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Transient relaxation of a charged polymer chain subject to an external field
in a random tube

S. F. Burlatskya) and John M. Deutchb)

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

~Received 12 August 1997; accepted 4 May 1998!

Transient relaxation of a charged polymer chain in a random media is studied theoretically. We
consider a chain in a random tube and present scaling results for relaxation times, for displacement
of the chain segments inside the tube, and for the dynamics of leaking from the tube ends. ©1998
American Institute of Physics.@S0021-9606~98!51230-5#
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I. INTRODUCTION

There has been considerable progress during the
several years in the analytical description of diffusion in ra
dom media. One of the most striking results was obtained
Sinai1 for the dynamics of a particle on a discrete on
dimensional infinite lattice with random uncorrelated ho
ping probabilities at each site. Sinai has proven rigorou
that the mean-square displacement,L, in such a system is

L}~ ln t !4, ~1!

where t is the time. Sinai’s work has stimulated interest
the relevance of this slowing down to a variety of diffusio
phenomena. For instance, it was shown that Sinai-type
fusion is relevant to 1/f -noise,2 slow spin dynamics in
random-field magnets and dynamics of dislocations in do
crystals.3 Another example of Sinai diffusion is provided b
a charged particle diffusing on a linear random structu
e.g., polymer chain or random pore, in presence of an
form electric field.4,5 In this paper, we show that relaxatio
of charged polymer in a tube randomly oriented in a cons
external field corresponds to the Sinai type mode
relaxation of a polymer chain in a 1D~one-dimensional! ran-
dom potential.

The motion of charged polymer chains in an exter
electric field has been extensively studied experimentally
theoretically, see recent reviews,6–16 and references therein
When this motion takes place in a random medium
physical situation corresponds to gel electrophoresis—an
portant experimental tool for separating charged polym
especially DNA.17 Pulsed field electrophoresis18 improves
the separation of large DNA molecules in a gel matrix o
polymer solution.19 In this technique, an electric field that
applied alternately in two or more different directions a
separation is achieved because the relaxation time require
reorient chains depends on their lengths.19,20–22

Current understanding of gel electrophoresis is subs
tially based on the reptation model introduced by
Gennes,23 and extended by Doi and Edwards.24–26 The rep-

a!On leave of absence from Institute of Chemical Physics, Russian Acad
of Science.

b!E-mail: jmd@mit.edu
2570021-9606/98/109(6)/2572/7/$15.00

Downloaded 23 Jan 2004 to 18.51.1.222. Redistribution subject to AIP
ast
-
y

-
-
ly

if-

d

,
i-

nt

l
d

e
-

s,

to

n-

tation or tube model was first applied to electrophoresis
Lerman and Frisch,27 and more extensively in Refs. 28 an
29, and later expanded in Refs. 30–35.

Pulsed field electrophoresis of a point particle confin
in a random tube has been theoretically studied36 as has the
steady electrophoretic mobility of charged particles~mono-
mers or short chains! subject to a constant field in a mediu
with random curved interconnected channels.37 Zimm intro-
duced the Lakes–Straits model;38 in this model, segments o
a large polymer chain in a random media accumulate in la
connected by random straits and the chain leaks from
lakes at higher energy for the segment, through straits
lakes at lower energy. The theory of gel electrophoresis
the large field transient regime where polymer chains esc
from their tubes by formation of hernias~loops! was recently
developed in Ref. 39 and the steady-state mobility for a si
lar type of motion was studied in Refs. 40 and 41. The b
rier to loop formation in a porous matrix was theoretica
and experimentally studied in Ref. 42.

In this paper we consider the motion of the charg
polymer in a random media subject to a moderate exte
field

E!
kBT

qa
, ~2!

neglecting loop formation. HereE is the strength of the ex
ternal electric field anda is the diameter of a random por
determined by the matrix. The opposite limit was conside
in Refs. 40 and 41. We disregard the solid friction effe
which may significantly change the relaxation of lon
chains.43–47 In the present model, the polymer is confined
a random pore or tube. We assume each tube is sufficie
large to accommodate at any point along its length com
cated conformations of the polymer chain and there is o
one polymer chain per tube.

We consider two types of initial distributions of th
chain which correspond, respectively, to two models. In
first model (modelA), the random media is represented by
array of channels48 which are not interconnected.36,48,49The
configuration of the tube which confines the polymer chain
determined by channels in a random porous matrix so ‘‘
chain could only move backward and forward in one, u
changing tube.’’48 Within this model we consider a phantom

y

2 © 1998 American Institute of Physics
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chain and disregard excluded volume effects. In the sec
model (modelB), we adopt a more common picture for th
motion of a polymer chain in a gel: The chain creates its o
channel in an array of obstacles, renewing its own tube a
moves.

We examine the internal relaxation of the polymer co
fined in a random tube for both models, A and B, in the lim
of a long chain, and analytically estimate the relaxation tim
and corresponding scaling displacement on time depen
cies which are governed by the segments exchange betw
local minima of the chain energy prescribed by the tube c
figuration~between ‘‘lakes’’ in the terms of Ref. 38!. In Sec.
II we present the general equations governing the motion
the charged polymer in presence of an external field. In S
III we show how the relaxation scenario for the infini
length chain in a random tube can be mapped onto the re
ation of a chain in a one-dimensional Sinai—type rand
potential. In Sec. IV we calculate the characteristic inter
relaxation time for a polymer which is stretched into ropeli
fragments between the potential minima~inside ‘‘straits’’ in
the terms of Ref. 38! and in Sec. V we calculate the chara
teristic internal relaxation time for a polymer whose se
ments are joined by purely elastic forces. The leaking of
polymer out of the tube end is considered in Sec. VI.

II. GENERAL EQUATIONS

The motion of a charged polymer chain in a random tu
in the presence of a constant external field can be descr
by the following equation:

b
]r ~n,t !

]t
5F~n,n11!1F~n,n21!

1qE cos@u~r !#1 f r~n,t !, ~3!

wherer (n,t) is the position ofnth segment at timet along
tube axis, b is the friction coefficient of the segmen
F(n,n11) is the intermolecular force which the segme
(n11) acts on the segmentn, u(r ) is the angle between th
local tube axis and the field direction, andf r(n,t) is the
random Langevin force~arising from thermal motion! acting
on segmentn. The displacement along the tube is propo
tional to the squared displacement in real space coordin
^r 2/3&5^x2&5^y2&5^z2&5a2N, since the tube configura
tion in space can be described by a random walk with s
lengtha, and number of stepsN.

For relaxation of sufficiently large chain fragments t
chain motion is determined by the external electric field a
the random thermal forcef r(n,t) can be neglected~the quan-
titative criteria is presented below!, and Eq.~3! becomes

b
]r ~n,t !

]t
5F~n!1F~n21!1qE cos@u~r !#, ~4!

where we have defined the chain tensionF(n)[
F(n,n11), and used the fact thatF(n,n11)52F(n
11,n).

The external forceqE cos@u(r)#, which acts on thenth
segment located at pointr inside the tube, does not explicitl
depend onn and time. This external force depends only
the angle between the external fieldE and the tube axes in
Downloaded 23 Jan 2004 to 18.51.1.222. Redistribution subject to AIP
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the pointr. This external force is random as a conseque
of the random orientation that the tube makes with the ex
nal field; see Fig. 1.

One can associate a random one-dimensional pote
U(r ) with the random forcef r(r ). In a lattice model, with
spacinga

U~r !5a@ f r~0!1 f r~1!1¯ f r~m!#, ~5!

for m.0

U~r !50, ~6!

for r 50 ~the origin can be chosen in arbitrary point of tube!,
and

U~r !5a@ f r~0!1 f r~21!1¯ f r~2m!#, ~7!

for negativer.
For d-dimensional cubic lattice, at each step the tube

a random orientation with respect to the external field. Th
the random forcef r , at each tube step~lattice bond!, is equal
to qE or 2qE with probability 1/(2d) and it is equal to zero
with probability (121/d). The resulting random potentia
U(r ) is the sum ofr /a identically distributed independen
random variables with zero mean value and dispersion e
to (qEa)2. Thus

^U2~r !&5~qE!2ar. ~8!

This ‘‘deterministic’’ description based on omission of the
mal force f r(n,t) is valid when

A^U2~r !&@kBT. ~9!

We consider the relaxation of polymer chains that a
initially either randomly distributed inside the tube, or di
tributed as expected for a reptation configuration, see Fig
before the field is turned on. For therandom initial distribu-
tion which corresponds to a chain in a tube defined by
random porous matrix~model A!, the number of segment
N(L) on length scaleL is given by the dependence of th
random walk displacement on the number of steps

L5bN1/2, ~10!

where b is the chain segment size~Kuhn length, which is
determined by polymer properties and does not depend

FIG. 1. The configuration of the random pore in the presence of the exte
electric field fixed in space. The polymer chain lying in the pore is illu
trated in a random configuration within the tube.
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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random matrix!. For areptation type initial condition, which
corresponds to reptation in a tube created by the ch
~model B!, the entropy—induced tensile forces stretch t
chain in the tube50 and

L5b2N/a. ~11!

Our model implicitly assumes that the segment sizeb is
small compared to the characteristic tube step sizea.

III. RELAXATION SCENARIO

At t50, the external electric field is switched on. Th
polymer chain in an initial configuration finds itself distrib
uted in a random potential with many local potential minim
and maxima. Portions of the chain will be pulled from
higher local minimum to a lower local minimum. In the re
gion between two subsequent local minima the polym
chain will be highly stretched. The situation is depicted
Fig. 2~a!.

As time progresses, the segments will migrate to
local energy minima in the potential. Segments present in
neighborhood of the minima will have a random configu
tion; segments present in the regions between the min
will be stretched. This situation is illustrated in Fig. 2~b!.

In the subsequent time, segments in the higher poten
will flow, as indicated by the arrows, to the lower neighbo
ing minima that are characterized by length scalesL1 and
L2 . At later times, segments will move between the n

FIG. 2. Relaxation scenario:~a! Initial configuration of chain in random
tube; ~b! relaxation of chain segments to local minima—relaxation occ
on length scalesL1 and L2 ; ~c! later configuration—relaxation on lengt
scaleL3 . Arrows indicate the direction of the flow of chain segments.
Downloaded 23 Jan 2004 to 18.51.1.222. Redistribution subject to AIP
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neighboring lower minima in the potential on the leng
scaleL3 as indicated in Fig. 2~c!. At this point, the chain
fragment located along the higher minimum is stretch
Segments in minima do not interact until all the interveni
higher relative minima have been ‘‘emptied’’ and the inte
vening chain length is stretched. Note that at some po
along the random tube, the local direction of flow can chan
sign as time proceeds.

Our interest is in determining the characteristic rela
ation timet(L) for the chain to relax when the characteris
length between extrema is of orderL and, as a consequenc
of our assumption of the random potential, Eq.~8!, the
strength of the random potential is

U~L !'qEAaL. ~12!

We proceed to calculate this relaxation time for two differe
cases. In the first case, we assume that the chain is stret
in a ropelike configuration in the region between loc
minima. In the second case, we assume that only harm
forces exist between neighboring segments and that th
intermolecular forces in combination with the external ra
dom potential, cause segment motion.

IV. RELAXATION TIME ESTIMATE FOR ROPELIKE
STRETCHING

We consider the flow of chain segments from one lo
minimum to a neighboring local minimum, of lower energ
We assume that the polymer is not stretched in local min
and the polymer is stretched to a ropelike configuration
the region between the minima, see Fig. 3.

The equation of motion, Eq.~4!, for the segments is

b
]r ~n,t !

]t
5

]F~n!

]n
1 f ~r !. ~13!

We seek a steady-state solution that satisfies the relation

r ~n,0!5r ~n2Jt,t !, ~14!

whereJ is the steady flux of segments flowing between t
two neighboring wells. Continuity requires vanishing of th
total differential with respect to time

dr~n,t !

dt
52J

]r ~n,t !

]n
1

]r ~n,t !

]t
50 , ~15!

s

FIG. 3. Relaxation model depicting stretched polymer chain between
minima. The minima are separated by a distance of the orderL and are of
the orderDU}AL different in energy.
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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and substitution into Eq.~13! leads to the expression

bJ
dr~n,t !

dn
5

dF~n!

dn
1 f ~r !. ~16!

The assumption in this case is that the segment densi
stretched over the entire distance between the adjoin
minima. Thus, we assume

dn/dr[r51/b, ~17!

integrate both sides of Eq.~16! between positions of two
adjoining minima and find

bJL

r
5U~r 1!2U~r 2!5qEAaL. ~18!

In obtaining Eq.~18!, we have made use of the fact that t
chain is not stretched in either of the two minima so th
F(n) vanishes at both the initial and final point of the int
gral.

This expression immediately leads to the following r
sult for the steady-state fluxJ:

J5
rqE

b
Aa

L
. ~19!

The relaxation time is determined by the initial number
segmentsN(L) in the region of sizeL divided by the flux

t~L !5
N~L !

J
. ~20!

For a random initial segment distribution, @model A, Eq.
~10!# the relaxation for motion between two adjoinin
minima when the chains are stretched is

t~L !5
bb

qE
Ab

a S L

bD 5/2

, ~21!

and the corresponding mean-squared displacement

L~ t !5bS qEt

bb D 2/5S a

bD 1/5

. ~22!

For a reptation like initial condition, @model B, Eq.~11!#

t~L !5
bb

qE
Ab

a S L

bD 3/2

, ~23!

with the corresponding displacement that varies accordin

L~ t !5bS qEt

bb D 2/3S a

bD 1/3

. ~24!

Recall thatL(t) is displacement along the random tube; d
placement in real space is proportional toAL(t).

V. RELAXATION TIME ESTIMATE FOR PERFECTLY
ELASTIC CHAIN

We now consider the case where the flow of polym
segments in the case when the force between the segme
perfectly elastic. For elastic chain

F~n!5g@r ~n11!2r ~n21!#, ~25!

whereg53kBT/b2 is the elastic constant and Eq.~4! yields
Downloaded 23 Jan 2004 to 18.51.1.222. Redistribution subject to AIP
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b
]r ~n,t !

]t
5g

]2r ~n,t !

]2n
1 f ~r !. ~26!

In order to extract the relaxation behavior we again consi
the flow from one potential well to another; see Fig. 4. In th
case, for simplicity, we assume that the two potential we
in the external random potentialU(r ) are parabolic wells
separated by distance 2L between their minima along ther
coordinate and by the amountU0 along theU coordinate.
The force constant isk1 for the left well, andk2 for the right
well, k1,k2 , as indicated in Fig.~4!. Thus, UL(r )5k1(r
1L)2/2 for the left potential well in the coordinate syste
with its origin in its minimum andUR(r )5k2(r 2L)2/2 for
the right potential well. In a fixed coordinate system t
force at positionr is f (r )52kDr , whereDr denotes the
deviation from potential minimum along tube coordinate a
k1(k2) is the force constant in the left~right! potential well.

We estimate the force constant by estimatingU(L) from
the Eq.~8! and find

k1}k2}qEAa/L3. ~27!

We seek a steady-state solution of Eq.~26! according to Eq.
~15! and arrive at the following relaxation equation:

Jb
dr~n!

dn
5g

d2r ~n,t !

d2n
2k1,2Dr , ~28!

wherek1,2 refers to the force constants in each of the tw
potential wells. Thus, for2`,r ,0, in the left well

gr L92Jbr L82k1~r L1L !50 ~29!

and for 0,r ,`, in the right well

gr R92Jbr R82k2~r R2L !50. ~30!

We seek a solution in each well with the position me
sured from the well minima. These solutions have the fo

Dr ~n!5A6 exp~l6n!, ~31!

wherel6 are the eigenvalues given by

l6~k1,2!5
bJ

2g
6AS bJ

2g D 2

1
k1,2

g
, ~32!

FIG. 4. Polymer chain in adjoint minima of random potential. Each pot
tial minimum is approximated by a parabola and the minimum of the ri
hand parabola lies below the minimum of the left hand side parabola b
amountU0 . The position coordinate along the tube is indicated byr, two
parabolas intersect atr 5x0 . Initially, the segmentn50 is atx0 .
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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and the constantsA6 are determined by matching the sol
tions for the left and the right wells.

We designate the segment located at the point of in
section of the two wellsn50. There are two continuity con
ditions for the chain atn50. These are

r L~0!5r R~0! ~33!

and

drL~n!

dn U
n50

5
drR~n!

dn U
n50

. ~34!

The crossover point~the point of intersection of the two
wells, where then50 segment is located! is

x05r L~0!5r R~0!, ~35!

which is determined from the equation

k1~x01L !2

2
1U05

k2~x02L !2

2
, ~36!

~see Fig. 4 for the definition of the parameters of the pot
tial.!

In the left well located at the distanceL from the seg-
ment zero, the solution is

r L~n!1L5~x01L !exp@l1~k1!n#, ~37!

one must choose the eigenvaluel1(k1) since the segment
asn→` bunch up in the left well, located atr L52L.

In the well located at the right, the solution is

r R~n!2L5~x02L !exp@l2~k2!n#, ~38!

one must choose the eigenvaluel2(k2) since r L→L as
n→`.

These solutions describe the steady flux of an infin
chain, moving from one minimum to another one and sati
the continuity condition atx0 . The value of the fluxJ is
determined from Eq.~34!

~x01L !l1~k1!5~x02L !l2~k2!, ~39!

with x0 from Eq. ~36!. As an example, we consider the ca
k15k25k. From Eq.~36! one finds

x052
U0

2Lk
. ~40!

Substitution into Eq.~39! leads to the expression forJ

J52sign~x0!
2Akg

b
A ~x0 /L !2

12~x0 /L !2

5sign~x0!
2Akg

b
A ~U0/2kL2!2

12~U0/2kL2!2. ~41!

The quantity (x0 /L) is limited to lie in the range21
,(x0 /L),11 if the barrier is to lie between the tw
minima; this in turn leads to the condition21,(U0/2kL2)
,11. The sign for the flux has been chosen to give
correct direction forJ asx0→0. Note that the flux tends to
infinity as the barrier height disappears.

Use of Eqs.~12!, ~27!, and ~41!, leads to the following
scaling relation forJ:
Downloaded 23 Jan 2004 to 18.51.1.222. Redistribution subject to AIP
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J}
~qEg!1/2a1/4

bL3/4 . ~42!

The more general case for intersecting quadratic poten
with different force constants can be analyzed in a sim
way and leads to a comparable, but more complicated, re
to the one exhibited in Eq.~42!.

In order to determine the relaxation time, it is necess
to estimate the chain density. According to Eqs.~37! and
~38! the segment number as a function ofr in each well, has
the form

n~r !5
1

l
lnS Dr

x06L D , ~43!

and consequently the densityr (r )5udn/dru is equal to

r5
1

lDr
. ~44!

Note that asDr tends to zero, i.e., to the well minimum, th
density tends to infinity indicating the buildup of polyme
segments in the potential minimum.

As the crossover point is approached the density
proaches

r~x0!5
1

x0l
. ~45!

Taking advantage of the Eqs.~27!, ~32!, and~41!, we obtain

r~x0!5A g

qE

1

~aL!1/4. ~46!

The densityr(x0) is determined by the equilibrium betwee
electric forces and chain elasticity and thus it does not
pend onb. We note thatr(x0)→0 whenL→` so that we
may conclude that the chain is anomalously stretched
largeL scale at the points of local potential minima.

We estimate the relaxation time of the chain accord
to Eq. ~20!. If the initial chain configuration israndom
(modelA), thenN(L)5(L/b)2 and the relaxation time pre
dicted on the basis of Eq.~42!

t~L !}bA b

qEg S b

aD 1/4S L

bD 11/4

, ~47!

which determines the typical displacement

L~ t !}bS t

b D 4/11S qEg

b D 2/11S a

bD 1/11

. ~48!

If the initial chain configuration is of thereptation form
(modelB), thenN(L)5(La/b2) and one finds

t~L !}bA b

qEg S a

bD 3/4S L

bD 7/4

, ~49!

which corresponds to

L~ t !}bS t

b D 4/7S qEg

b D 2/7S b

aD 3/7

. ~50!

We recall again thatL in Eq. ~49! represents the typica
displacement along the tube, corresponding to timet. The
displacement in real space is proportional toAL. Finally, we
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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note that there is no limit that takes the results for the ela
chain considered in this section over to the results for
rigid chain considered in the previous section. In particu
the limit g→0 leads to an infinite relaxation time in Eq.~49!
because there is no force between the segments to pull
from one minima to another.

VI. LEAKING OF ROPELIKE POLYMER FROM THE
END OF THE TUBE

We next consider the motion of the polymer chain wh
it leaks out of the end of the tube. The physical situation
depicted in Fig. 5 where a distanceh of the polymer chain
has moved out of the tube and with a distanceL from the end
of the tube to the energy minimum within the tube that a
as a source of polymer segments flowing out. For a rope
polymer, the steady-state dynamics is described exactly a
Sec. IV according to Eq.~16!. For large h, the chain is
stretched from the minimum to the free end and we assu
constant density of the chain segments along the length

Integration of the Eq.~16! from the minimum to the end
of the chain leads to the result

bJ~h1L !

r
5U~r 2!2U~r 1!, ~51!

in analogy to Eq.~18!. In this expression,r 1 is the location
of the chain end and, therefore,

U~r 1!5qEh, ~52!

r 2 is the location of the segment reservoir. Because the t
is randomly configured

U~r 2!5EqAaL. ~53!

The resulting expression for the flux is

J5
rqE

b S h2AaL

h1L D . ~54!

At a particular moment,h is growing with time and the
number of segments left in the tube is decreasing. We see
establish a relationship betweenJ, h, and the changing length
scaleL. For the ropelike chain with constant densityr

bJ5
dh~ t !

dt
. ~55!

FIG. 5. The end of the polymer chain moves out of the tube. The poly
occupies a distanceL inside the tube and a distanceh outside the tube.
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The number of chain segments which were pulled out of
part of the tube with the lengthL during time t, h(t)/b,
equals the initial number of segments in this part of the tu
N@L(t)#. For the random initial distribution~model A!,
N@L(t)# is determined by Eq.~10!, thus

L~ t !5Abh~ t ! ~56!

and

dh~ t !

dt
5

qE

b S 12~a2b/h3!1/4

11Ab/h
D . ~57!

For reptation-type initial distribution~model B!, N@L(t)# is
determined by Eq.~11!, thus

L~ t !5
bh~ t !

a
~58!

and

dh~ t !

dt
5

qE

b S 12Ab/h

11b/a D . ~59!

Equation ~57! indicates that for random initial distribution
the dangling ends smaller then (a2b)1/3 will not expand.
Similarly, Eq. ~59! indicates that for reptation type initia
distribution, dangling ends smaller thanb do not expand. In
the pore fixed by a random matrix the small dangling e
will be absorbed into the nearest minimum and the evolut
will follow the scenario described in Sec. III until the cha
length accumulated in the closest to the pore end minimum
large enough to establish a stable leakage from the pore
The leakage of the chain from its own tube starts after
thermal fluctuations create large enough dangling en
Large dangling ends expand with a constant rate in ag
ment with Ref. 51.

VII. RESULTS AND DISCUSSION

We obtained expressions for relaxation times and co
sponding typical displacements for a charged polymer ch
in a random tube for different initial configurations of th
chain and for the case of stretched~ropelike! and elastic
chains. For the times smaller then overall relaxation time
the chain, a chain segment moves inside the tube from
local energy minimum to another. The motion of a segm
in the tube is deterministic and the rate is determined by
ratio of total electric force acting on the chain fragment b
tween the minima to the corresponding total friction forc
The overall random displacement results from random p
tions of the energy minima along the tube. For the stretc
chain, the relaxation times and displacements are given
the Eqs.~21!–~24!; for the randomand reptationlike initial
conditions the typical displacement is proportional to

L}bS qEt

bb D 2/5S a

bD 1/5

~60!

and to

L}bS qEt

bb D 2/3S a

bD 1/3

, ~61!

r
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respectively. For the elastic chain, the relaxation times
displacements are given in the Eqs.~47!–~50!; for the ran-
domandreptationlikeinitial conditions the typical displace
ment is proportional to

L}bSAqEg

b2b
t D 4/11S a

bD 1/11

~62!

and to

L}bSAqEg

b2b
t D 4/7S b

aD 3/7

, ~63!

respectively.
This scaling behavior should be compared to the re

for the time dependence of the displacement of a segme
the Rouse chain50

L

b
}S t

tR
D 1/4

, ~64!

wheretR5bb2/kBT.
The dependence in Eq.~64! is understood as follows

For short times, a segment moves as an individual particl
L}AD0t, whereD0 is the diffusion coefficient of the seg
ment. As time increases,n}AD0t segments move togethe
and the center-of-mass displacement moves asL}ADnt,
whereDn is the diffusion coefficient ofn segments moving
in concert. SinceDn5D0 /n, one findsL}t1/4.

The results for a charged chain in a random tube p
sented above also include collective effects. However,
driving force of the motion is the random potential instead
the thermal fluctuations. The significant difference in our
sults compared to Eq.~64! is not only the difference of the
time dependence but also in the amplitudes which reflect
very different physics leading to the relaxation. For examp
from Eqs.~60! and ~61! for the relaxation for the stretche
casetstretch}bb/qE which differs considerably fromtRouse.

According to our relaxation scenario, a finite chain in
external fixed tube collapses into the deepest potential w
We have described the relaxation times for this proble
Once in the deepest energy well, further relaxation of
chain is described by Sinai type diffusion, Eq.~1!, because
the collapsed chain behaves as a single aggregate. This
tinues until a piece of the chain leaks outside the matrix, t
the dynamics is described according to Sec. VI. For la
dangling ends, the leakage rate is constant.
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