.

In particular, in the induction and quasi-static zones, there are regions where the energy flow is outward

over part of the period and inward over other parts, corresponding to energy flowing out and being

reversibly recovered as the energy in the dipole field is alternately increased and decreased.  However,

when we move into the radiation zone, the energy flow is always outward, corresponding to the

irreversible energy loss of radiation, as is the motion of our field lines in that region.  The animation gives

an intuitive sense for the fact that there is such a transition, and for where this transition takes place.
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Discussion

Let us discuss the objectives of our approach.  One of the primary
aims of animation is to engender a sense of wonder in the student.
The 3D visualizations that we have created and plan to create are
visually compelling.  They engage the student's imagination because
they show the world in a photo-realistic way, including
representations of phenomena which heretofore could only be seen in
the mind's eye.  In large lecture courses in the freshman year one of
the purposes is to inspire students to invest the time to pursue
quantitative mastery of the subject outside of lecture.  Our
animations are successful in large degree as long as they arouse
interest and excitement by engendering a sense of wonder.

Beyond engendering a basic sense of wonder, what is the central
student learning need that we are trying to meet?  It is this.  Students
need an enormous amount of help in understanding the nature of
fields.  The central learning objective of introductory courses in
electromagnetism is to help students understand how fields are
generated, how they mediate the interaction of material objects, and
how they propagate.   Our contention is that in the standard
pedagogy this learning objective is not well fulfilled.

Our approach to help remedy this deficiency is to give the fields a
more prominent role in the pedagogy, by literally making them more
visible.  They are thereby made more understandable dynamically,
based on students' pre-existing models of the behavior of e.g. strings
and rubber bands.  The animations continually remind the student
that it is the field that mediates interactions between material objects-
-that the field has as much "reality" as the objects themselves.
Ultimately, animations allow students to understand intuitively what
is happening dynamically simply by looking at the shape of the field
lines, once the eye and the mind are trained to this purpose.  It is this
intuition that we seek to develop.
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Figures

Figure 1:  A magnet levitates above a conducting disk with
zero resistance.  We show a field line rotated many times in
azimuth.
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Figure 2:  A magnet is pulled away from a conducting coil of
wire (cf. Graph 1 and eq. 10).  We show many field lines in a
single plane.  The induced current in the coil tries to keep the
number of field lines threading the coil from decreasing, so
that the field lines appear to get "hung up" in trying to move
through the coil.
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Figure 3:  The same as Figure 2, except we have decreased the
resistance of the coil by a factor of 3, and we show now only
one field line, repeated many times in azimuth about the axis
of the coil.  This is a better representation of the 3D nature of
the field.
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Figure 4 and 5:  A magnet falls through a conducting ring with
finite resistance (cf. Graph 2 and eq. 14).  We show the field
lines when the magnet is below the ring, in two views, one
with many field lines shown only in a plane, and one with
only one field line shown many times in azimuth, to give a
feel for the 3D nature of the fields.
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Figure 6:  A magnet suspended below a conducting ring with
zero resistance (see Graph 5 and eq. 14).  The magnet initially
was at rest in the center of the ring, with zero current in the
ring.  As the magnet falls under gravity, the induced current in
the ring tries to keep the flux through the ring from changing,
producing the field configuration shown.
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Figure 7:  A field line during magnetic dipole radiation for a
dipole whose dipole moment is varying sinusiodally ±10% in
amplitude with a period of T.  The field line shown has an
equatorial crossing distance of cT for the average dipole
moment.  We show the induction and radiation zones.


