Real Effects of Search Frictions in Consumer Credit Markets

Bronson Argyle BYU Taylor Nadauld BYU Christopher Palmer MIT and NBER

December 2019

Credit-Market Imperfections

- How are credit markets special?
- Key household finance question: what credit-market imperfections prevent optimal consumption?
 - Zeldes (1989), Gross & Souleles (2002) Borrowing constraints
 - o Adams, Einav, Levin (2009) Adverse selection and moral hazard
 - o Scharfstein & Sunderam (2017) Credit market concentration
- This paper: use auto-loan setting to document importance of search frictions in consumer finance

- SCF: Many people report doing "almost no searching" for loan.
- Bhutta et al. (2018): 96% of mortgagors think they got the best rate.
- Adams et al. (2019): UK depositors overestimate shopping time
- Our data: Average borrower 15 min drive from branch
 - o contrast with U.S. average commute time 26 min

- SCF: Many people report doing "almost no searching" for loan.
- Bhutta et al. (2018): 96% of mortgagors think they got the best rate.
- Adams et al. (2019): UK depositors overestimate shopping time
- Our data: Average borrower 15 min drive from branch
 - o contrast with U.S. average commute time 26 min
- Search affects welfare through demand response to markups

- SCF: Many people report doing "almost no searching" for loan.
- Bhutta et al. (2018): 96% of mortgagors think they got the best rate.
- Adams et al. (2019): UK depositors overestimate shopping time
- Our data: Average borrower 15 min drive from branch
 - o contrast with U.S. average commute time 26 min
- Search affects welfare through demand response to markups
- Frictions in credit markets affect durable consumption

- SCF: Many people report doing "almost no searching" for loan.
- Bhutta et al. (2018): 96% of mortgagors think they got the best rate.
- Adams et al. (2019): UK depositors overestimate shopping time
- Our data: Average borrower 15 min drive from branch
 - o contrast with U.S. average commute time 26 min
- Search affects welfare through demand response to markups
- Frictions in credit markets affect durable consumption
- Importance of physical distance surprising in digital world,
- especially salient in an era of declining bank branches.

Search frictions in auto loan markets:

1. Lead to price dispersion / interest-rate markups

Search frictions in auto loan markets:

- 1. Lead to price dispersion / interest-rate markups
- 2. Explain borrowers' propensity to shop around for a loan

Search frictions in auto loan markets:

- 1. Lead to price dispersion / interest-rate markups
- 2. Explain borrowers' propensity to shop around for a loan
- 3. Limit both extensive and intensive margin of borrowing

Search frictions in auto loan markets:

- 1. Lead to price dispersion / interest-rate markups
- 2. Explain borrowers' propensity to shop around for a loan
- 3. Limit both extensive and intensive margin of borrowing
- **4.** Distort intensive margin of consumption ⇒ DWL

Welfare Consequences of Search Frictions

- Usual sequential search model: inelastic unit demand for a homogenous final good
- Firm *j* charges

$$p_j = MC + markup_j$$

- Given search cost distribution, markup distribution adjusts
- For each consumer having drawn price p

$$E(p_i) - p \le k$$

- In equilibrium, buyers stay with first seller
- Costly search consequence: transfer from buyer to seller

Reality: Elastic Demand, Complements

Reality: DWL has two components.

- 1 If demand is elastic, $Q^{search} < Q^*$
 - → Could result in fewer and/or smaller transactions
- 2 For complements/intermediate goods, distorts final good consumption

$$Q_2(p_1^{search},p_2) < Q_2(p_1^*,p_2)$$

→ Credit market specialness

Reality: Elastic Demand, Complements

Reality: DWL has two components.

- 1 If demand is elastic, $Q^{search} < Q^*$
 - → Could result in fewer and/or smaller transactions
- 2 For complements/intermediate goods, distorts final good consumption

$$Q_2(p_1^{search},p_2) < Q_2(p_1^*,p_2)$$

→ Credit market specialness

search frictions \Rightarrow credit markups \Rightarrow smaller loans \Rightarrow older, cheaper cars

Outline

- Auto loans setting and data
- 2 Search model with elastic demand
- **3** Measuring interest rate dispersion
- Oiscontinuous pricing policies
- Direct evidence on search costs and search behavior
- 6 Consequences of search frictions on loans and consumption

Auto loans are ubiquitous, important

- \$1.3 trillion outstanding (NY Fed, 2019)
- 3rd largest consumer debt category, more than credit cards
- 114m outstanding loans ≈ 0.9 per U.S. household
- 85% of car purchases are financed (Consumer Reports, 2013)
- Vehicles 50%+ of low-wealth HHs total assets (Campbell, 2006)

Data Source

- Data from a private software services company
- 2.4 million auto loans from 326 lending institutions in 50 states
- Majority originated by credit unions
- 70% of sample was originated between 2012 and 2015
- 1.3 million loan applications originating from 41 institutions
- Exclude indirect loans and refinances
- Representativeness

Variables

- Ex-ante borrower variables: FICO, DTI, gender, age, ethnicity
- Ex-ante loan variables: Interest rate, LTV, channel
- Collateral variables: make, model, year, purchase price
- Ex-post loan performance: delinquency, charge-off, $\Delta FICO$

Outline

- Auto loans setting and data
- 2 Search model with elastic demand
- 3 Measuring interest rate dispersion
- 4 Discontinuous pricing policies
- Direct evidence on search costs and search behavior
- 6 Consequences of search frictions on loans and consumption

Equilibrium Price Dispersion

- Price dispersion: same good sold for different prices
- Null hypothesis: Law of One Price holds
- Classic explanation: information/search frictions
- Theory: P.D. sustainable when some consumers only know one price
 - I. Stigler (1961), Diamond (1971), Rothschild (1973), Reinganum (1979)
 - II. Salop and Stiglitz (1982), Burdett and Judd (1983), Stahl (1989)
- Empirical challenge: ruling out product heterogeneity

Extensive empirical literature on price dispersion and search

- Prescription drugs: Sorensen (2000)
- Mortgages: Woodward & Hall (2012), Alexandrov & Koulayev (2017)
- Credit cards: Stango and Zinman (2016)
- Mutual funds: Hortacsu and Syverson (2004)
- Cars: Goldberg and Verboven (2001)
- Online shopping: De Los Santos, Hortacsu, Wildenbeest (2012), Ellison & Ellison (2009)
- Airfares, houses, auto insurance, electronics, books, fish...
- → Open Questions:
 - All of these assume inelastic demand! How this matter?
 - How are search frictions in *credit* markets special?
 - Are the welfare consequences of credit-market search frictions?

Search Model with Elastic Demand

- Adapt Reinganum (1979) to credit market with elastic demand for loans and durables
- Demonstrate equilibrium price dispersion
- Characterize DWL (obscured by models with inelastic demand)
- Develop several comparative statics and testable predictions
- Results apply more broadly to the demand for any two complements.

Borrowers

Continuum of borrowers ex-ante identical with quasi-linear indirect utility

$$U(r, p, W) = V(r, p) + W$$

 $V(\cdot,\cdot)$ indirect utility of facing prices r and p for loans and durables

- Assume that demand for loans and durables downward sloping
 - $\Rightarrow V(\cdot, \cdot)$ is strictly decreasing in both its arguments.
- Do not implicitly assume cross-price elasticities to be zero!
 - o e.g., car loans and car services are strong complements.

Borrower Search

- Borrowers believe $r \sim F$ on $[\underline{r}, \overline{r}]$ but don't know price locations
- Pay search cost *k* for each interest-rate quote
- When current quote is r', expected utility gain from search is

$$\int_{r}^{r'} [V(r,p) - V(r',p)] dF(r) - k$$

- Optimal search: reservation price m(k) (De Groot, 1970; Lippman and McCall, 1976)
- Impt to use $V(\cdot,\cdot)$ instead of just markups r
 - Incorporates elastic demand + complements
 - Markups lead to smaller loans and less durable consumption

Lenders

- Lenders $j \in J$ have marginal costs $c_i \sim G$ on $[\underline{c}, \overline{c}]$ to lend \$1
- Lenders are perfectly informed of k and $F(\cdot)$
- Choose an interest rate r_i to max expected profits

$$E\pi_j = \begin{cases} (r_j - c_j)q(r_j, p)E(N_j) & \text{for } r_j \leq m(k) \\ 0 & \text{for } r_j > m(k) \end{cases}$$

• N_j is the number of borrowers that each take out $q(r_j)$

Equilibrium

- Pure-strategy Nash Equilibrium with price dispersion
- Given demand elasticity η_r , lender FOC satisfied when

$$r_j = \frac{c_j \eta_r}{\eta_r + 1}$$

Borrower indifference over further search

$$\int_{r}^{m(k)} [V(r,p) - V(m(k),p)] dF_{m(k)}(r) = k$$

 \Rightarrow m(k) depends also in how interest rates paid affect the utility received from the corresponding loan sizes and durable consumption through $V(\cdot, \cdot)$.

$$F_{m(k)}(r) = \begin{cases} G[r(1+\eta_r)/\eta_r] & \text{for } \underline{r} \le r < m(k) \\ 1 & \text{for } r = m(k) \end{cases}$$

• For given k, $\{m(k), F_{m(k)}(\cdot)\}$ constitute an equilibrium

Welfare

Deadweight loss has three components:

- \bullet Lenders monopoly power \Rightarrow lenders other than the lowest-cost lender survive
- 2 Each lender marks up cost c_i to charge monopoly prices
- 3 Elastic demand \Rightarrow borrower demand less loans + goods

$$DWL = \int_{\underline{c}}^{\overline{c}} \int_{q(r^*(c),p)}^{q(\underline{c},p)} (r(q) - \underline{c}) \, dq dG(c) + \int_{\underline{c}}^{\overline{c}} \int_{0}^{q(r^*(c),p)} (c - \underline{c}) \, dq dG(c)$$

- r(q) is inverse demand
- $q^m(c,p)$ is the quantity lent by a monopolistic lender with constant marginal cost c
- $q^*(\underline{c}, p)$ is the perfect-competition q n.b., under inelastic demand, $q^m = q^* \Rightarrow DWL = 0!$

Model Implications and Testable Predictions

- 1 Price dispersion and loan markups increasing in search costs
- 2 Loan sizes decreasing in search costs
- 3 Durables consumption decreasing in search costs
- 4 Welfare loss increasing in search costs and the elasticity of demand
- 6 Market shares invariant to markups when search costs are high

Outline

- 1 Auto loans setting and data
- 2 Search model with elastic demand
- **3** Measuring interest rate dispersion
- 4 Discontinuous pricing policies
- Direct evidence on search costs and search behavior
- 6 Consequences of search frictions on loans and consumption

Detecting Price Dispersion

- We put each borrower i into a cell ℓ matched by
 - Origination time (two-quarter window)
 - Loan maturity (in years)
 - FICO Score (5-point bins)
 - o Car value (in \$1,000 bins)
 - Debt-To-Income (10-point bins)
 - Commuting Zone
- Calculate the Difference from Lowest Available Rate

$$DLAR_{i\ell} \equiv r_i - \min_{j \in \ell} r_j$$

Detecting Price Dispersion

- We put each borrower i into a cell ℓ matched by
 - Origination time (two-quarter window)
 - Loan maturity (in years)
 - FICO Score (5-point bins)
 - o Car value (in \$1,000 bins)
 - Debt-To-Income (10-point bins)
 - Commuting Zone
- Calculate the Difference from Lowest Available Rate

$$DLAR_{i\ell} \equiv r_i - \min_{j \in \ell} r_j$$

• Lower bound given data coverage (but multiple providers still big leap over existing lit)

Estimated Price Dispersion

- Mean: 234 bp, Median: 125 bp, 46% of borrowers get best rate
- Average markup 27 bp higher in high search-cost markets

Potential Reasons for Observed Price Dispersion

- Costly price discovery
- 2 Measurement Error
- 3 Unobserved heterogeneity

Potential Reasons for Observed Price Dispersion

- Costly price discovery
- Measurement Error
- 3 Unobserved heterogeneity
- Strategy: test for #1 in a setting where we can rule out #2 and #3
- Exploit quasi-experimental variation in benefits to search
- Measure search behavior and link to measures of search costs
- Estimate consequences of costly search by comparing people with high return to search in high vs. low search cost areas

Outline

- 1 Auto loans setting and data
- 2 Search model with elastic demand
- **3** Measuring interest rate dispersion
- Oiscontinuous pricing policies
- Direct evidence on search costs and search behavior
- 6 Consequences of search frictions on loans and consumption

Example Credit Union with three discontinuities

Detecting Discontinuities

 Regress loan interest rates onto a series of dummies representing 5-point FICO bins, for a given institution c:

$$r_{il} = \alpha + \sum_{b} \delta_{bl} 1(FICO_i \in Bin_b) + \varepsilon_{il}$$

- Define a discontinuity as a FICO score cutoff with
 - o a 50 bps difference in adjacent coefficients (economically significant)
 - o p-value of difference less than .001 (statistically significant)
 - \circ p-values between the leading and following bins > 1 (not just noise)

Example Credit Union with five discontinuities

Wide heterogeneity across institutions in policies

Empirical Strategy

- ullet Regression Discontinuity around detected lending thresholds ${\cal D}$
- ullet Form discontinuity sample using loans ± 19 FICO-point window around the threshold
- Normalize FICO scores to each cutoff and estimate

$$r_{iglt} = \sum_{d \in \mathcal{D}} 1(\textit{FICO}_{il} \in \mathcal{D}_d) \left(\delta \cdot 1(\widetilde{\textit{FICO}}_{id} \geq 0) + f(\widetilde{\textit{FICO}}_{id}; \pi) + \psi_{dl} \right) + \alpha_g + \delta_t + \varepsilon_{iglt}$$

Empirical Strategy

- ullet Regression Discontinuity around detected lending thresholds ${\cal D}$
- ullet Form discontinuity sample using loans ± 19 FICO-point window around the threshold
- Normalize FICO scores to each cutoff and estimate

$$r_{iglt} = \sum_{d \in \mathcal{D}} 1(\textit{FICO}_{il} \in \mathcal{D}_d) \left(\delta \cdot 1(\widetilde{\textit{FICO}}_{id} \geq 0) + f(\widetilde{\textit{FICO}}_{id}; \pi) + \psi_{dl} \right) + \alpha_g + \delta_t + \varepsilon_{iglt}$$

Quadratic RD function of running variable

$$f(\widetilde{FICO}; \pi) = \pi_1 \widetilde{FICO} + \pi_2 \widetilde{FICO}^2 + 1(\widetilde{FICO} \ge 0) \left(\pi_3 \widetilde{FICO} + \pi_4 \widetilde{FICO}^2\right)$$

- Uniform kernel: $1(FICO_{il} \in \mathcal{D}_d)$ indicates loan i within 20 points of discontinuity d at lender l
- ullet Discontinuity imes lender, Commuting Zone, and quarter fixed effects

First stage for FICO = 600 cutoff

First stage for FICO = 640 cutoff

First stage for FICO = 700 cutoff

First stage: 130 bp difference in *r*

	(1)	(2)
	Loan Rate	Loan Term
Discontinuity	-0.0127***	0.822***
Coefficient	(0.004)	(0.187)
Discontinuity × Lender FEs	\checkmark	\checkmark
Lender FEs	\checkmark	\checkmark
Quarter FE	\checkmark	\checkmark
N	514,834	514,834
R^2	0.169	0.083

- -127 bp on average car loan is ΔPMT of \$13 and ΔPV of 440
- ► Heterogeneity by FICO

Discontinuities provide variation in benefits of searching

Placebo test: no difference w/o discontinuity

LHS borrowers face high returns to search across lenders

Is there selection around interest-rate discontinuities?

- Are LHS and RHS borrowers different along any observable dimension?
 - o e.g., (un)awareness of pricing policies correlated with quality
- Rule out selection via smoothness of observables at discontinuity:
 - ✓ Application loan size
 - √ Application Debt-to-Income
 - √ Borrower age
 - √ Borrower gender
 - √ Borrower ethnicity

Balance checks: Application Debt-to-Income Ratio

Balance checks: Application Loan Amount

Balance checks: Applicant Age

Balance checks: Applicant Ethnicity

Balance checks: Applicant Gender

No bunching in running variable: Application Counts

Ex-ante Smoothness

	(1)	(2)	(3)
	Application	Application	Number of Loan
	Loan Amount	Debt-to-Income	Applications
Discontinuity	128.43	-0.084	-270.18
Coefficient	(187.75)	(0.447)	(760.48)
Discon. × Lender FE	\checkmark	✓	\checkmark
Institution FE	\checkmark	\checkmark	\checkmark
Quarter FE	\checkmark	\checkmark	\checkmark
N	117,985	91,923	39
R^2	0.058	0.009	0.466

Outline

- 1 Auto loans setting and data
- 2 Search model with elastic demand
- **3** Measuring interest rate dispersion
- 4 Discontinuous pricing policies
- 6 Direct evidence on search costs and search behavior
- 6 Consequences of search frictions on loans and consumption

Why don't borrowers on LHS find better available rates?

- Dimensions of search costs
 - Temporal specificity (given car/price may expire)
 - Cost of attention to stressful/overwhelming financial paperwork
 - Concerned with impact of FICO pulls (Liberman et al., 2017)
 - Beliefs about price dispersion or time to search
- Our focus: physical search plays important role
 - Average commute: 26 min, average borrower: 15 min drive to lender
- Why would physical distance matter?
 - Paperwork, brand awareness, individual-level pricing, tight timing
 - Can matter in lending (Degryse and Ongena, 2005 and Nguyen, 2016)

Bringing costly search to the data

To ask whether costly search inhibits price discovery, we need

1 A measure of borrower search

2 Variation in search costs

Bringing costly search to the data

To ask whether costly search inhibits price discovery, we need

- 1 A measure of borrower search
 - Total number of applications per borrower
 - Accepting/Rejecting approved loans from application data
 - Takeup $\equiv 1$ (Offered loan is accepted)
- 2 Variation in search costs

Bringing costly search to the data

To ask whether costly search inhibits price discovery, we need

- 1 A measure of borrower search
 - Total number of applications per borrower
 - Accepting/Rejecting approved loans from application data
 - \circ Takeup $\equiv 1$ (Offered loan is accepted)
- 2 Variation in search costs
 - Geocode FDIC+NCUA branch data to calculate driving times
 - For each borrower: # of institutions within a 20-minute drive
 - \circ High search costs $\equiv 1 (\leq 10 \text{ lenders within } 20 \text{ minute drive})$

Direct measure of search varies with search costs

	High Search	Low Search	Difference
	Costs	Costs	
	(1)	(2)	(1) - (2)
Mean	1.342	1.409	-0.067***
S.D.	(0.009)	(0.004)	(0.011)
N	6,042	44,655	

- Data coverage makes this a lower bound
- * n.b., in Stahl equilibrium, all shoppers buy from first seller they query.

Indirect measure of search varies with search costs

$$\textit{takeup}_{\textit{iglt}} = \sum_{\textit{d} \in \mathcal{D}} 1(\textit{FICO}_{\textit{id}} \in \mathcal{D}_{\textit{d}}) \left(\delta \cdot 1(\widetilde{\textit{FICO}}_{\textit{id}} \geq 0) + f(\widetilde{\textit{FICO}}_{\textit{id}}; \pi) + \psi_{\textit{dl}} \right) + \alpha_{\textit{g}} + \delta_{\textit{t}} + \varepsilon_{\textit{iglt}}$$

- Estimate for high/low search cost areas
- Investigate if markups more consequential in low search-cost areas
- Verify markups comparable across high/low search-cost areas
- Check robustness to possible endogeneity of search-cost measure

Indirect measure of search varies with search costs

Search Costs	Full	High	Low	Difference
	(1)	(2)	(3)	(2) - (3)
	Depende	ent Variable =	= 1(Loan Offe	er Accepted)
Discontinuity	0.121***	0.020***	0.137***	-0.116***
Coefficient	(0.015)	(0.005)	(0.016)	(0.006)
Discon. × Lender FE	✓	\checkmark	✓	
Quarter FE	\checkmark	\checkmark	\checkmark	
Commuting Zone FE	\checkmark	\checkmark	\checkmark	
N	30,743	4,436	26,307	
R^2	0.27	0.45	0.25	

Indirect measure of search varies with search costs

Search Costs	Full	High	Low	Difference
	(1)	(2)	(3)	(2) - (3)
	Depende	ent Variable =	= 1(Loan Offe	er Accepted)
Discontinuity	0.121***	0.020***	0.137***	-0.116***
Coefficient	(0.015)	(0.005)	(0.016)	(0.006)
Discon. \times Lender FE	\checkmark	\checkmark	\checkmark	
Quarter FE	\checkmark	\checkmark	\checkmark	
Commuting Zone FE	\checkmark	\checkmark	\checkmark	
N	30,743	4,436	26,307	
R^2	0.27	0.45	0.25	

- ightarrow Low–search-cost borrowers relatively less likely to accept markups
- Robust to varying definition of high search cost area Results

Outline

- Auto loans setting and data
- 2 Search model with elastic demand
- 3 Measuring interest rate dispersion
- Oiscontinuous pricing policies
- Direct evidence on search costs and search behavior
- **6** Consequences of search frictions on loans and consumption

Selection into take-up?

- Want to show real effects of costly search given take-up
- But accepting a dominated loan offer is an endogenous choice...
- Check for selection: Do LHS borrowers have worse ex-post outcomes?
 - √ # days delinquent
 - ✓ default (90+ days past due)
 - √ charge-off (was loan written off by lender)
 - \checkmark \triangle FICO score since origination

Validating conditional on take-up results

	(1)	(2)	(3)	(4)
	Days Delinq.	Charge-off	Default	Δ FICO
Discontinuity	4.185	0.004	0.002	0.001
Coefficient	(3.101)	(0.003)	(0.003)	(0.003)
Discon. × Lender FE	\checkmark	\checkmark	✓	✓
Commuting Zone FE	\checkmark	\checkmark	\checkmark	\checkmark
Quarter FE	\checkmark	\checkmark	\checkmark	\checkmark
N	331,590	514,834	514,834	405,236
R^2	0.162	0.073	0.091	0.015

Real Effects: Loan Choice Impacts Real Consumption

	(1)	(2)	(3)	(4)
	Price	Loan Amount	LTV	Payment
Discontinuity	376.58**	566.21***	0.0130**	0.17
Coefficient	(175.72)	(167.93)	(0.005)	(1.02)
Discon. × Lender FE	✓	✓	✓	\checkmark
Commuting Zone FE	\checkmark	\checkmark	\checkmark	\checkmark
Quarter FE	\checkmark	\checkmark	\checkmark	\checkmark
N	514,834	514,834	514,834	514,834
R^2	0.052	0.059	0.029	0.056

Second stage plot: Purchase prices

Fyidence on Substitution Patterns Mileage

	(1)	(2)	(3)
	Car Value	Car Value	Car Age
Discontinuity	344.69***	79.71	-1.76***
Coefficient	(123.78)	(49.25)	(0.043)
Discon. × Lender FE	✓	\checkmark	✓
Commuting Zone FE	\checkmark	\checkmark	\checkmark
Quarter FE	\checkmark	\checkmark	\checkmark
Make-Model FE	\checkmark		\checkmark
Year-Make-Model FE		\checkmark	
N	468,800	468,800	468,800
R^2	0.353	0.767	0.352

• Costly search \Rightarrow market power \Rightarrow each lender faces downward sloping demand \Rightarrow consumption response to price dispersion \Rightarrow DWL: fewer and lower quality goods

Addressing endogeneity of search-cost measure

- Number of proximate financial institutions possibly correlated with
 - 1 time-varying differences (local economic shocks, etc.) and/or
 - 2 time-invariant differences (financial sophistication, etc.)

Addressing endogeneity of search-cost measure

- Number of proximate financial institutions possibly correlated with
 - 1 time-varying differences (local economic shocks, etc.) and/or
 - 2 time-invariant differences (financial sophistication, etc.)
- Address (1) with Bartik instrument using 1990 branch network
- Address (2) with
 - (a) zip8 FEs and
 - (b) diff-in-diffs around branch closings Results

Ruling out alternative explanations

- Selection into takeup
- 2 Exclusivity of credit unions
- Measurement error in interest rates
- Oigital search
- Risk-based pricing on other dimensions
- 6 Lender price discrimination
- **7** Steering by car dealers to lenders

- Auto loans market full of price dispersion, search frictions
- Used rich data to isolate exogenous variation in the benefits of search
- Provided direct evidence that search costs influence search behavior

- Auto loans market full of price dispersion, search frictions
- Used rich data to isolate exogenous variation in the benefits of search
- Provided direct evidence that search costs influence search behavior
- Transmission of interest rates to durables inhibited by search frictions

- Auto loans market full of price dispersion, search frictions
- Used rich data to isolate exogenous variation in the benefits of search
- Provided direct evidence that search costs influence search behavior
- Transmission of interest rates to durables inhibited by search frictions
- Search costs ⇒ finance less, buy older, \$400 less car

- Auto loans market full of price dispersion, search frictions
- Used rich data to isolate exogenous variation in the benefits of search
- Provided direct evidence that search costs influence search behavior
- Transmission of interest rates to durables inhibited by search frictions
- Search costs ⇒ finance less, buy older, \$400 less car
- ullet In the real world, elastic demand + costly search \Rightarrow DWL
- Costly-search fueled markups affect consumer welfare through both extensive and intensive margins

search frictions \Rightarrow credit markups \Rightarrow smaller loans \Rightarrow lower consumption

Representativeness

- Top 5 states by number of loans:
 - Washington (770,334 loans)
 - o California (476,791 loans)
 - Texas (420,090 loans)
 - Florida (314,718 loans)
 - Utah (292,523 loans)
- Our data are less diverse (73% estimated to be white vs. 64.5% in census data).
- Median FICO at origination is 711 (vs. 695 for US borrowers)
- ► Back

Aside: why would lenders price this way?

- Hard coded from pre-Big Data era (Hutto & Lederman, 2003)
- Persistence of rate-sheet pricing
- Particular processing cost structure (Bubb & Kauffman 2014; Livshitz et al. 2016)
- Worry about overfitting (Al-Najjar and Pai 2014; Rajan et al. 2015)
- * n.b., costly search makes it hard to gain market share by undercutting

Example rate sheet

Consumer Loan Rate Sheet Effective March 1, 2017

New Auto Loans: Model Years 2015 and Newer													
Repayment Period	Minimum Loan Amount	oan 740 .		Credit Score 739 to 700		Credit Score 699 to 660		Credit Score 659 to 610		Credit Score 609 to 560		Credit Score 559 or below	
		APR^	DPR	APR^	DPR	APR^	DPR	APR^	DPR	APR^	DPR	APR^	DPR
Up to 36 Months ¹	\$500	2.24%	0.0061%	2.74%	0.0075%	3.99%	0.0075%	8.24%	0.0226%	13.49%	0.0370%	14.49%	0.0397%
37 - 60 Months	\$5,000	2.74%	0.0075%	3.24%	0.0089%	4.49%	0.0116%	8.74%	0.0239%	13.99%	0.0383%	14.99%	0.0411%
61 - 66 Months	\$6,000	2.99%	0.0082%	3.49%	0.0096%	4.74%	0.0116%	8.99%	0.0246%	14.24%	0.0390%	15.24%	0.0418%
67 - 75 Months	\$10,000	3.24%	0.0089%	3.74%	0.0102%	4.99%	0.0130%	9.24%	0.0253%	14.49%	0.0397%	15.49%	0.0424%
76 - 84 Months ²	\$15,000	3.49%	0.0096%	3.99%	0.0109%	5.24%	0.0158%	9.49%	0.0260%	N/A		N/A	

2015 and newer hybrid vehicles qualify for an additional 0.25% rate reduction.

We may finance up to 100% Retail NADA or KBB unless the vehicle has over 100,000 miles in which case we may lend up to 100% of NADA or KBB for Tier 1 borrowers and up to 80% of NADA or KBB for Tier 2-6 borrowers. Maximum term for vehicles with over 100,000 miles is 66 months.

Pricing Discontinuities Largest for low FICOs

Older cars generally have higher mileage •Back

Robustness to varying definition of high search cost

Time-varying endogeneity of search costs

- Easy to think of time-varying joint endogeneity between takeup and search costs, e.g. endogenous branch closings
- Abstract away from time-varying endogeneity of search costs with shift-shares instrument for number of proximate financial institutions
- Use NETS, FDIC, and NCUA data

$$\#PFIs_{ct}^{Bartik} = \#PFIs_{c,1990} imes \frac{\#PFIs_{-c,t}}{\#PFIs_{-c,1990}}$$

• Define High Search Costs if $\#PFls_{ct}^{Bartik} \leq 10$

Results with Bartik Instrument

$$\textit{takeup}_{\textit{ict}} = \eta_{\textit{cz(i)}} + \delta_t + \gamma \cdot \widetilde{\textit{FICO}}_{\textit{ict}} + \delta \cdot 1 \big(\widetilde{\textit{FICO}}_{\textit{ict}} \geq 0 \big) + \beta \cdot \widetilde{\textit{FICO}}_{\textit{ict}} \cdot 1 \big(\widetilde{\textit{FICO}}_{\textit{ict}} \geq 0 \big) + \varepsilon_{\textit{ict}}$$

$ ag{Takeup}_{ict} = 1 ext{(Loan Offer Accepted)}$					
Bartik Search Costs	High	Low	Diff		
	(1)	(2)	(1)- (2)		
Discontinuity Coefficient	0.050	0.135***	-0.085***		
	(0.045)	(0.037)	(0.006)		
Discontinuity×Lender FE	\checkmark	\checkmark			
$CZ{ imes}Quarter\ FE$	\checkmark	\checkmark			
N	5,591	25,152			

Time-invariant endogeneity

- Remaining problem is whether branch proximity is correlated with other things that determine effect of discontinuity
- Time-invariant characteristics may determine branch network and takeup, e.g., financial sophistication
- Usual problem with Bartik instruments: possibility of endogenous initial conditions
- Looking within CZ may not be enough—CZs large

Addressing time-invariant endogeneity

- Two solutions given Bartik robustness:
- 1. Zip8 fixed effects in RD, identify off how RD differs for places that changed their

$$\textit{takeup}_{\textit{igt}} = \eta_{\textit{g}} + \delta_{t} + \gamma \cdot \widetilde{\textit{FICO}}_{\textit{ict}} + \delta \cdot 1 (\widetilde{\textit{FICO}}_{\textit{ict}} \geq 0) + \beta \cdot \widetilde{\textit{FICO}}_{\textit{ict}} \cdot 1 (\widetilde{\textit{FICO}}_{\textit{ict}} \geq 0) + \varepsilon_{\textit{ict}}$$

Addressing time-invariant endogeneity

- Two solutions given Bartik robustness:
- 1. Zip8 fixed effects in RD, identify off how RD differs for places that changed their

$$\textit{takeup}_{\textit{igt}} = \eta_{\textit{g}} + \delta_{t} + \gamma \cdot \widetilde{\textit{FICO}}_{\textit{ict}} + \delta \cdot 1 (\widetilde{\textit{FICO}}_{\textit{ict}} \geq 0) + \beta \cdot \widetilde{\textit{FICO}}_{\textit{ict}} \cdot 1 (\widetilde{\textit{FICO}}_{\textit{ict}} \geq 0) + \varepsilon_{\textit{ict}}$$

2. Difference-in-differences design that focuses on *changes* to search cost status

$$takeup_{igt} = \eta_g + \delta_t + \gamma High Search Cost_{gt} + \beta FICO_{igt} + \varepsilon_{igt}$$

$$\Delta \textit{takeup}_{\textit{gt}} = \eta_{\textit{cz}(\textit{g})} + \delta_{\textit{t},\Delta\textit{t}} + \gamma \Delta \textit{High Search Cost}_{\textit{gt}} + \beta \Delta \textit{FICO}_{\textit{gt}} + \varepsilon_{\textit{gt}}$$

Zip8 FEs in RD Design

$$takeup_{igt} = \eta_g + \delta_t + \gamma \cdot \widetilde{FICO}_{ict} + \delta \cdot 1(\widetilde{FICO}_{ict} \geq 0) + \beta \cdot \widetilde{FICO}_{ict} \cdot 1(\widetilde{FICO}_{ict} \geq 0) + \varepsilon_{ict}$$

Search Costs Sample	High	Low	Difference
Discontinuity Coefficient	0.066	0.190***	-0.125
	(0.057)	(0.035)	(0.009)
8-digit Zip-code FE	\checkmark	\checkmark	
Quarter FE	\checkmark	\checkmark	
Number of Observations	4,436	26,307	

Takeup difference-in-differences

$$takeup_{igt} = \eta_g + \delta_t + \gamma \textit{High Search Cost}_{gt} + \beta \textit{FICO}_{igt} + \varepsilon_{igt}$$

$$\Delta takeup_{gt} = \eta_{cz(g)} + \delta_{t,\Delta t} + \gamma \Delta \textit{High Search Cost}_{gt} + \beta \Delta \textit{FICO}_{gt} + \varepsilon_{gt}$$

	Levels	Differences
High Search Cost Area	0.11**	0.03*
	(0.04)	(0.017)
FICO	-0.00004	-0.0002***
	(0.0003)	(0.00003)
Geographic Fixed Effects	Zip9	CZ
Time Fixed Effects	Quarter	Quarter Pair
Number of Observations	608	29,321
R-squared	0.60	0.05

Robust standard errors clustered by quarter

^{ightarrow} Borrowers in areas that became high search cost more likely to accept

Are search costs just a catch all for imperfect competition?

ω.		Competition				
Costs		LOW	HIGH			
Search Co	LOW	0.12	0.11			
	LOVV	[3.49]	[3.38]			
	HIGH	-0.03	-0.02			
	пібп	[-0.24]	[-0.23]			