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If a biomolecular chemical reaction is mass transport limited, the reaction rate can be accelerated by
embedding one of the reaction centers in a molecular framework. This framework acts as a lower
dimensionality surface along which the other reaction partner can travel. The rate enhancement can
be identified with an increase in entropy of activation. A model for this effect is constructed and
applied to a reaction center embedded in three molecular framework geometries: a linear chain, a
disk, and a polar reactive patch on a sphere. The new result for the reactive patch on a sphere is
relevant for enzymatic systems where substrates must find their way to a small reactive region.
© 1998 American Institute of Physics.@S0021-9606~98!01003-4#
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I. INTRODUCTION

In the conventional picture of bimolecular reaction k
netics, molecular speciesA andB reversibly form a reaction
complex (A/B) that passes through a transition state or
termediate to form product. The reaction mechanism is

A1B�
k21

k1
~AB!→

k2

product. ~1.1!

After making the steady state approximation for the react
complex intermediate,d@(AB)#/dt50, the effective bimo-
lecular rate coefficientkeff is found to be

keff5
k1k2

k211k2
. ~1.2!

Ordinarily the rate-limiting step is the second step in t
reaction mechanism Eq.~1.1! because the chemistry of mak
ing and breaking bonds is usually slow compared to the
namics of reactants approaching one another. In this l
k21@k2 and

keff→
k1

k21
k2 . ~1.3!

The rate coefficient for the chemical step is assumed to h
the form:

k25k2
0 exp@2DFt/kbT#, ~1.4!

where k2
0 is equal to kbT /h according to transition stat

theory, kb is Boltzmann’s constant,T is the absolute tem
perature, andDFt is the free energy difference between t
reaction complex (AB) and the transition state.

Catalytic activity occurs through a lowering of the tra
sition state free energy relative to the reaction complex
termediate either by a change in the transition state enth
DHt or entropyDSt difference.

In the opposing limit, when mass transport is rate lim
ing, k2@k21 and

keff→k1 . ~1.5!

Evidently, if a means is found to modify the rate of a
proach,k1→k1

1 , then there effectively will be catalytic ac
tivity in this mass transport rate determining limit.
J. Chem. Phys. 108 (3), 15 January 1998 0021-9606/98/108(3)/

Downloaded 23 Jan 2004 to 18.51.1.222. Redistribution subject to AIP
-

n

-
it

ve

-
py

-

In this paper we examine a general mechanism that
increase the rate of encounter and separation ofA andB,

k1
15k1~11g!, k21

1 5k21~11g!, ~1.6!

where the quantityg is the increment to the forward an
backward rates of encounter. The effective rate coeffici
becomes

keff5
k1

1k2

k21
1 1k2

. ~1.7!

Formally, the enhancement to the rate cofficient can be
pressed as an entropy of activation that we denote as

DSd5kB ln~11g!. ~1.8!

Note that the pre-equilibrium constant

K5
k1

k21
5

k1
1

k21
1 ~1.9!

is unaffected by the enhancement in the forward and rev
rates. This rate enhancement has many of the attributes
catalytic effect so that we term it adynamical catalytic effect.
This dynamical effect is only present when mass transpo
the rate-limiting step and, in principle, it involves no mod
fication of the transition state.

The mechanism for enhancing the rate of encoun
arises when a reactive partner is embedded in a polyme
two-dimensional framework, or on the surface of a sphe
The passive framework acts as a lower dimensionality n
work that more efficiently transports the reacting substrate
the reaction center.

Adam and Dlbruck1 were the first to point out that ther
could be a rate enhancement over free diffusion if the m
transport proceeds in successive stages of lower dimens
ality. Considerable work has been done on the case o
reactive site embedded in a linear polymer2–6 with the work
of von Hippel and co-workers on the translocation of pr
teins on DNA indicating the biological relevance of th
problem.

The case of a reactive site on a spherical macromole
is perhaps the one of greatest interest because of the
evance to reactions at globular enzymes. For many yea
937937/6/$15.00 © 1998 American Institute of Physics
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938 J. M. Deutch: Dynamical catalysis
has been recognized that there is a considerable differ
between the diffusion-controlled rate to a spherical tar
molecule that is equally reactive over its entire surface an
spherical target molecule that has only a reactive patch o
surface. Alberty and Hammes7 first pointed out the signifi-
cance of this difference for the diffusion rate to an enzy
molecule and to its active site. The kinetics of diffusio
controlled reactions between chemically asymmetric m
ecules when one or both of the translating and rotating re
ing partners possesses an axially symmetric reactive re
on a sphere has been investigated by Solc and Stockma8

Schmitz and Schurr,9,10 and Temkin and Yakobson.11

When the added complications of diffusion to a buri
active site12 are included, it becomes clear that there must
some means beyond free diffusion that permits a small s
strate to find the reacting center of an enzyme. The poss
ity of free diffusion to the surface of the enzyme followed
sliding on the lower dimensionality spherical surface to
active site has been suggested13 and the role of intermolecu
lar interactions in such a mechanism has been investigat14

II. THE MODEL

The means for realizing this dynamic rate enhancem
is to place one of the reacting partners, sayB, in a molecular
network that accelerates the frequency of encounters.
enhancement will be accomplished if~1! the mobileA spe-
cies finds the molecular network faster~because it is larger!
than the free reactingB center, and~2! the mobile species
rapidly diffuse along the molecular network to the reacti
center. In sum, the molecular network serves as a lower
mensional pathway for reaction partners to find each oth

A. Reactive center at one end of a linear polymer

In this model the reactive centerB is located at one end
of a polymer chain ofN homogeneous units. SpeciesA binds
reversibly from solution to each polymer site (n51,...,N)
and, if bound,A can shuttle to adjoining sites with rateq. If
A reaches the end siteP0 whereB is located it may reac
irreversibly to form product. For simplicity, we assume th
the on and off rates forA onto polymer sites is the same a
the rate of association and deassociation ofA and B to the
encounter complex (AB) whenA andB are free in solution;
we also assume that thek2 for A reacting withB whenB is
bound in the polymer is the same as whenB is free in solu-
tion. See Fig. 1.

The kinetic equations for this reaction mechanism ar

FIG. 1. Kinetic mechanism for one reactive siteB5P0 at end of linear
polymer chain ofN passive sites. The shuttling rate between adjacent site
q and each site is in equilibrium with adsorption ofA from the surrounding
solution.
J. Chem. Phys., Vol. 108,
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dP0

dt
5k1AP1qP12~q1k211k2!P0 , ~2.1a!

dPn

dt
5k1AP1q~Pn211Pn11!2~2q1k21!Pn ,

n51,...,N21, ~2.1b!

dPN

dt
5k1AP1qPN212~q1k21!PN . ~2.1c!

In Eq. ~2.1! Pn is the concentration of sites at position on t
polymer chain that have boundA, k1AP is the flux of A
from solution that binds to each site,k21Pn is the dissocia-
tion rate ofA from site n, andq denotes the shuttling rat
between adjacent sites. The quantityP is the concentration
of each free siten available for bindingA and this is pro-
portional to concentration ofB since, by assumption, there
oneB per chain located at positionn50; thusP05B. Equa-
tion ~2.1c! can be transformed into the general form of E
~2.1b! by introducing the auxiliary quantityPN11 and adopt-
ing the boundary condition

PN115PN . ~2.1d!

Rather than solve the set of finite difference equatio
we pass to a continuous description of the concentration oA
bound along the chainc(x) assuming that the polymer site
are separated by equal distanced. In addition we introduce
the steady state approximationdPn /dt50. Thus Eq.~2.1b!
becomes

05k1AP1Dc9~x!2k21c~x! ~2.2!

with D5qd2 for 0,x,L5dN. The boundary condition a
the end of the chain Eq.~2.1d! is simply

c8~L !50. ~2.3!

The boundary condition at the origin where the reactive c
ter B is located, Eq.~2.1a! becomes

05k1AP1
D

d
c8~0!2~k211k2!c~0!, ~2.4!

which states the steady state flux balance atB: FreeA arriv-
ing from the solution plus boundA arriving from the poly-
mer chain either reacts or dissociates back into solution.

The general solution to Eq.~2.2! which satisfies the
boundary condition Eq.~2.3! is

c~x!5a cosh@~x2L !l#1k1AP/k21 , ~2.5!

wherel5Ak21 /D. The constant ‘ ‘a’ ’ is determined from
the boundary condition Eq.~2.3!; one finds

a cosh~lL !5
2k2k1AP/k21

k21k211
D

d
l tanh~lL !

. ~2.6!

The appearance of product is given by

d@product#

dt
5k2c~0!5k2Fa cosh~lL !1

k1AP

k21
G . ~2.7!

is
No. 3, 15 January 1998
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939J. M. Deutch: Dynamical catalysis
This result should be compared with the kinetic equation

d@product#

dt
5keffAB. ~2.8!

Substitution of Eq.~2.6! into Eq. ~2.7! and use of the fac
that the concentration ofP is proportional toB, leads to an
expression forkeff of the form of Eqs.~1.6! and ~1.7! with

g5
L

d

tanh~lL !

~lL !
, ~2.9!

wherel5Ak21 /D.
In the limit of rapid diffusion along the chain, the max

mum enhancement is exhibited. In this limitl→0,
g→(L/d)5N, and thusk1

15k1(11N). Diffusion along the
chain is so rapid that each polymer site effectively presen
higher concentration ofA to the reactive site located at th
end of the chain.

In the opposite limit of slow diffusion,l→`, g→0, and
k1

1→k1 . As expected, the presence of the polymer ch
makes no difference to the rate of reaction.

B. Reactive center internal to a linear polymer chain

In this model the reactive centerB is located at position
n50, which is attached to two polymer chains of lengthN1

and N2 . See Fig. 2. In the continuous limit the appropria
steady state equations for each chain are

05k1AP1Dci9~x!2k21ci~x!, i 51,2, ~2.10!

with the boundary condition at the chain endsci8(Li)50, i
51,2. At the origin, where the reactive site is located,
boundary condition is the balance between incoming
outgoing flux:

05k1AP1
D

d
c18~0!1

D

d
c28~0!2~k211k2!c1~0!

~2.11!

with the auxiliary conditionc1(0)5c2(0) ~Fig. 3!.
The general solution for the concentration ofA particles

on each chain is of the following form:

ci~x!5ai cosh@~x2Li !l#1k1AP/k21 . ~2.12!

The constantsa1 anda2 are determined from the bounda
condition at the origin, Eq.~2.11! in a manner exactly simila

FIG. 2. Kinetic mechanism for one reactive siteB5P0 in a polymer chain
with one sideN passive units and the other sideN8 passive units. The
shutting rate between adjacent sites isq and each site is in equilibrium with
adsorption ofA from the surrounding solution.
J. Chem. Phys., Vol. 108,
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to the procedure used in the previous section. One obtai
result forkeff of the general form Eqs.~1.6! and ~1.7! with

g5
L1

d

tanh~lL1!

lL1
1

L2

d

tanh~lL2!

lL2
. ~2.13!

Again the maximum enhancement is found for rapid diff
sion along the chain. In this limitl→0, g→(L11L2)/d,
andk1

15k1(11N11N2).

C. Reactive site at the center of a disk

The dynamical catalytic effect will be exhibited whe
the reactive site is embedded in two- or three-dimensio
structures which facilitate mass transport. As a prelimin
example we consider a circular reactive region of radiusb
containingB embedded in a diskb,r ,R that contains par-
ticles P. The substrateA binds reversible toP ~on both
sides! and may diffuse to the central reactive region. S
Fig. 3.

The diffusion equation governing the distribution ofA at
steady state on the disk is

05k1AP1
D

r

d

dr
r

dc~r !

dr
2k21c~r !, b,r ,R,

~2.14!

with a reflecting boundary condition at the outer ed
c8(R)50.

At the inner boundary the total flux of arrivingA par-
ticles is balanced by the flux ofA particles that depart due t
reaction or disassociation back to the solution:

05pb2k1AP12pbDc8~b!2~k211k2!c~b!pb2.
~2.15!

For simplicity we have assumed that the concentration oA
in the reactive region is uniform and equal to the value at
boundary between the reactive region and the disk.

The solution to the diffusion equation@Eq. ~2.14!# that
satisfies the reflecting boundary condition atr 5R is

c~r !5aF I 0~lr !2
I 08~lR!

K08~lR!
K0~lr !G1

k1AP

k21
,

b,r ,R, ~2.16!

whereK0(z) andI 0(z) are modified Bessel functions and, a
before,l5Ak21 /D. The constant ‘ ‘a’ ’ is determined by
the condition at the reactive boundaryr 5b, Eq. ~2.15! and

FIG. 3. Kinetic mechanism for reactive regiono,r ,b in circular diskb
,r ,R. Diffusion occurs on the disk of the adsorbed speciesA.
No. 3, 15 January 1998
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940 J. M. Deutch: Dynamical catalysis
keff is identified from the reactive termk2c(b). One findskeff

of the form given in Eqs.~1.6! and ~1.7! with

g52
2Dl

bk21
F I 08~lb!K08~lR!2I 08~lR!K08~lb!

I 0~lb!K08~lR!2I 08~lR!K0~lb!G . ~2.17!

In the limit of rapid diffusionl→0 and the modified
Bessel functions approach

I 0~z!→S 12
z2

4 D , K0~z!→2 ln~z!. ~2.18!

Thus in this limit one findsg→@(R22b2)/b2# and accord-
ingly

k1
15k1F11

~R22b2!

b2 G . ~2.19!

Here again the maximum rate enhancement can be expre
as k1

15k1@11Neff#, whereNeff is the effective number o
passive molecular sites available to transportA to the reac-
tive region containingB. The effective numberNeff is simply
the ratio of the passive molecular area to the reactive a
pb2 since the sites are assumed to be uniformily distribut

In the opposite limit of slow diffusion one may sho
g→0 andk1

1→k1 , as expected.

III. REACTIVE SITE ON A SPHERE

The dynamical catalytic effect under consideration h
is the rate enhancement due to sliding along the unreac
portion of the sphere to the chemically reactive regio13

compared to the situation where the unreactive portion of
sphere simply acts as a reflecting barrier.7,8

We treat the diffusion of particlesA to the sphere and
dissociation of particlesA from the sphere as a kinetic equ
librium step and focus attention of the diffusion of particl
A on the sphere surface to the reactive region occupied
particlesB. See Fig. 4. The combined problem of diffusio
to andon the sphere that has a chemically reactive region
be analyzed directly but requires numerical computation.

The steady state diffusion equation for the concentra
of particlesA on the surface of the sphere of radiusR is

05k1AP1
D

R2

1

sin q

d

dq
sin q

dc~q!

dq

2k21c~q!, q0,q,p, ~3.1!

FIG. 4. Kinetic mechanism for the reactive regionu on the sphere. Diffusion
of speciesA absorbed on the surface to the reactive region.
J. Chem. Phys., Vol. 108,
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where the chemically reactive patch occupies the north p
region 0,q,q0 . In terms of the variablex5cosq, Eq.
~3.1! is

05k1AP1
D

R2

d

dx
~12x2!

dc~x!

dx
2k21c~x!,

x0,k,21. ~3.2!

The boundary condition at the south polar regionx521
must be

lim
x→21

~12x2!c8~x!→0. ~3.3!

Obtaining a solution for this case is a bit more comp
cated than the cases previously considered because diffu
is taking place on a curved surface. We find a solution
terms of solutions to the Legendre equation15

~12x2!wn9~x!22xwn8~x!1n~n11!wn~x!50. ~3.4!

This equation has two solutions on the cut21,x,11 that
are denotedPn(x) andQn(x), Legendre functions of degre
n and order zero of the first and second kind. A solution
Eq. ~3.2! is obtained as a linear combination of these Le
endre functions:

c~x!5a1~n!Pn~x!1a2~n!Qn~x!1
k1AP

k21
, ~3.5!

provided that

n~n11!52
k21R2

D
. ~3.6!

The particular linear combination must be taken to satisfy
boundary condition Eq.~3.3!. Note thatn can be complex.
For the region wheren is real

0,
k21R2

D
,

1

4
, ~3.7!

we select the positive square root forn:

n52
1

2
1

1

2
A12

4k21R2

D
. ~3.8!

SincePn(x) andQn(x) are singular@x# asx→21:

Pn~x!→
sin~np!

p F lnS 11x

2 D1p cot~np!1constG ,
(3.9)

Qn~x!→
cos~np!

2 F lnS 11x

2 D2p tan~np!1constG ,
one must choose a particular linear combination that can
the singularity in order to satisfy Eq.~3.3!.16 We choose the
particular combination

c~x!5aFsin~np!

np
Qn~x!2

cos~np!

2n
Pn~x!G1

k1AP

k21
,

~3.10!

which one can verify satisfies Eq.~3.3! for all nÞ0.
No. 3, 15 January 1998
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941J. M. Deutch: Dynamical catalysis
We must be concerned withn50. The limit n→0 arises
whenk21→0; in this limit,

c~x!→aFQ0~x!2
1

2n
P0~x!2

1

2 S dPn~x!

dn D
n50

G1
k1

k21
.

~3.11!

SinceP0(x)51 and15

S dPn~x!

dn D
n50

5 lnS 11x

2 D ~3.12!

it is necessary to choosea52(2k1APR2/D) to cancel the
singularity atn5k2150. Thus, in the limitn→0, the gen-
eral solution Eq.~3.10! approaches

c~x!5
k1APR2

D F lnS 11x

2 D22Q0~x!G ~3.13!

with Q0(x)5 1
2 ln @(11x)/(12x)# and c(21)50. One may

verify that Eq.~3.13! is correct by direct integration of th
original differential equation forc(x), Eq.~3.2!, with k21 set
equal to zero.

In the general case whenk21 is not equal to zero, the
constanta in Eq. ~3.10! must be determined from the boun
ary condition atx5x0 . As usual, the condition at the rea
tive boundary is found by equating the flux ofA into the
region 0,x,x0 with the flux leaving by reaction and disso
ciation:

05k1APS~x0!22pD~12x0
2!c8~x0!

2~k211k2!c~x0!S~x0!, ~3.14!

where S(x0) is the area of the reactive regionS(x0)
52pR2(12x0) and again we have assumed that the conc
tration ofA in the reactive region is uniform and equal to t
value at the boundary.

Once the constant ‘‘a’’ is determinedkeff is identified
from the reactive fluxk2c(x0). The effective rate coefficien
is of the form of Eqs.~1.6! and ~1.7! and the quantityg is

g15
~11x0!D

k21R2 F ~2/p!tan~np!Qn8~x0!2Pn8~x0!

~2/p!tan~np!Qn~x0!2Pn~x0!
G ,

~3.15!

with the complex quantityn given by Eq.~3.8! in the regime
0,(k21R2/D),(1/4). Alternatively, using Eq.~3.6! one
finds

g152
~11x0!

n~n11!
F ~2/p!tan~np!Qn8~x0!2Pn8~x0!

~2/p!tan~np!Qn~x0!2Pn~x0!
G .

~3.16!

In the limit k21→0 (n→0), the quantityg approaches

g1→~11x0!F2Q08~x0!2
1

~11x0!G , ~3.17!

where use has been made of Eq.~3.11!. From the definition
of Q0(x), one finds

g1→
11x0

12x0
, k1

1→k1F11
11x0

12x0
G . ~3.18!
J. Chem. Phys., Vol. 108,
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Again, the maximum rate enhancement can be expresse
terms ofNeff , the effective number of passive molecular sit
available to transportA to the reactive region occupied byB:

Neff5
4pR22S~x0!

S~x0!
5

11x0

12x0
. ~3.19!

We now seek a solution for the concentrationc(x) when
(k21R2/D).(1/4) and the value of the degreen of the Leg-
endre functions becomes complex. We display the imagin
part of this parameter explicitly:

n5 1
26 iAd,

where

k21R2

D
5

1

4
1d. ~3.20!

In this regime we choose forc(x) a linear combination
of the Legendre functions of the second kind which is r
and satisfies the boundary condition Eq.~3.3! thatc(x) is not
singular at the south pole:

c~x!5a$Q21/21 iAd~x0!1Q21/22 iAd~x0!%1
k1AP

K21
.

~3.21!

The constant ‘‘a’’ and keff is determined exactly as before
The quantityg2 , in this region, is found to be

g25
~11x0!D

k21R2 FQ21/21 iAd8 ~x0!1Q21/22 iAd8 ~x0!

Q21/21 iAd~x0!1Q21/22 iAd~x0!
G . ~3.22!

Accordingly we find for the rate enhancement factor:

g5H g15Eq. ~3.15! 0,~k21R2/D !,~1/4!

g25Eq. ~3.22! ~k21R2/D !.~1/4!
. ~3.23!

FIG. 5. Kinetic rate enhancement expressed as change in entropy of ac
tion DSd versus the kinetic parameterk21R2/D for the case of a sphere with
reactive regionS(x0)5pR2(12x0) for x05cosq050.98, 0.9, 0.8.
No. 3, 15 January 1998
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942 J. M. Deutch: Dynamical catalysis
IV. DISCUSSION OF RESULTS

The contribution of the present work is first, the dev
opment of a model that permits one to assess on a com
basis the phenomena of ‘‘dynamical catalysis’’ and seco
the application to different molecular framework geometri
The two most interesting geometries that we have consid
are the linear polymer chain~where our results agree wit
prior work of von Hippel and Berg2–4! and the new result for
a sphere with the reactive patch; this latter case is of con
erable interest in biophysical applications where a subst
molecule is seeking a reactive site on a larger macrom
ecule, usually a protein.

In Fig. 5 we present results for the sphere of radiusR
with a reactive patch of variable size. The enhanced
coefficient is plotted in terms of the increased entropy
activation DSd versus the parameterk21R2/D that deter-
mines the balance between diffusion along the sphere to
reactive patch and dissociation. Three patch sizes are
played, corresponding to cosq05x0 equal to 0.98, 0.90, and
0.80; the intercept for each curve isNeff as given by Eq.
~3.19!, 99, 19, and 9, respectively. Note that the three cur
have a similar decay pattern and decay relatively slowly.

In Fig. 6 we compare results for three different geo
etries, the linear polymer Eq.~2.9!, the circular patch Eq
~2.17!, and the spherical patch Eq.~3.23!, when the ratio of

FIG. 6. Kinetic rate enhancement expressed as change in entropy of a
tion DSd versus the kinetic parameterk21R2/D for the case of a reactive
region in a linear polymer ‘‘L, ’’ in the center of a circular disk ‘‘C, ’’ and at
the north polar region of a sphere ‘‘S. ’’ In each case the ratio of reactive
sites to total sites isNeff5100.
J. Chem. Phys., Vol. 108,
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reactive sites to passive sites available to transport subs
is Neff5100. Note the decay is slowest for the linear arr
because in the lower dimensionality situation, a slower d
fusion rate~relative to desorption! will still permit the active
species to reach the reactive region.

In this paper we have stressed the analogy of this
namical effect to catalysis. The analogy is not perfect, ho
ever, since the ‘‘catalytic’’ effect arises in comparing th
reaction

A1B→products

in free solution with the reaction

A1B/network→products.

The reactants are not identical and the products may
separate from the reaction complex at the same rate. Ne
theless, the analogy with catalytic activity is instructive, e
pecially because the situation corresponds closely to an
tive site embedded in a macromolecular framework tha
encountered so often in biological applications.

A situation that is more familiar from the perspective
heterogeneous catalysis is whereA and B react by one of
two pathways:~1! either directly in solution or~2! by first
diffusing to a solid network and then diffusing along th
network until there is a reactive encounter or dissociat
back into the solution.

If the product species easily separate from the netw
and if diffusion along the network forA andB is fast com-
pared to free diffusion in solution, then the system will e
hibit a rate enhancement. This catalytic effect is due to d
fusion along the chemically passive heterogenous netw
which provides the acceleration only through mass transp
This model is also under study.
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