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Transient relaxation of a charged polymer chain subject to an external field
in a random tube
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Transient relaxation of a charged polymer chain in a random media is studied theoretically. We
consider a chain in a random tube and present scaling results for relaxation times, for displacement
of the chain segments inside the tube, and for the dynamics of leaking from the tube enti398©
American Institute of Physic§S0021-96068)51230-5

I. INTRODUCTION tation or tube model was first applied to electrophoresis by

i . Lerman and FriscR’ and more extensively in Refs. 28 and
There has been considerable progress during the pasy ,nd later expanded in Refs. 30—35.

several years in the analytical description of diffusion in ran-

d(_)m_media. One of th_e most striking results was obtained by, 5 random tube has been theoretically stutfiess has the
Sinai" for the dynamics of a particle on a discrete ON€-steady electrophoretic mobility of charged particlezono-
dimensional infinite lattice with random uncorrelated hop-mers or short chainsubject to a constant field in a medium
ping probabilities at each site. Sinai has proven rlgorousIXNith random curved interconnected chanr&IZimm intro-
that the mean-square displacemdntin such a systemis  q,ced the Lakes—Straits modé&iin this model, segments of

a large polymer chain in a random media accumulate in lakes
Lec(In )%, @ connected by random straits and the chain leaks from the

lakes at higher energy for the segment, through straits to
wheret is the time. Sinai's work has stimulated interest in lakes at lower energy. The theory of ge| e|ectroph0resis in
the relevance of this slowing down to a variety of diffusion the large field transient regime where polymer chains escape
phenomena. For instance, it was shown that Sinai-type diffrom their tubes by formation of herni&bopg was recently
fusion is relevant to Tfnoise? slow spin dynamics in  developed in Ref. 39 and the steady-state mobility for a simi-
random-field magnets and dynamics of dislocations in dopegr type of motion was studied in Refs. 40 and 41. The bar-
crystals? Another example of Sinai diffusion is provided by rier to loop formation in a porous matrix was theoretically
a charged particle diffusing on a linear random structureand experimentally studied in Ref. 42.
e.g., polymer chain or random pore, in presence of an uni- |n this paper we consider the motion of the charged

form electric field"® In this paper, we show that relaxation polymer in a random media subject to a moderate external
of charged polymer in a tube randomly oriented in a constanfje|d
external field corresponds to the Sinai type model—
relaxation of a polymer chain in a 1@ne-dimensionalran- kgT
dom potential. E< gqa’ 2
The motion of charged polymer chains in an external
electric field has been extensively studied experimentally andeglecting loop formation. HerE is the strength of the ex-
theoretically, see recent revieWs® and references therein. ternal electric field and is the diameter of a random pore
When this motion takes place in a random medium thedetermined by the matrix. The opposite limit was considered
physical situation corresponds to gel electrophoresis—an imn Refs. 40 and 41. We disregard the solid friction effects
portant experimental tool for separating charged polymersywhich may significantly change the relaxation of long
especially DNAY Pulsed field electrophoredisimproves — chains**~*In the present model, the polymer is confined in
the separation of large DNA molecules in a gel matrix or aa random pore or tube. We assume each tube is sufficiently
polymer solution'® In this technique, an electric field that is large to accommodate at any point along its length compli-
applied alternately in two or more different directions andcated conformations of the polymer chain and there is only
separation is achieved because the relaxation time required ene polymer chain per tube.
reorient chains depends on their lengthg&’ -2 We consider two types of initial distributions of the
Current understanding of gel electrophoresis is substarghain which correspond, respectively, to two models. In the
tially based on the reptation model introduced by defirstmodel (modeR), the random media is represented by an
Genne<? and extended by Doi and Edwarfs?® The rep-  array of channef§ which are not interconnecté:*®**The
configuration of the tube which confines the polymer chain is
determined by channels in a random porous matrix so “the

Pulsed field electrophoresis of a point particle confined

30n leave of absence from Institute of Chemical Physics, Russian Academ‘%hain could only move backward and forward in one. un
of Science. ’ -

DE-mail: jmd@mit.edu changing tube.”® Within this model we consider a phantom
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chain and disregard excluded volume effects. In the second ty
model (modeB), we adopt a more common picture for the
motion of a polymer chain in a gel: The chain creates its own
channel in an array of obstacles, renewing its own tube as it
moves.

We examine the internal relaxation of the polymer con-
fined in a random tube for both models, A and B, in the limit
of a long chain, and analytically estimate the relaxation times
and corresponding scaling displacement on time dependen-
cies which are governed by the segments exchange between
local minima of the chain energy prescribed by the tube con-
figuration(between “lakes” in the terms of Ref. 38In Sec. X
Il we present the general equations governing the motion of
the charged polymer in presence of an external field. In Sec¢!G. 1 The cqnfiggration of the random pore ir_1 thg presence of thg e>.<ternal
Il we show how the relaxation scenario for the infinite electrlt_: field fixed in space. '_I'he p_olymer chain lying in the pore is illus-

trated in a random configuration within the tube.
length chain in a random tube can be mapped onto the relax-
ation of a chain in a one-dimensional Sinai—type random
potential. In Sec. IV we calculate the characteristic internal
relaxation time for a polymer which is stretched into ropelikethe pointr. This external force is random as a consequence
fragments between the potential minirfiaside “straits” in of the random orientation that the tube makes with the exter-
the terms of Ref. 3Band in Sec. V we calculate the charac- hal field; see Fig. 1.
teristic internal relaxation time for a polymer whose seg- One can associate a random one-dimensional potential
ments are joined by purely elastic forces. The leaking of thdJ(r) with the random force (r). In a lattice model, with

Polymer Chain
in Pore

Random Pore

polymer out of the tube end is considered in Sec. VI. spacinga
u(r)=aff (0)+f (1)+---f.(m)], (5
Il. GENERAL EQUATIONS
for m>0
The motion of a charged polymer chain in a random tube _
in the presence of a constant external field can be described u(r)=0, ©®)
by the following equation: for r =0 (the origin can be chosen in arbitrary point of tibe
&r(n’t)—F +1)+F 1 e
o rmntlERmnn-1) U(r)=a[f(0)+f(~1)+-F(~m)], (7)
+qE cog 6(n)]+fi(n.b), (3  fornegativer.

. - ) For d-dimensional cubic lattice, at each step the tube has
wherer(n,t) is the position ofnth segment at tim¢ along 5 random orientation with respect to the external field. Thus,
tube axis, B8 is the friction coefficient of the segment, ihe random forcd, , at each tube steftattice bond, is equal
F(n,n+1) is the intermolecular force which the segment;, qE or —qgE with probability 1/(2) and it is equal to zero
(n+1) acts on the segment 6(r) is the angle between the yith probability (1—1/d). The resulting random potential
local tube axis and the field direction, ari@(n,t) is the () is the sum ofr/a identically distributed independent

random Langevin forcéarising from thermal motionacting  random variables with zero mean value and dispersion equal
on segmenn. The displacement along the tube is propor-;, (QEa)2. Thus

tional to the squared displacement in real space coordinates

(r213y=(x?)=(y?=(z?)=a?N, since the tube configura- (U%(r))=(qE)?ar. (8)
tion in space can be described by a random walk with steghijs “deterministic” description based on omission of ther-
lengtha, and number of stepH. mal forcef (n,t) is valid when
For relaxation of sufficiently large chain fragments the
chain motion is determined by the external electric field and ~ V(U“(r))>keT. (€)
the random thermal forck (n,t) can be neglectetthe quan- We consider the relaxation of polymer chains that are
titative criteria is presented belgwand Eq.(3) becomes initially either randomly distributed inside the tube, or dis-
ar(n,t) tributed as expected for a reptation configuration, see Fig. 1,
=F(n)+F(n—1)+qE cog 6(r)], 4 before the field is turned on. For thandom initial distribu-
at . . L )
tion which corresponds to a chain in a tube defined by a
where we have defined the chain tensida(n)= random porous matrixmodel A), the number of segments
F(n,n+1), and used the fact thaF(n,n+1)=—F(n  N(L) on length scald. is given by the dependence of the
+1,n). random walk displacement on the number of steps

The external forcelE cog 6(r)], which acts on theath L —pNY2 (10)
segment located at pointnside the tube, does not explicitly '
depend om and time. This external force depends only onwhereb is the chain segment siz&uhn length, which is
the angle between the external fidfdand the tube axes in determined by polymer properties and does not depend on
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(a) Initial Configuration U(r)

I r; r

FIG. 3. Relaxation model depicting stretched polymer chain between two
minima. The minima are separated by a distance of the drderd are of
the orderAU« /L different in energy.

neighboring lower minima in the potential on the length
scaleLs as indicated in Fig. @). At this point, the chain
lLater Configuration fragment located along the higher minimum is stretched.
Segments in minima do not interact until all the intervening
higher relative minima have been “emptied” and the inter-
vening chain length is stretched. Note that at some points
along the random tube, the local direction of flow can change
sign as time proceeds.

Our interest is in determining the characteristic relax-
ation timet(L) for the chain to relax when the characteristic
length between extrema is of orderand, as a consequence

FIG. 2. Relaxation scenarida) Initial configuration of chain in random of our assumption of the random potential H@) the
tube; (b) relaxation of chain segments to local minima—relaxation ocu:ursstren th of the random potential is ’ '
on length scales; andL,; (c) later configuration—relaxation on length 9 P

scaleLs. Arrows indicate the direction of the flow of chain segments. U(L)%qE\/ﬁ (12)

We proceed to calculate this relaxation time for two different
random matrix. For areptation type initial conditionwhich  cases. In the first case, we assume that the chain is stretched
corresponds to reptation in a tube created by the chaiin a ropelike configuration in the region between local
(model B, the entropy—induced tensile forces stretch theminima. In the second case, we assume that only harmonic
chain in the tub® and forces exist between neighboring segments and that these

L =b2N/a. (11) intermolecular forces in combination with the external ran-

dom potential, cause segment motion.
Our model implicitly assumes that the segment dirés

small compared to the characteristic tube step aize
IV. RELAXATION TIME ESTIMATE FOR ROPELIKE

STRETCHING

11l. RELAXATION SCENARIO ] .
We consider the flow of chain segments from one local

At 1=0, the external electric field is switched on. The minimum to a neighboring local minimum, of lower energy.
polymer chain in an initial configuration finds itself distrib- \we assume that the polymer is not stretched in local minima

and maxima. Portions of the chain will be pulled from ahe region between the minima, see Fig. 3.

higher local minimum to a lower local minimum. In the re- The equation of motion, Ed4), for the segments is
gion between two subsequent local minima the polymer

chain will be highly stretched. The situation is depicted in 4 or(n,t) _ 9F(n) () (13
Fig. 2a). ot an '

As time Progresses, the Segme”ts will migrate to_ th%e seek a steady-state solution that satisfies the relation
local energy minima in the potential. Segments present in the

neighborhood of the minima will have a random configura-  r(n,0)=r(n—=Jtt), (14

tion; segments present in the regions between the miniMgnere J is the steady flux of segments flowing between the

will be stretched. This situation is illustrated in Figb2 _two neighboring wells. Continuity requires vanishing of the
In the subsequent time, segments in the higher potentigh:a| gifferential with respect to time

will flow, as indicated by the arrows, to the lower neighbor-
ing minima that are characterized by length scalgsand dr(n,t) _ 3 ar(n,t) Loriny
L,. At later times, segments will move between the next dt an ot

0, (15
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and substitution into Eq13) leads to the expression Potential energy along the tube
dr(n,t) dF(n) U=k +DR+y U =ky(r - D2
- +H(r). (16) oo
dn dan Left Right
well well

The assumption in this case is that the segment density is
stretched over the entire distance between the adjoining

minima. Thus, we assume o
dn/dr=p=1/b, (17
integrate both sides of Eq16) between positions of two L% L o

adjoining minima and find

BJIL FIG. 4. Polymer chain in adjoint minima of random potential. Each poten-

—=U(rq)—U(ry)=q E\/a. (18 tial minimum is approximated by a parabola and the minimum of the right
p hand parabola lies below the minimum of the left hand side parabola by an

amountU,. The position coordinate along the tube is indicatedr pywo

In obtaining Eq.(18), we have made use of the fact that the ) I .
arabolas intersect at=x,. Initially, the segmenh=0 is atx,.

chain is not stretched in either of the two minima so that®
F(n) vanishes at both the initial and final point of the inte-
gral.

This expression immediately leads to the following re- p ar(n,t) 92r(n,t)

sult for the steady-state fluk i Y~z T (26)
J=— pqE \/é (19) In order to extract the relaxation behavior we again consider
B L the flow from one potential well to another; see Fig. 4. In this

The relaxation time is determined by the initial number of¢@se, for simplicity, we assume that the two potential wells

segment$N(L) in the region of size divided by the flux in the external random potenti&l(r) are parabolic wells
) separated by distancd_2between their minima along the
N(L

t(L)= (20) coordinate and by the amouht, along theU coordinate.
J - The force constant ik; for the left well, andk, for the right

A o well, k;<k,, as indicated in Fig(4). Thus, U (r)=k,(r
For a random initial segment distributiomodel A, Eq. NG ; ) L 1
(10] the relaxation fo? motion betweer[n tWwo adjoi?ﬂng +L)?/2 for the left potential well in the coordinate system

minima when the chains are stretched is with its origin in its minimum andJg(r)=Kk,(r —L)?/2 for
the right potential well. In a fixed coordinate system the

force at positionr is f(r)=—kAr, where Ar denotes the
b (2D geviation from potential minimum along tube coordinate and
and the corresponding mean-squared displacement

5/2

k,(k,) is the force constant in the leftight) potential well.
We estimate the force constant by estimatih@ ) from

qEt) %5 a|\® the Eq.(8) and find
L(t)=b(— . (22)
Bbj \b Ky ko qEVa/LS. 27)
For a reptation like initial condition[model B, EqQ(11)]  \ye seek a steady-state solution of E2p) according to Eq.
Bb \ﬁ L) 32 (15) and arrive at the following relaxation equation:
HL)= gE Valb 23 dr(n)  d’r(n,t) . -
dn Y d%n 1,2Ar, (28

with the corresponding displacement that varies according to

qEt| 23/ a\ 3 wherek, , refers to the force constants in each of the two
L(t)=b(ﬁ b (24)  potential wells. Thus, for-<r<0, in the left well
Recall thatl (t) is displacement along the random tube; dis- YL~ IBr{ —Ky(r +L)=0 (29
placement in real space is proportional\tb(t). and for 0<r <, in the right well
YR=JIBrg—ka(rg—L)=0. (30)
V. RELAXATION TIME ESTIMATE FOR PERFECTLY L . -
ELASTIC CHAIN We seek a solution in each well with the position mea-
sured from the well minima. These solutions have the form
We now consider the case where the flow of polymer A _
segments in the case when the force between the segments is r(n)=A. expA.n), 3D
perfectly elastic. For elastic chain where\ .. are the eigenvalues given by
F(n)=»[r(n+1)—r(n-1)], (25) .k B, [[ B3 2+ Ky 2 2
wherey=3kgT/b? is the elastic constant and E@) yields = (ki) = 2y~ Vi2y v’ (32
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and the constanta.. are determined by matching the solu- (qEy)Y2a'4
tions for the left and the right wells. TR L (42

We designate the segment located at the point of inter- _ _ _ _
section of the two wells=0. There are two continuity con- The more general case for intersecting quadratic potentials

ditions for the chain abh=0. These are with different force constants can be analyzed in a similar
way and leads to a comparable, but more complicated, result
r.(0)=rg(0) (33 {0 the one exhibited in Eq42).
and In order to determine the relaxation time, it is necessary

to estimate the chain density. According to E¢37) and

dr,_(n)‘ _drR(n)‘ (34) (38) the segment number as a functionrah each well, has

dn ‘n=0 dn |n=0. the form

The crossover pointthe point of intersection of the two B Ar
wells, where then=0 segment is locateds n(r)=+1In XL’ (43

Xo=r(0)=rg(0), (35  and consequently the densityr)=|dn/dr| is equal to
which is determined from the equation 1

- 44
k(%o +L)? _ Kp(xp—L)? (36) P \ar 49
2 o 2 ’ Note that asAr tends to zero, i.e., to the well minimum, the

(see Fig. 4 for the definition of the parameters of the potendensity tends to infinity indicating the buildup of polymer
tial.) segments in the potential minimum.

In the left well located at the distandefrom the seg- As the crossover point is approached the density ap-
ment zero, the solution is proaches

rL(n)+L=(XO+L)eXF[)\+(k1)n], (37) p( 0)_X )\ (45)
one must choose the eigenvalue(k;) since the segments
asn—o bunch up in the left well, located at = —L. Taking advantage of the EqR7), (32, and(41), we obtain

In the well located at the right, the solution is

Fa(n) —L=(xo—L)exg A _(ky)n], (39) p(Xo) = \/ ._)1 (46)
one must choose the eigenvalde (k) sincer,—L as  The densityp(x) is determined by the equilibrium between
n—c. electric forces and chain elasticity and thus it does not de-

These solutions describe the steady flux of an |nf|n|tepend onB. We note thaip(Xo)—0 whenL— so that we
chain, moving from one minimum to another one and satisfymay conclude that the chain is anomalously stretched on
the continuity condition ak,. The value of the flux is  |argeL scale at the points of local potential minima.
determined from Eq(34) We estimate the relaxation time of the chain according

(Xo+ LN (Ky) = (Xo— LI _(K), (39 o Eq. (20). If the initial chain configuration israndom

(modelA), thenN(L)=(L/b)? and the relaxation time pre-
with X, from Eq. (36). As an example, we consider the casejcted on the basis of E¢42)

k,=k,=k. From Eq.(36) one finds

\/T b\ 14/ )\ 114
u t(L)ee — | = = 4
Xo= = 31 (40) BN ey “0
o ] which determines the typical displacement
Substitution into Eq(39) leads to the expression fdr
4/11 qE 2/11 a 1/11
2\ky (Xo/L)2 L(t)=b = . (48)
J=—sign(xo) ’8 b b
== 0
B 1-(xo/L)? If the initial chain configuration is of theeptation form
— 2 ]
2\/k—y (Ug/2KL2)? (modelB), thenN(L)=(La/b*) and one finds
=sign(xg) . (41 341\ /4
B 1—(Ug/2kL?)? t(L)o B\ /% g B) , (49)
The quantity kg/L) is limited to lie in the range—1 _ a=y
<(xo/L)<+1 if the barrier is to lie between the two Which corresponds to
minima; this in turn leads to the condition1< (Uy/2kL?) 47 qEy\ 77 b\ 37
<+ 1. The sign for the flux has been chosen to give the L(t)xb ,3 o a (50
correct direction ford asxy— 0. Note that the flux tends to
infinity as the barrier height disappears. We recall again thalt in Eq. (49) represents the typical
Use of Egs.(12), (27), and(41), leads to the following displacement along the tube, corresponding to tim&he
scaling relation forJ: displacement in real space is proportionalfo. Finally, we
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L The number of chain segments which were pulled out of the
part of the tube with the length during timet, h(t)/b,

E equals the initial number of segments in this part of the tube,
N[L(t)]. For the random initial distribution(model A),
N[L(t)] is determined by Eq10), thus
h L(t)=+bh(t) (56)
and
dh(t) qE 1—(a2b/h3)1’4) 57
dt B\ 1+Jo/n |
FIG. 5. The end of the polymer chain moves out of the tube. The polymer B 1+yb/h
occupies a distance inside the tube and a distanbeoutside the tube. For reptation-type initial distributionNmodel B, N[L(t)] is
determined by Eq(11), thus
. - . bh(t)
note that there is no limit that takes the results for the elastic L(t)= —a (58
chain considered in this section over to the results for the
rigid chain considered in the previous section. In particularand
the limit y—0 Igads to an infinite relaxation time in E@9) dh(t) qE[1- Join
because there is no force between the segments to pullthem >~ _~2- |~ "= | (59)
from one minima to another. dt B \ 1+bla

Equation(57) indicates that for random initial distribution
the dangling ends smaller thera?p)*® will not expand.
VI. LEAKING OF ROPELIKE POLYMER FROM THE Similarly, Eq. (59 indicates that for reptation type initial
END OF THE TUBE distribution, dangling ends smaller thardo not expand. In
. . . the pore fixed by a random matrix the small dangling end
. We next consider the motion of the polymer ch_aln \.Nhe_nwill be absorbed into the nearest minimum and the evolution
t 'e?"‘s ogt OT the end of the_tube. The physical 5|tuat|pn 'Swill follow the scenario described in Sec. Il until the chain
depicted in Fig. 5 where a d|sta_nbeof _the polymer chain length accumulated in the closest to the pore end minimum is
has moved out of the tube a_nq with a @s_tahdeom the end large enough to establish a stable leakage from the pore end.
of the tube to the energy minimum within the tube that act he leakage of the chain from its own tube starts after the
as a source of polymer segments flowing out. For a r0pe“k‘?hermal fluctuations create large enough dangling ends.

polymer, the steady-state dynamics is described exactly as Warge dangling ends expand with a constant rate in agree-
Sec. IV according to Eq(16). For largeh, the chain is ment with Ref. 51

stretched from the minimum to the free end and we assume
constant density of the chain segments along the length.
Integration of the Eq(16) from the minimum to the end

of the chain leads to the result VIIl. RESULTS AND DISCUSSION

BI(h+L) We obtained expressions for relaxation times and corre-
——=U(r,)—U(ry), (52 sponding typical displacements for a charged polymer chain
P in a random tube for different initial configurations of the
in analogy to Eq(18). In this expression, is the location chain and for the case of stretchémpelike and elastic
of the chain end and, therefore, chains. For the times smaller then overall relaxation time of
U(r,)=qEh, (52) the chain, a chain segment moves inside the tube from one

local energy minimum to another. The motion of a segment
r, is the location of the segment reservoir. Because the tubig the tube is deterministic and the rate is determined by the
is randomly configured ratio of total electric force acting on the chain fragment be-
tween the minima to the corresponding total friction force.

r,)=EqvaL. . .
Ulr)=Eaqva 63 The overall random displacement results from random posi-
The resulting expression for the flux is tions of the energy minima along the tube. For the stretched

qE [h— JaL chain, the relaxation times and displacements are given in
J= pa= ) (54)  the Egs.(21)—(24); for the randomand reptatiorlike initial
B h+L conditions the typical displacement is proportional to
At a particular momenth is growing with time and the qEt| 25 a)| 5
number of segments left in the tube is decreasing. We seek to Locb(ﬁ b (60)
establish a relationship betweérh, and the changing length
scaleL. For the ropelike chain with constant density and to
dh(t) qEt\ 23 a\1?®
bJ= TEE (55 Locb( b S (61
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respectively. For the elastic chain, the relaxation times and‘H. E. Roman, M. Schwartz, A. Bunde, and S. Havlin, Europhys. [Ztt.

displacements are given in the E¢47)—(50); for the ran-
domandreptationlikeinitial conditions the typical displace-
ment is proportional to

111

qu 4/11 a
L“b( \/%t) B (62)
and to
qE,y ar7 b 3/7
L0<b< \/%t) 5 , (63
respectively.
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