

The Task Force on the Undergraduate Educational Commons

MIT Faculty Meeting November 16, 2005

Purpose of the Task Force

The Task Force has been conducting a fundamental, comprehensive review of the common educational experience of our undergraduates.

Charge to the Task Force

- Review MIT's educational mission and reaffirm or modify, as appropriate
- Derive a set of <u>specific educational goals</u> for all undergraduates from the mission
- Develop and articulate the <u>content</u> of the common undergraduate curriculum, and how it fits with the departmental curricula a systems approach
- Develop and recommend the <u>formal</u> <u>structure</u> of the curriculum

ON THE UNDERGRADUATE EDUCATIONAL COMMONS

Overview of the GIRs

	<u>Subjects</u>
Science Requirement	6
Chemistry3.091, 5.111, or 5.112 Physics 8.01, 8.012, 8.01T, or 8.01L & 8.02, 8.022, or 8.02T Calculus 18.01, 18.01A, 18.013A, or 18.014 & 18.02, 18.02A, 18.022, 18.023, 18.023A, or 1 Biology 7.012, 7.013 or 7.014	18.024
Laboratory (LAB) Requirement 12 units	1
Restricted Electives in Science and Technology (REST) Requirement	2
Humanities, Arts, and Social Sciences Requirement Includes 2 Communication Requirement subjects (CI-H)	8
Total GIR Subjects Required for S.B. Degree	17
Communication Requirement	

2 Communication-Intensive HASS subjects (CI-H)

2 Communication-Intensive Major subjects (CI-M)

Physical Education Requirement

Departmental Program and Unrestrictive Electives

The departmental program may specify some of the GIR subjects, and includes an additional 180-198 units beyond the GIRs

Task Force Goals for an MIT Education

An MIT education is one grounded in science and technology that:

- ignites a passion for learning,
- provides the intellectual and personal foundations for future development, and
- illuminates the breadth, depth and diversity of human knowledge and experience,

in order to enable each student to develop a personal coherent intellectual identity.

Discussions to Date

- o Science Core
- o REST Requirement
- o HASS Requirement
- $\circ~$ GIRs & the Major Programs
- Project-based Experiences
- $\circ~$ Role of Engineering in the First Year Program
- Pedagogy
- o Advising/Mentoring
- o Freshman Learning Communities
- Communication Requirement
- o Lab Requirement
- Social Responsibility, Ethics & Academic Honesty
- Double Degrees & Double Majors
- Creativity, Innovation & Leadership

Discussions to Date (2)

- o The Freshman Experience
- o Interdisciplinary Learning
- \circ Diversity
- AP Credit
- \circ Study Abroad
- Cross-School Collaborations
- Classrooms and Classroom Scheduling
- o The Academic Calendar
- The Drop Date
- Faculty and their Commons Responsibility
- o The Phys Ed Requirement

Today's Focus

- o Science Core
- o **REST and Lab Requirements**
- HASS Requirement
- GIRs & the Major Programs
- Project-based Experiences
- o Engineering in the First Year
- Pedagogy
- \circ Advising
- Freshman Learning Communities
- Communication Requirement
- Social Responsibility, Ethics & Academic Honesty
- Double Degrees & Double Majors
- Creativity, Innovation & Leadership

Task Force consensus

- The present structure of the GIRs is basically sound, but the content can be broadened.
- It is not possible to provide all the desirable educational experiences in four years.
- The GIRs should introduce the fundamental modes of analysis that we want our students to acquire.
- The goals of the various components of an MIT education should be made more explicit to students and faculty.

TASK FORCE

What should an MIT graduate know in an ideal world?

 Eundamentals of HASS: 	• Fundamentals of science and math:
	 Physics
	- Chomistry
	o Crieffilistry
o Literature	o Math
o Economics	∘ Biology
o Government	 Computation
 Social structures & organizations 	 Engineering analysis and design
 Foreign language 	 Probability and statistics
 Philosophy 	 Behavior of Complex Systems
 Writing skills 	 Neuroscience
 Speaking skills 	 Geophysics
 Ability to analyze complex texts 	 Differential equations
 Sensitivity to artistic expression 	 Linear algebra
o	 Ecology

∘ STS		
 Ethics 	 Int'l experiences 	
 Diversity 	 Service Learning 	 Departmental Program
 Management 	\circ Leadership	
 Design 		

The Science-Engineering Core:

- Emerging Recommendations I
- <u>Maintain the rigor and basic unified experience</u> of the current Science Core;
- Expand the educational scope of the core to provide a broader and more effective foundation for later learning and signal the importance of various modes of analysis...
- ...but <u>do not increase the number of requirements</u>
- This requires developing a core program that permits some <u>limited choice</u> for individual student needs.

The Science-Engineering Core: Emerging Recommendations II

- <u>Do not allow the core to become too diffuse by</u> <u>including too many subject options</u>
- <u>Increase the excitement/stimulation</u> of the first year through new approaches to learning, especially project-based experiences
- The "Science-Engineering Core"
 - Still under construction (with input from the community)
 - "God is in the details"

TASK FORCE

TASK FORCE

ON THE UNDERGRADUATE EDUCATIONAL COMMONS

Silbey presents ideas to Physics

The Science-Engineering Core:

What are the modes of analysis in science and engineering that we want our students to understand?

- Mathematics
- Physical sciences
- Life sciences
- Chemical sciences
- o Computation
- Engineering

0 ...

The Science-Engineering Core:

- \circ Six core + 2 REST = 8 subjects
- Design challenge: how to organize these 8 subjects into a menu that broadens the present core, taking departmental programs into account;
- Each category would have a (very) small number subjects;
- Provide the possibility of project-based core subjects as an option.
- Strong oversight committee.

Strong Oversight Committee

The Science-Engineering Core: Project-based Experiences

- Emphasize synthesis, design and redesign;
- Provide students the opportunity to contribute to the definition of complex problems and to explore strategies for addressing them;
- Require extended study, reflection and refinement, and multiple modes of inquiry;
- Emphasize synthesis of ideas and techniques, especially the study of real-world problems to motivate the acquisition of disciplinary knowledge;
- Integrate and motivate knowledge from other core subjects.

TASK FORCE

HASS Requirement

- Subject of an intense (and still on-going) review by a Task Force-empanelled subcommittee that includes the HASS Overview Committee (HOC);
- Emerging sense that the HASS requirement should Ο become simpler and less diffuse, and...
- ...should provide a coordinated first-year experience in which
 - Major themes define a more common experience;
 - Communication-intensive characteristics are embedded.

ON THE UNDERGRADUATE EDUCATIONAL COMMONS

HASS Requirement...Beyond the First Year

The Distribution requirement should be simplified;

 Concentrations should be better defined, more transparent, and more demanding.

Next Steps for the Task Force

- d'Arbeloff Grants: Call for proposals has generated enthusiastic response from faculty across MIT
 - Project-based initiatives
 - Pilots for new HASS subjects
 - Subjects in Science and Engineering core
- $\circ~$ Recommendations to the Faculty in Spring.

The Task Force on the Undergraduate Educational Commons

Send your comments to: edcommons-request@mit.edu

