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If a biomolecular chemical reaction is mass transport limited, the reaction rate can be accelerated by
embedding one of the reaction centers in a molecular framework. This framework acts as a lower
dimensionality surface along which the other reaction partner can travel. The rate enhancement can
be identified with an increase in entropy of activation. A model for this effect is constructed and
applied to a reaction center embedded in three molecular framework geometries: a linear chain, a
disk, and a polar reactive patch on a sphere. The new result for the reactive patch on a sphere is
relevant for enzymatic systems where substrates must find their way to a small reactive region.
© 1998 American Institute of Physid$0021-960608)01003-4

I. INTRODUCTION In this paper we examine a general mechanism that can

. . . . . increase the rate of encounter and separatio ahdB,
In the conventional picture of bimolecular reaction ki-

netics, molecular speciés andB reversibly form a reaction ki =ki(1+9), ki;=k_;(1+9), (1.6

complex (A/B) that passes through a transition state or in- L .
termediate to form product. The reaction mechanism is where the quantityg is the increment to the forward and
) backward rates of encounter. The effective rate coefficient

k 2
A+B= (AB)— product. (1. becomes
1 kl+ k2
After making the steady state approximation for the reaction Keit= K i +ky

complex intermediated[ (AB)]/dt=0, the effective bimo-
lecular rate coefficienky is found to be

.7

Formally, the enhancement to the rate cofficient can be ex-
pressed as an entropy of activation that we denote as

kiky
ke“:m' (1.2 ASy=kg In(1+0). (1.9
Ordinarily the rate-limiting step is the second step in theNote that the pre-equilibrium constant
reaction mechanism E@l.1) because the chemistry of mak- k, ki
ing and breaking bonds is usually slow compared to the dy- K= P (1.9
namics of reactants approaching one another. In this limit -1 -1
k_;>k, and is unaffected by the enhancement in the forward and reverse
K, rates. This rate enhancement has many of the attributes of a
Kef— P k. (1.3  catalytic effect so that we term itdynamical catalytic effect
-1

This dynamical effect is only present when mass transport is
The rate coefficient for the chemical step is assumed to haviie rate-limiting step and, in principle, it involves no modi-
the form: fication of the transition state.
The mechanism for enhancing the rate of encounter
ko=k3 exil —AFY/k,T], (14 arises when a reactive partner is embedded in a polymer, a
where k) is equal tok,r/h according to transition state two-dimensional framework, or on the surface of a sphere.
theory, k,, is Boltzmann’s constanfT is the absolute tem- The passive framework acts as a lower dimensionality net-
perature, and\F! is the free energy difference between thework that more efficiently transports the reacting substrate to
reaction complex AB) and the transition state. the reaction center.
Catalytic activity occurs through a lowering of the tran- Adam and DIbruck were the first to point out that there
sition state free energy relative to the reaction complex incould be a rate enhancement over free diffusion if the mass
termediate either by a change in the transition state enthalpyansport proceeds in successive stages of lower dimension-

AH' or entropyAS' difference. ality. Considerable work has been done on the case of a
In the opposing limit, when mass transport is rate limit- reactive site embedded in a linear polyAiémwith the work

ing, ky>k_; and of von Hippel and co-workers on the translocation of pro-
ok ) teins on DNA indicating the biological relevance of this

eff o1 ' problem.

Evidently, if a means is found to modify the rate of ap- The case of a reactive site on a spherical macromolecule

proach,k;—Kk; , then there effectively will be catalytic ac- is perhaps the one of greatest interest because of the rel-

tivity in this mass transport rate determining limit. evance to reactions at globular enzymes. For many years it
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<q_<'3l | q dPO
proguct o 12_ g 4 9 a4 . 5 =KiAP+ APy~ (a+k-1+ko)Po, (2.19
Po P1 Pn Pn+l .. PN-1 PN d Pn
Kl PA Nk_lpn WzklAP_Fq(Pnfl_‘—Pn+1)_(2q+k71)Pna
n=1,.N—1, (2.1b

FIG. 1. Kinetic mechanism for one reactive sBe=P, at end of linear
polymer chain oN passive sites. The shuttling rate between adjacent sitesis ¢ Pn
q and each site is in equilibrium with adsorptionffirom the surrounding ——=kAP+qPyn_1— (gt k_1)Py. (2.19
solution. dt
In Eq.(2.1) P, is the concentration of sites at position on the

has been recognized that there is a considerable differen é)lymer c_ham that.have bourd, .klAP S the flu?< OfA
rom solution that binds to each site, ;P is the dissocia-

between the diffusion-controlled rate to a spherical target. . .
molecule that is equally reactive over its entire surface and ‘%on rate OfA from S_'te n, andq deno';es the shuttling Tate
spherical target molecule that has only a reactive patch on i etween ad]ac_ent sites. The q“?”'“_“s the concentration
surface. Alberty and Hammeésirst pointed out the signifi- of each free site1 available for bindingA and this is pro-

cance of this difference for the diffusion rate to an enzymeoort:;)nal tohcqnclentrat(ljon @ S!nce’ t())y ar?sugp_tlgn,éhere IS
molecule and to its active site. The kinetics of diffusion- ©N€> Per chain ocated at positian=0; thusPo=B. Equa-

controlled reactions between chemically asymmetric mol-t';riézblc). cand be. trar;}sform(_alq into the .general fgmgj of Eq.
ecules when one or both of the translating and rotating reac{— ' r)] )l;mtr% ucing tdg.aum lary quantityy ., and adopt-
ing partners possesses an axially symmetric reactive regio'Hg the boundary condition
on a sphere has been investigated by Solc and Stockifiayer, Pni1=Pn. (2.10
Schmitz and Schurt® and Temkin and YakobsoH. o .
When the added complications of diffusion to a buried Rather than solve the set of finite difference equations,
active sité? are included, it becomes clear that there must b€ PasS toa contlnuqus descnph_on of the concentratlmp of
some means beyond free diffusion that permits a small sug20und along the chaio(x) assuming that the polymer sites
strate to find the reacting center of an enzyme. The possibif'® Separated by equal distangein aﬂdltlon we introduce
ity of free diffusion to the surface of the enzyme followed by the stéady state approximatiarP,/dt=0. Thus Eq.(2.1h
sliding on the lower dimensionality spherical surface to theP?©COMes
active site has been suggeéi?eaind the role of intermolecu- 0=k;AP+Dc"(x)—k_;c(x) (2.2

lar interactions in such a mechanism has been investidated. 5 .
with D=q6- for 0O<x<L=6N. The boundary condition at

the end of the chain Ed2.1d) is simply

The means for realizing this dynamic rate enhancement ¢'(L)=0. 2.3
is to place one of the reacting partners, 8ayin a molecular  The boundary condition at the origin where the reactive cen-
network that accelerates the frequency of encounters. Ther B is located, Eq(2.1a becomes
enhancement will be accomplished(if) the mobileA spe-
cies finds the molecular network fasigrecause it is larger 0=k AP+ E ¢'(0)— (k_1+kyp)c(0) (2.9
than the free reactin® center, and2) the mobile species ! o —rre ' '
rapidly diffuse along the molecular network to the reactingWhich states the steady state flux balancB:aEreeA arriv-
center. In sum, the molecular network serves as a lower di

ional path ¢ ’ . o find h oth ing from the solution plus bound arriving from the poly-
mensional pathway for reaction partners o ind €ach other., .. -hain either reacts or dissociates back into solution.

A. Reactive center at one end of a linear polymer The general solution to Eq2.2) which satisfies the
boundary condition E¢2.3) is

Il. THE MODEL

In this model the reactive cent8ris located at one end
of a polymer chain oN homogeneous units. Specigdinds c(x)=a cosh (x—L)N]+k;AP/k_4, (2.5

reversibly from solution to each polymer sitea=1,...N) . .
. L : : herex=+k_,/D. The constant ‘4" is determined from
d, if bound huttle to ad tes with rage If W e .
and, if bound/A can shuttle to adjoining sites with r the boundary condition Eq2.3); one finds

A reaches the end site, whereB is located it may react

irreversibly to form product. For simplicity, we assume that — Kok, AP/K_ 4
the on and off rates foA onto polymer sites is the same as & CoshAL)= D : (2.6
the rate of association and deassociatiorAcdnd B to the ko+k_q+ 5 N tanh(AL)

encounter complexAB) whenA andB are free in solution;
we also assume that the for A reacting withB whenB is  The appearance of product is given by
bound in the polymer is the same as wHgiis free in solu-
tion. See Fig. 1.

d[ produci kAP
The kinetic equations for this reaction mechanism are dt '

=k,c(0)=k,|a coshAL)+ K
-1

(2.7
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FIG. 2. Kinetic mechanism for one reactive siBe- P, in a polymer chain
with one sideN passive units and the other sid passive units. The
shutting rate between adjacent siteg iand each site is in equilibrium with
adsorption ofA from the surrounding solution.

This result should be compared with the kinetic equation:

dfproduci

at

Substitution of Eq.(2.6) into Eq. (2.7) and use of the fact
that the concentration d® is proportional toB, leads to an

expression fok. of the form of Eqs.(1.6) and (1.7) with

L tanh(AL)

T 5 (AL)
wherex=k_,/D.

In the limit of rapid diffusion along the chain, the maxi-
mum enhancement is exhibited. In this limx—0,
g—(L/8)=N, and thusk; =k,(1+N). Diffusion along the

KeriAB. 2.9

(2.9

939

FIG. 3. Kinetic mechanism for reactive regien<r <b in circular diskb
<r<R. Diffusion occurs on the disk of the adsorbed speéies

to the procedure used in the previous section. One obtains a
result forkgs of the general form Eqg1.6) and (1.7) with
L, tanh(AL;) L, tanh\L,)
B P
Again the maximum enhancement is found for rapid diffu-

sion along the chain. In this limik—0, g—(L,+L,)/5,
andkf=k1(1+ N1+ Nz)

(2.13

C. Reactive site at the center of a disk

The dynamical catalytic effect will be exhibited when
the reactive site is embedded in two- or three-dimensional
structures which facilitate mass transport. As a preliminary
example we consider a circular reactive region of radius

chain is so rapid that each polymer site effectively presents gontainingB embedded in a disk<r <R that contains par-
higher concentration of to the reactive site located at the ticles P. The substratéA binds reversible toP (on both

end of the chain.
In the opposite limit of slow diffusiomy —%«, g—0, and

ki —k;. As expected, the presence of the polymer chain

makes no difference to the rate of reaction.

B. Reactive center internal to a linear polymer chain

In this model the reactive centBris located at position
n=0, which is attached to two polymer chains of length

andN,. See Fig. 2. In the continuous limit the appropriate

steady state equations for each chain are
0=k,;AP+Dc{(x)—k_ici(x), i=1,2, (2.10
with the boundary condition at the chain engf{L;)=0, i

=1,2. At the origin, where the reactive site is located, the

sideg and may diffuse to the central reactive region. See
Fig. 3.

The diffusion equation governing the distributionffat
steady state on the disk is

0=k;AP Dd  den) k b<r<R
=kiAP+ — oo 1 —g——K-1C(r), r<Rr,

(2.149
with a reflecting boundary condition at the outer edge
c'(R)=0.

At the inner boundary the total flux of arriving par-
ticles is balanced by the flux & particles that depart due to
reaction or disassociation back to the solution:

0= b2k, AP+27bDc’ (b)— (K_; +ky)c(b) wb2.
(2.19

boundary condition is the balance between incoming andror simplicity we have assumed that the concentratioA of

outgoing flux:

D D
OzklAP+ E C:IL(O)"' E Cé(O)—(k_l-l— kz)Cl(O)

(2.11

with the auxiliary conditiorc,(0)=c,(0) (Fig. 3.
The general solution for the concentrationfoparticles
on each chain is of the following form:

ci(x)=a; cosh (x—Lj)A]+k;AP/k_;. (2.12

in the reactive region is uniform and equal to the value at the
boundary between the reactive region and the disk.

The solution to the diffusion equatidiEq. (2.14] that
satisfies the reflecting boundary conditionr atR is

15(AR) k,AP

c(r)=a |0(7\r)—m KOO\I') +T1’

b<r<R,

(2.19

whereKy(z) andly(z) are modified Bessel functions and, as

The constants; anda, are determined from the boundary before,A=k_,/D. The constant ‘4" is determined by

condition at the origin, Eq2.11) in a manner exactly similar

the condition at the reactive boundary b, Eq.(2.195 and
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. product where the chemically reactive patch occupies the north polar
' Txex o region 0<9<,. In terms of the variablx=cosd, Eq.
3. is
0 kAP+D d 1-x° dotx) K
Aln — Rl Ezd_x( —X ) dX ,1C(X),
Solution
Xo<k<—1. (3.2
The boundary condition at the south polar regior —1
must be
FIG. 4. Kinetic mechanism for the reactive regi@on the sphere. Diffusion lim (1— XZ)C' (X)—0. (3.3
of speciesA absorbed on the surface to the reactive region. X —1

Obtaining a solution for this case is a bit more compli-
ket is identified from the reactive terkpc(b). One findskys  cated than the cases previously considered because diffusion
of the form given in Egs(1.6) and (1.7) with is taking place on a curved surface. We find a solution in
terms of solutions to the Legendre equation

2D\ Io(AD)KGAR) =1 5(AR)K (A D) L
97 T b1 | 1oND)KG(NR) — [{(AR)Ko(Ab) | @17 (1=x*)Wy(X) = 2xW,(X) + »(v+ 1)W,(x)=0. (3.4
In the limit of rapid diffusion\—0 and the modified This equation has two solutions on the eul <x<+1 that
Bessel functions approach are denotedP,(x) andQ,(x), Legendre functions of degree
2 v and order zero of the first and second kind. A solution to
|o(Z)—>< 1— z Ko(2)— —In(z). (2.1 Eq.(3.2) is obtained as a linear combination of these Leg-
4 endre functions:
Thus in this limit one findg—[(R%>—b?)/b?] and accord- K,AP
ingly c(X)=ay(v)P,(x)+ax(v)Q,(X)+ T (3.9
2_RK2
Ky =kq| 1+ M} (2.19  provided that
b 2
Here again the maximum rate enhancement can be expressed y(p+1)=— k_[l)R (3.6

as ki =ki[1+ Ngg], where Ny is the effective number of

passive molecular sites available to transplottio the reac-  The particular linear combination must be taken to satisfy the

tive region containing. The effective numbeN is simply  poundary condition Eq(3.3. Note thatr can be complex.
the ratio of the passive molecular area to the reactive aregor the region where is real
wb? since the sites are assumed to be uniformily distributed. )

In the opposite limit of slow diffusion one may show o<k71R <l 37
g—0 andk; —k,, as expected. D 4’ '

IIl. REACTIVE SITE ON A SPHERE we select the positive square root for

2
The dynamical catalytic effect under consideration here p=— E+ 1 /1_ 4k-4R _ 3.9
is the rate enhancement due to sliding along the unreactive 2 2 D

portion of the sphere to the chemically reactive region

o ; . SinceP ,(x) andQ,(x) are singulafx] asx— —1:
compared to the situation where the unreactive portion of the /) Q(x) gularx] -

sphere simply acts as a reflecting barfir. sin( vr) 1+x
We treat the diffusion of particled to the sphere and P,(x)— In| ——|+m cot{wm)+ const,
dissociation of particleé from the sphere as a kinetic equi- (3.9)

librium step and focus attention of the diffusion of particles

A onthe sphere surface to the reactive region occupied by Q,(x)—

particlesB. See Fig. 4. The combined problem of diffusion

to andonthe sphere that has a chemically reactive region ca@ne must choose a particular linear combination that cancels

be analyzed directly but requires numerical computation. the singularity in order to satisfy EQ3_3)_16 We choose the
The steady state diffusion equation for the concentratiomparticular combination

of particlesA on the surface of the sphere of radiRss

1+x
In( 5 ) —ar tan vw)+cons},

sin(vir) cogvm) k. AP
Ok APL D d s de(9) c(x)=a — —— Q,(X) = —%— Pu(X) |+ T
AT R sing do O Y Tdo (3.10
—k_1c(9), V<9<, (3.)  which one can verify satisfies E¢3.3) for all v#0.
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We must be concerned with= 0. The limitv—0 arises  Again, the maximum rate enhancement can be expressed in

whenk_;—0; in this limit, terms ofNg, the effective number of passive molecular sites
1 1/dP.(x) K available to transpor to the reactive region occupied By
v 1
c(x)—a) Qo(X) = 5 Po(X) — 5 (T) FJ P N _ATR’—S(X) _ 14X (3.19
(3.11 ef S(Xo) 1-Xo '
SincePy(x)=1 and® We now seek a solution for the concentratifix) when
(k_;R?/D)>(1/4) and the value of the degreeof the Leg-
dP,(x) 1+x . : . .
=|n| —= (3.1  endre functions becomes complex. We display the imaginary
dv »=0 2 part of this parameter explicitly:
it is necessary to choose= — (2k;APR?/D) to cancel the p=1+j \/a
singularity ath=k_;=0. Thus, in the limitr— 0, the gen-
eral solution Eq(3.10 approaches where
2
K,APR[ [1+4x kaR® 1
c()=~5— |In| =] ~2Qo(x) (3.13 o —z7¢d (3.20
with Qo(x)=12 In [(1+x)/(1-x)] and ¢(—1)=0. One may In this regime we choose far(x) a linear combination

verify that Eq.(3.13 is correct by direct integration of the Of the Legendre functions of the second kind which is real
original differential equation foc(x), Eq.(3.2), with k_, set and satisfies the boundary condition E8.3) thatc(x) is not

equal to zero. singular at the south pole:

In the general case when ; is not equal to zero, the JAP
constanta in Eq. (3.10 must be determined from the bound- c(X)=a{Q_1/o+ia(Xo) + Q_1o—i @ Xo)} + K
ary condition atx=xq. As usual, the condition at the reac- -1 (3.2

tive boundary is found by equating the flux &f into the . .
region 0<x<x, with the flux leaving by reaction and disso- The constant &” and ke is determined exactly as before.
ciation: The quantityg,, in this region, is found to be

Q1241 @(X0) + QL1 @(Xo)
Q- 12+ia@(Xo) + Q-1/2-ia(Xo)

Accordingly we find for the rate enhancement factor:

0=k;APSxg) — 27D (1—x3)c’ (Xo) (1+X%)D
02= K R2
—(k_1+Kkz)c(X0)S(Xo), (3.19 -1

where S(xg) is the area of the reactive regio8(xg)

=27R?(1—X,) and again we have assumed that the concen- {gl: Eq. (3.15 0<(k_,R%D)<(1/4)

tration of A in the reactive region is uniform and equal to the g= _ 2

value at the boundary. 92=Eq. (322 (k-4RYD)>(1/4
Once the constantd” is determinedkg is identified

from the reactive fluxk,c(Xy). The effective rate coefficient

is of the form of Eqs(1.6) and(1.7) and the quantity is AS4/Kg versus K_,R?/D -- various x,

. (3.22

(3.23

_ (1+x0)D | (2/m)tan(vm)Q,(Xo) = P1(Xo) 3
PTKCR [(@mytanvm)Q,(x0)— P, (o) | o1 Xo = €08 (0,)
3.1
with the complex quantity given by Eq.(3.9) in the regime
0<(k_,R?/D)<(1/4). Alternatively, using Eq(3.6) one 2
' ASq/Kp
finds
_ (1+xq) | (2/m)tanv7)Q,(Xo) — P,(Xo)
977 007D | (2mtanvm)Q,(xg)— P,(xo) |’ xo
(3.16 !
In the limitk_;—0 (»—0), the quantityg approaches 0.98
0.90
gl—>(l+XO) ZQO(XO)—m , (317) o | ‘ ’ 0.80
0 10 20

where use has been made of E8.11). From the definition

2
of Qqu(x), one finds k_4R%/D

1+Xo 1+ X FIG. 5. Kinetic rate enhancement expressed as change in entropy of activa-
01— , kf —kq| 1+ . (3.18 tion AS, versus the kinetic parameteer ;R?/D for the case of a sphere with
1-Xo 1-Xg reactive regiorS(xq) = mR?(1—x,) for xo=Cc0s9,=0.98, 0.9, 0.8.
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AS/kg Versus » R? /D reactive sites to passive sites available to transport substrate
is Ner=100. Note the decay is slowest for the linear array
3 because in the lower dimensionality situation, a slower dif-
Ne =100 "L B ] Linear fusion rate(relative to desorptionwill still permit the active
| species to reach the reactive region.
" @ Circle In this paper we have stressed the analogy of this dy-
namical effect to catalysis. The analogy is not perfect, how-

@ Sphere ever, since the “catalytic” effect arises in comparing the
nge

AS/Kg reaction

A+ B—products
"L" in free solution with the reaction
e A+ B/network—products.

The reactants are not identical and the products may not
separate from the reaction complex at the same rate. Never-
theless, the analogy with catalytic activity is instructive, es-
o : . pecially because the situation corresponds closely to an ac-
0 10 20 30 tive site embedded in a macromolecular framework that is
k_fR2 /D encountered so often in biological applications.
A situation that is more familiar from the perspective of
FIG. 6. Kinetic rate enhancement expressed as change in entropy of activileterogeneous catalysis is whekeand B react by one of
tion ASy versus the kinetic parametkr ;R%/D for the case of a reactive  two pathways:(l) either directly in solution oK2) by first
region in a linear pqumer L',” in the center of a circular disk_C,” and aF diffusing to a solid network and then diffusing along the
the north polar region of a sphereS”" In each case the ratio of reactive . . . . ..
sites to total sites iBlyg—100. netwo_rk until therg is a reactive encounter or dissociation
back into the solution.

If the product species easily separate from the network
and if diffusion along the network foh andB is fast com-
pared to free diffusion in solution, then the system will ex-

The contribution of the present work is first, the devel- hibit a rate enhancement. This catalytic effect is due to dif-
opment of a model that permits one to assess on a commdHsion along the chemically passive heterogenous network
basis the phenomena of “dynamical catalysis” and secondwhich provides the acceleration only through mass transport.
the application to different molecular framework geometries.This model is also under study.

The two most interesting geometries that we have considered
are the linear polymer chai(where our results agree with 1G. Adam and M. Delbrook, irStructural Chemistry and Molecular Biol-

: : - ogy, edited by A. Rich and N. Davidsoffrreeman, San Francisco, 1968
prior work of von Hippel and BeI?QA) and the new result for 20. G. Berg, R. B. Winter, and P. H. von Hippel, Biochemisg®, 6929

a sphere with the reactive patch; this latter case is of consid- (1981 R. B. winter and P. H. von Hippelbid. 20, 6948(1981; R. B.
erable interest in biophysical applications where a substrateWinter, O. G. Berg, and P. H. von Hippéhid. 20, 6961(1981).

molecule is seeking a reactive site on a larger macromol—ig- g BBef9| Cgecm-BPhyfl 473‘(19;8; Eéigpo')égizé%;féglag%}) _
ecule, usually a protein. - G. Berg and C. Bomberg, Biophys. Chefn 7 '

; 8, 271(1978; 9, 415(1979.
In Fig. 5 we present results for the sphere of radfus 53 M. Schurr, Biophys. Cheng, 413(1979.
with a reactive patch of variable size. The enhanced raté€’R. Schranner and P. H. Richter, Biophys. Ch@n135(1978.

.. . . . 7
coefficient is plotted in terms of the increased entropy of ,R- A Alberty and G. G. Hammes, J. Phys. Chégl, 154 (1958.
L 2 K. Solc and W. H. Stockmayer, J. Chem. Phyd, 2981 (1971); Int. J.
activation ASy versus the parametde_R“/D that deter- Chem. Kinet5, 733(1973.

mines the balance between diffusion along the sphere to thex. s. schmitz and J. M. Schurr, J. Phys. Chéte, 534 (1972.
reactive patch and dissociation. Three patch sizes are dig3J. M. Schurr and K. S. Schmitz, J. Phys. Che@, 1934(1976.

; _ 113, 1. Temkin and B. I. Yakobson, J. Phys. Che8, 2679(1984.
played, corresponding to cdk=Xx, equal to 0.98, 0.90, and 2R Samson and J. M. Deutch. J. Chem. PIggs 285 (1978,

0.80; the intercept for each.curve Merr as given by Ed.  1s¢  kyo-Chen and J. Shou-Ping, Sci. SIrT, 664 (1974).
(3.19, 99, 19, and 9, respectively. Note that the three curves$'p. H. Richter and M. Eigen, Biophys. Chef.255 (1974.
have a similar decay pattern and decay relatively slowly. 15M. Abramowitz and I. A. Steguntiandbook of Mathematical Functions

: : _ (National Bureau of Standards, Washington D.C., June }19BHdap. 8.
In Fig. 6 we compare results for three different geom 18] thank Steven Lippard for interesting discussion about possible experi-

etries, the linear polymer Ed2.9), the circular patch Ed.  mental consequences and Francis Low for helpful discussion about the
(2.17), and the spherical patch E.23, when the ratio of properties of Legendre functions of imaginary degree.

1 g

IV. DISCUSSION OF RESULTS
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