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The entropic component of the free energy of assembly for multiparticle hydrogen-bonded aggregates
is analyzed using a model based on balls connected by rigid rods or flexible strings. The entropy
of assembly, ∆S, is partitioned into translational, rotational, vibrational, and conformational
components. While previously reported theoretical treatments of rotational and vibrational
entropies for assembly are adequate, treatments of translational entropy in solution and of
conformational entropysoften the two largest components of ∆Ssare not. This paper provides
improved estimates and illustrates the methods used to obtain them. First, a model is described
for translational entropy of molecules in solution (∆Strans(sol)); this model provides physically
intuitive corrections for values of ∆Strans(sol) that are based on the Sackur-Tetrode equation. This
model is combined with one for rotational entropy to estimate the difference in entropy of assembly
between a 4-particle aggregate and a 6-particle one. Second, an approximate analysis of a model
based on balls connected by rods or strings gives an approximate estimate of the maximum
contribution of conformational entropy to the difference in free energy of assembly of flexible and
of rigid molecular assemblies. This analysis, although approximate, is easily applied by all types
of chemists and biochemists; it serves as a guide to the design of stable molecular aggregates, and
the qualitative arguments apply generally to any form of self-assembly.

We outline a method for estimating the entropy of
association of multiparticle, hydrogen-bonded aggregates
in organic solvent. The model we use in this method is
closer to physics than it is to chemistry: molecular detail
is reduced to either isolated balls or balls connected by
rigid rods or flexible strings. Although greatly simplified
relative to the complexity of complete molecular detail,
the model has broad utility: we illustrate the application
of this model (which we call the “ball-rod-and-string” or
BRS) model by estimating the differences in the entropies
of association of three assemblies based on the cyanuric
acid (CA)-melamine (M) lattice (Figure 1).1-5 All three
assemblies share the common feature that they are
composed of three CA moieties and three M moieties,
interacting through 18 hydrogen bonds in a planar
arrangement. They differ in the number, structure, and
conformational flexibility of the groups that connect two
or more of the melamine moieties covalently. The
simplest assembly is CA3M3 (1); this aggregate is com-
posed of three CA molecules and three M molecules. The
aggregates hub(M)3:3CA (3) and flex(M)3:3CA (2) are
composed of three CA molecules hydrogen-bonded to
tris(melamine). In hub(M)3:3CA, the groups that link the
three melamines covalently have few degrees of torsional

freedom; we classify these linking groups (“tethers”) as
“rigid”. In flex(M)3:3CA, the covalent tethers are com-
posed of a large number of freely rotating bonds; we
classify these tethers as “flexible”.
In analyzing the stabilities of these types of aggregates,

we start by assuming that hydrogen-bonding interactions
dominate the enthalpy of interaction in all three as-
semblies and that the enthalpies of assembly for all three
are the same (all three are composed of 18 hydrogen
bonds). The observed differences in the stabilities, with
this assumption, is due to differences in the entropies of
assembly. The goal of this work is to create a working
model for estimating the entropy of assembly for these
multiparticle aggregates (and, by extension, for others).
The paper is organized into two sections. In the first
section, we describe our approach to evaluating the
entropy of association of rigid particles (particles that
have no torsional degrees of freedom). This section first
reviews established methods for estimating the vibra-
tional and rotational entropy and the classical method
for estimating translational entropy. We then describe
a method of estimating a substantial, physically intuitive
correction to the value for translational entropy esti-
mated by the Sackur-Tetrode equation for molecules in
solution. We use these methods collectively to estimate
the difference in the entropy of association of aggregates
1 and 3. In the second section, we describe an approach
to evaluating the entropy of association for conforma-
tionally flexible particles (particles for which a number
of torsional degrees of freedom exist). This section
introduces a simple and approximate, but conceptually
useful, model for conformational entropy based on geo-
metric shapes and their volumes. In this model, mol-
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ecules are represented at the level of balls attached to
strings (flexible) or rods (rigid). We use this model to
estimate the difference in the entropy of association of
aggregates 2 and 3.

Entropy of Association for an Aggregate of Rigid
Particles

At the present time, it is impractical to estimate the
entropy of association for structurally complex multipar-
ticle assemblies using computer simulations: the number
of translational and rotational degree of freedom is too
high to sample reliably.6 Absolute values for ∆G of
assembly cannot, therefore, be predicted reliably using
any computational package.6 Instead, we use a theoreti-
cal model that estimates the changes in entropy that
accompany aggregation by partioning the total entropy
into four components and evaluating each component
separately.
We partition entropy into translational, rotational,

vibrational, and conformational components (eq 1). For

rigid particles, ∆Sconf is, by definition, zero. Molecular
and physical characteristics affect the translational,
rotational, and vibrational entropies of rigid particles.
Figure 2 suggests the relative magnitudes of each of the
components of entropy for multiparticle, self-assembling

systems of molecules and of the approximate uncertain-
ties in each of these values based on current theoretical
models.7,8 The value of the translational entropy of
assembly is always less than the value estimated using
traditional methods, as we will dicuss in detail later.

(6) Edholm, O.; Berendsen, J. C. Mol. Phys. 1984, 51, 1011-1028.

(7) Steinberg, I. Z.; Scheraga, H. A. J. Biol. Chem. 1963, 238, 172-
181.

(8) Williams, D. H.; Cox, J. P.; Doig, A. J.; Gardner, M.; Gerhard,
U.; Kaye, P. T.; Lai, A. R.; Nicholls, I. A.; Salter, C. J.; Mitchell, R. C.
J. Am. Chem. Soc. 1991, 113, 7020-7030.

Figure 1. Molecular structures and simplified ball attached to rods and strings (BRS) schematic representatives of the aggregates
3CA:3M (1), flex(M)3:3CA (2), and hub(M)3:3CA (3) and of their formation from their constituent pieces. See refs 1-5 for for
information regarding the synthesis and characterization of these aggregates.

∆S ) ∆Strans + ∆Srot + ∆Svib + ∆Sconf (1)

Figure 2. Approximate contributions of translation, rota-
tional, vibrational, and conformational components to the total
entropy of assembly. The uncertainties in each of these values
are indicated by the hash marks, and their magnitudes are
justified in the text. The chart indicates that the value of
translational entropy is always less than the estimate (dis-
cussed in detail in the text) by some unknown, but large (∼20-
40%) amount. The uncertainty in the estimated value of the
conformational entropy is as large as the estimate itself.
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Since no good model exists for conformational entropy,
the uncertainty in the estimated value is as large as the
estimate. The following sections justify the assertions
in this figure.
Translational Entropy. The magnitude of the trans-

lational entropy, Strans, reflects the possible number of
unique arrangements of a collection of molecules in a
given space (Sackur-Tetrode equation; eq 2);9 quantita-

tively, Strans is related to the logarithm of that number.
The value of Strans correlates positively with temperature
(T, K) and mass (M, g/mol) of the particle and correlates
inversely with the concentration [X] (mol/L) of the
particles. The first numerical term in eq 2, 10-15/2,
converts units of m3 and kg into L and g, respectively.
Equation 2 also includes Plank’s constant, h (J s2), the
Boltzmann constant, k (J mol-1 K-1), the fundamental
constant e (unitless), and Avogadro’s number NA (unit-
less). The expression within the brackets is unitless. The
value of the constant term in the numerical evaluation
of eq 2 depends on the choice of standard state and
therefore on the value of [X]: as a gas, the standard state
is [X] ) 4.46 × 10-2 mol/L (1 mol at 1 atm occupies 22.4
L) and the constant is 36.9 J mol-1 K-1 as shown; as a
pure liquid, the value of [X] depends on the density of
the liquid at 25 °C and the value of the constant is
different for different substances (for typical organic
solvents, [X]liquid≈ 10 mol/L, and the value of the constant
is -8.0); and as a solution, the standard state is [X] ) 1
mol/L and the constant is 11.1 J mol-1 K-1; Equation 2
is a classical (i.e. nonquantum mechanical) expression
and is not valid at low temperatures (T < 10 K) where
quantum effects on translational entropy are often
important.

Equation 2 successfully predicts the entropy of mona-
tomic gasessthat is, particles whose entropy consists
solely of translational entropysat 1 atm at 298 K (Table
1). The translational entropy of a molecule in the liquid
or solution phase is, however, significantly lower than
that predicted using eq 2 (Table 1 gives 7 examples).10-12

Qualitatively, the principal reason for the failure of eq 2
to predict the translational entropy of a liquid accurately
is that it ignores molecular volume, Vmolec (defined as that
enclosed by the van der Waals surface of the molecule);
in a liquid, Vmolec is a significant component of the total
volume, Vtotal. We discuss this discrepancy quantitatively
later.
In summary, there is still a substantial uncertainty

regarding the value of translational entropy in solution.
We later introduce a model that predicts translational
entropy in solution more accurately than does eq 2 by
using an extension of previously described free volume
theory.
Rotational Entropy. The magnitude of the rota-

tional entropy, Srot, of a particle is related quantitatively
to the logarithm of the number of unique rotational
positions that are open to it (eq 3a).13 The three principal

moments of inertia for the molecule are IA, IB, and IC (kg
m2). As in eq 2, the expression within the brackets of eq
3 is unitless. We define the molecular density of a

(9) Gurney, R. W. Introduction to Statistical Mechanics, 1st ed.;
McGraw-Hill Book Company: New York, 1949.

(10) Fujiwara, H.; Ohtaku, I.; Takagi, T.; Murata, S.; Sasaki, Y.Bull.
Chem. Soc. Jpn. 1988, 61, 1853-1856.

(11) Perlman, M. L.; Rollefson, G. K. J. Chem. Phys. 1941, 9, 362-
369.

(12) A value of R ln 2 was added to the value predicted by eq 2 for
all alkali metals. This correction accounts for the 2-fold degenracy of
the lowest electronic state in these metals. A discussion of this effect
can be found in Chapter 4 of Gurney, R. W. Introduction to Statistical
Mechanics; McGraw-Hill: New York, 1949.

(13) The spacing between rotational energy levels is sufficiently
small (∆Erot , kT) at temperatures greater than ∼10 K that this
classical expression is accurate, and quantization of the energy levels
can be ignored.

Table 1. Comparison of the Absolute Values of Experimental Entropies of Monoatomics at 1 atm, T ) 298 K, to Those
Values of Calculated Using Eq 2 (the Sackur-Tetrode Equation) or Using the Free Volume Model (See Text for Details

of This Calculation)a

Sackur-Tetrode model free volume model

atom
standard
state

exp S
(J mol-1 K-1)b

calc S
(J mol-1 K-1)

∆S
(J mol-1 K-1)c

calc S
(J mol-1 K-1)

∆S
(J mol-1 K-1)

He gas 126.06 125.98 0.92 125.98 0.92
Ne 146.23 146.23 0.00 146.23 0.00
Ar 154.72 154.68 -0.04 154.68 -0.04
Kr 163.97 163.93 -0.04 163.93 -0.04
Xe 169.58 169.54 -0.04 169.54 -0.04
Li 138.6 137.9 -0.7 137.9 -0.7
Na 153.64 153.55 -0.09 153.55 -0.09
K 160.2 159.5 -0.7 159.5 -0.7
Rb 170.0 169.2 -0.8 169.2 -0.8
Al 164.43 164.68 0.25 164.68 0.25
Ag 172.88 172.84 -0.04 172.84 -0.04
Hg 174.89 174.81 -0.08 174.81 -0.08
He aqd 55.6 99.6 44.0 40.0 -15.6
Ne 66.1 119.8 53.7 60.3 -5.8
Ar 59.4 128.4 69.0 68.9 9.5
Kr 61.5 137.7 76.2 78.2 16.7
Xe 65.7 143.3 77.5 83.8 18.1
Hg liquid 77.4 113.3 35.9 35.9 0.0
a Experimental values are taken from the CRCHandbook of Chemistry and Physics, 70th Ed., 1990 (pp D15-65). b Exp S ) experimental

entropy. c∆S ) experimental value minus calculated value (calc S). d 1 mol/L in water.

Strans ) R ln[(10-15/2

NA
4[X] )(2πMRTe5/3

h2 )3/2] )

36.9 + 12.5 lnM + 12.5 ln T (2)

Srot ) R ln[π1/2(8π2RTe
h2N0

)3/2 (AAIBIC)
1/2] (3a)
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molecule as its molecular mass (kg/molecule) divided by
its value of Vmolec (m3). The molecular density of organic
molecules composed primarily of C, N, and Osfor ex-
ample, cholesterol, glucose, benzoic acid, insulin, M, and
CAsis approximately constant: from this constant value,
we relate the mass of a molecule to the moment of inertia
of a sphere of equal mass (in which case Isphere ) IA ) IB
) IC) (eq 3b).14 We combine eqs 3a and 3b to give 3c and
evaluate its constants. The value of rotational entropy

in solution is, in most cases, the same as that in the gas
phase, and the uncertainty in its magnitude is low
(typically, the estimate is within 2% of the experimental
value).15,16
Vibrational Entropy. The magnitude of the vibra-

tional entropy, Svib, of a molecule reflects the character-
istic frequencies, ν0 (cm-1) of all its vibrational motions.
High frequency (>100 cm-1) motions, including bond
stretches, bends, and wags, are modeled well as springs,
with a characteristic spring constant; for high-frequency
motions, only the lowest vibrational state is occupied at
room temperature and the vibrational energy at that
state is (1/2)hνo. The Einstein equation provides an exact
relationship between Svib and the value of νo (eq 4). The
Svib is a function of the values of the variables νo and T
and the fundamental constants h, R, the speed of light c
(cm/s), and k.

The total vibrational entropy of a molecule is the sum
of all its Svib, ΣSvib. For the association of two molecules
of A to form bimolecular complex A2, the change in
vibrational entropy ∆Svib (J mol-1 K-1) is defined as ∆Svib

) ΣSvib(A2) - 2ΣSvib(A). Figure 3 illustrates that the
magnitudes of TSvib for almost all vibrations in a molecule
at 25 °C are very small (typically much less than 2 kJ/
mol). Furthermore, it is physically likely that the vast
majority of high-frequency vibrations will be unaffected
by assembly. We therefore assume in this work that the
difference between small values is also small and that
the value of ∆Svib for molecular self-assembly is a
negligible component of the overall change in entropy,
and we do not consider it further.17

A Better Model for Translational Entropy. Before
describing our model, we further examine the assump-
tions of the Sackur-Tetrode equation (eq 2) in an attempt
to understand why it yields grossly inaccurate estimates
of translational entropy in condensed phases. The Sack-
ur-Tetrode predicts a value for the translational entropy
of a molecule dissolved in solution at 1 mol/L that is
larger than the experimental value by a substantial
amount (often >50% larger). Table 1 shows that for
monatomics (species whose entropy consists solely of
translational entropy) the Sackur-Tetrode equation is
accurate in the gas phase but inaccurate in either liquid
or solution phases. Several examples of such overpre-
diction are given in Table 1 for atoms in solution whose
entropy consists solely of translational entropy.12 Since
the change in translational entropy is the single largest
component of the overall change in entropy during
multiparticle molecular self-assembly, a large error in
translational entropy of a single component results in a
large error in the change in overall entropy for the
assembly process. From a synthetic chemist’s perspec-
tive, it is important to judge accurately the gain from
covalently joining separate particles in order to reduce
translational and rotational entropic costs of assembly,
because such covalent connection comes at substantial
synthetic effort.
The Sackur-Tetrode equation fails in a fundamental

assumption; that is, molecules have no volume. This
assumption is reasonable in the gas phase where the
volume occupied by the molecules (that is, the molecule’s
own volume) is typically very small compared to the total
volume. It is unreasonable in the condensed phase where
most of the volume is occupied by the solvent.
We propose a method of correcting this overly large

value that is centered on the idea of free volume in
condensed phases;18-20 free volume theory explicitly
accounts for the volume occupied by the molecules. Our
treatment differs from the free volume treatments pro-
posed previously in one way: previous treatments at-
tempted to use the free volume of a pure liquid (a solvent)
to calculate the translational entropy of the molecules of
solvent. We propose using the translational entropy of
the solvent to estimate the translational entropy of a
molecule dissolved in that solvent. This extension of free
volume to estimation of translational entropies of mol-
ecules in solution is not rigorously correct because, in its
simplest form, it assumes that the shapes and the sizes

(14) For molecules of regular composition (in our case, those that
are composed predominatly of C, N, and O), we can assume a constant
molecular density. The value of the moment of inertia, I (kg/m2), for a
solid sphere is (2/5)MR2, whereM is the mass (kg) and R is the radius
of the sphere (m). The value of R for such a species of uniform density
can be estimated from the value of M. For proteins, for example, I )
(8.306 × 10-49 M2 (kg m2), where M is in g/mol.

(15) Guggenheim, E. A. Trans. Far. Soc. 1941, 37, 97-105.
(16) Wertz, D. H. J. Am. Chem. Soc. 1980, 102, 5316.
(17) From previously published work on the CA‚M rossette, we

estimate that the vibrational frequency for umbrella motion (the most
soft of the soft modes in this structure) is >50 cm-1 and therefore
contributes negligibly to the value of ∆Sass for aggregates 1-3.

(18) Pierotti, R. A. Chem. Rev. 1975, 78, 717-726.
(19) Abraham, M. H. J. Am. Chem. Soc. 1981, 103, 6742.
(20) Frank, H. S. J. Chem. Phys. 1945, 13, 478-492.

Isphere ) 8.3 × 10-49 M2 (3b)

Stot ) R ln[π1/2(8π2RTe
h2N0

)3/2Isphere3/2 ] )

25.0 lnM + 12.5 ln T - 74.1 (3c)

Svib ) R(hcνokT )(exp(hcνokT ) - 1)-1

-

R ln(1 - exp(-
hcνo
kT )) (4)

Figure 3. Value of vibrational entropy multiplied by tem-
perature, TSvib (J mol-1 K-1) at 298 K as a function of
vibrational frequency (cm-1), as predicted using the Einstein
equation (eq 4). The thermal energy at 298 K is ∼2.5 kJ/mol.
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of the molecules of solute are the same as those of the
molecules of solvent. We describe these limitations and
assumptions in detail later. Nevertheless, it provides a
substantiallymore accurate estimate of the translational
entropy in solution than eq 2 and is therefore useful both
numerically and conceptually to organic chemists inter-
ested in the design of multiparticle assemblies and to
biochemists that study self-assemble (e.g. the spontane-
ous assembly of tobacco mosaic virus). We divide the
remainder of this section into two parts. In the first part,
we describe free volume theory as it is currently under-
stood and apply it to the estimation of the translational
entropy of molecules of solvent within a pure liquid. We
describe how the accuracy of this model is tested in its
ability to predict the experimental values for the entropy
of condensation. In the second part, we extend this model
to solutions and describe how this extended model can
be used to estimate the translational entropies of mol-
ecules of interest dissolved in solution.
(a) Free Volume Theory. We have asserted that the

volume open to a molecule in a liquid is substantially
lower than the total volume. There are in principle two
methods to calculate this lower volume in a liquid. One
method accurately accounts for observed differences in
the translational entropy in solution and the other
method does not. We will first describe the method that
does not because it is conceptually simpler and leads
naturally into a discussion of the second method.
(i) Nonexcluded Volume, Vnonexcl. The volume avail-

able to the molecules of a pure liquid can be defined as
the nonexcluded volume, Vnonexcl ) Vtotal - Vmolec. That

is, this nonexcluded volume is that which is not occupied
(or excluded) by the volume defined by van der Waals
surfaces of the molecules. For typical organic solvents,
the nonexcluded volume represents∼20-25% of the total
volume. To put this number into perspective, the value
of Vnonexcl for organic crystalsssubstances in which trans-
lation (presumably) does not occursis ∼25% as well.21
That is, since the unoccipied volume in both solids and
liquids is approximately the same, we conclude that,
typically, solids do not expand or contract significantly
on melting. We will show later that the value for Vnonexcl

does not account accurately for the experimentally ob-
served translational entropies in liquids. Since this
model is inaccurate, we will not pursue it further and
will next describe a more accurate model than it for
estimating the available volume in a liquid.
(ii) Free Volume, Vfree. The volume available to the

molecules of a pure liquid can be defined by its charac-
teristic free volume, Vfree. The definition of free volume
in statistical mechanics is the volume occupied by the
center of mass of one molecule of liquid moving randomly
in a cage that is defined by its nearest neighbors (Figure
4). This definition describes the volume of space open
to a molecule of liquid in terms of the volume of space
accessible to its center of mass. It is assumed in such a
model that the liquid is described well by a regular array
of hard cubes (or spheres, or other shapes), where the
volume of each cube is equal to the molecular volume,

(21) The packing fraction in organic solids appears to vary much
more widely than that for liquids and is <10% in one limit (diamond
and graphite) and can be <65% (buckyballs).

Figure 4. Overly large values of translational entropy determined using the Sackur-Tetrode equation (eq 2) are corrected using
free volumes for pure liquids. Molecules of liquid of volume Vmolec are represented by cubes of the same volume. Modeling the
liquid as a regular cubic lattice, the spacing between the centers of the molecules are estimated from the concentration of molecules
X, [X] (mol/L) in the liquid. The free volume available to a single molecule is estimated as the volume occupied by the center of
mass moving in a cage defined by its nearest neighbors in the lattice. The free volume available to a single molecule of chloroform
is 1 Å3 and to 12.5 mol of chloroform (1 L) is 7.5 mL.
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Vmolec. The spacing in this array of cubes is calculated
using the concentration of molecules [X] (mol/L) in the
liquid. Figure 4 illustrates schematically how Vfree (Å3)
is estimated for any molecule from its values of [X] and
Vmolec (Å3) (eq 5). The value of the constant Cfree (unitless)
in eq 5 varies slightly depending on the geometry chosen
for both the regular array and the shape of the mol-
ecule.20 For cubic molecules in a 3D cubic array, Cfree )
8; for spherical molecules, Cfree ) 6.3.

As an illustrative example, we calculate the value of
Vfree for chloroform as follows: The density of chloroform
is 12.5 mol/L, corresponding to one molecule of chloroform
for every 134 Å3 of space in the liquid. In a regular 3D
cubic array, that corresponds to a spacing of approxi-
mately (134)1/3 ) 5.1 Å between the centers of adjacent
molecules of chloroform. In the hard cube approximation,
the chloroform molecule is approximated as a cube with
volume Vmolec ) 97 Å3 (the value of Vmolec can in general
either be estimated simply using tabulated vdW radii for
the atoms that comprise the solvent molecule or less
simply, but more accurately, using available software
packages such as Quanta). We used the latter method.
This value of Vmolec corresponds to a cube with each edge
having length Emolec ) (97)1/3 ) 4.6 Å. The center of mass
of a single cubic molecule is confined to a rigid cage
defined by its nearest neighbors in the array. The motion
of the center of mass defines a small cube, with each edge
having length Efree ) 2× (5.1-4.6) ) 1.0 Å for chloroform,
with volume ) (1.0)3 ) 1 Å3 (Figure 4). That is, the
motion of the center of mass of a single molecule of
chloroform occurs in volume of 1 Å3 rather than in a
volume of 134 Å3. The free volume of a liquid is
substantially less than the total volume that the liquid
apparently occupies. The volume that should be used to
calculate the density of the molecules for eq 2 should
correctly correspond to this much lower volume. One
liter of chloroform contains 12.5 mol. If the center of
mass of each molecule of chloroform can occupy 1 Å3 of
volume, the centers of mass of 1 L of chloroformmolecules
then occupies 12.5NA(1) ≈ 7.5 × 1024 Å3 ) 7.5 mL.
(b) Testing the Two Models Using Entropy of

Condensation. The standard entropy of condensation,
∆Scond

o is the change in entropy that occurs when 1 mol
of molecules in the standard gaseous state (1 atm, 25 °C)
condenses to 1 mol of molecules in the standard liquid
state (1 atm, 25 °C). To a first approximation the
changes in rotational and vibrational entropies are, in
most cases, negligible during condensation.10,16,18,19,22 The
value of ∆Scond

o therefore largely reflects the change in
translational entropy during condensation.20 Trouton’s
law states that the value of ∆Scond

o for many organic
liquids is nearly constant (-88 J mol-1 K-1).9 We
interpret the physical basis of Trouton’s law as simply a
reduction in the volume available to the molecules in
solution relative to the gas phase. If we assume first that
the entire volume of liquid is available to the molecules
(no excluded volume), then we can use eq 2 to calculate
that the change in entropy due would be 44 J mol-1 K-1;

that is, the standard state of a gas is 1 mol in 22.4 L,
where the standard state of a liquid is typically∼10 mol/
L. This calculated value is grossly incorrect compared
with the experimental value of ∼88 J mol-1 K-1: in other
words, we cannot ignore the volume of the solvent
molecules when using eq 2. Using the values of ∆Scond

o

as a benchmark, both models (Vnonexcl and Vfree) can be
tested as two different ways of accounting for the volume
available to the molecules in a liquid. We illustrate the
difference between the two models again using chloro-
form as an example. Model I: using Vnonexcl ) 134 Å3 -
97 Å3 ) 37 Å3, we use eq 2 to estimate that the value of
∆Scond

o for chloroform is -55 J mol-1 K-1. Model II:
using Vfree ) 1 Å3, we use eq 2 to estimate that the value
of ∆Scond

o ) -85 J mol-1 K-1. We have similarly con-
firmed the greater accuracy of free volume theory over
that of excluded volume for predictions of experimental
values of ∆Scond

o for a wide range of liquids.23

Even though the idea of free volume is established,
with much of the groundbreaking work done by Eyring,24
Frank,20 and Kirkwood,25 its contribution to an accurate
model of the liquid state has been largely ignored in
estimates of translational entropy by organic and physi-
cal organic chemists. We assert that the idea of free
volume should play an important role in the estimation
of translational entropy in liquid if properly used. On
one hand, it is a pictorial idea, and on the other, it is
capable of being brought into an exact relationship with
thermodynamic measurement by allowing the numerical
constant in eq 5 (Cfree) to vary so that it accurately
describes a large set of data.
(c) Extending Free Volume Theory to Solutions.

We propose here a simple extension of free volume theory
from liquids to solutions. That is, we propose that this
model can be used to predict the translational entropy
of any molecule dissolved in a liquid (and not just for the
liquid itself) by calculating the value based on the
Sackur-Tetrode equation using the apparent concentra-
tion of the molecule in the solvent (mol/L) and then
subtracting a correction based on the free volume of the
solvent. This extension is rigorously valid only for
infinitely dilute solutions of solute. Two difficulties occur
at high concentration of solute. First, the free volume
of the solute begins to dominate the free volume of
solution. Second, it is not trivial to estimate the free
volume of large, irregularly shaped solutes (such as 1, 2,
and 3). We assume in this work that the concentrations
of interest (≈ mmol/L) are sufficiently low that we can
assume that the free volume of the solution is dominated
by the free volume of the solvent. We illustrate the
method with an example: 1 mol of methanol is dissolved
in 1 L of chloroform such that [MeOH] ) 1 mol/L. The
free volume in chloroform (Vfree) is much lower than its
apparent volume (1 L). The value of Vfree for 1 L of
chloroform is only 7.5 mL (as shown earlier). Thus the
effective concentration of methanol that accurately re-

(22) Ewing, G. J. Chem. Phys. 1969, 73, 168-174.

(23) We have examined benzene, toluene, methylene chloride,
tetrahydrofuran, diethyl ether, and pyridine. For these solvents, the
free volume theory is accurate (less than 10% error), and the excluded
volume theory is not. The value of entropy of condensation for some
protic solvents (acetic acid, methanol, ethanol) is predicted reasonably
well (less than 20% error) by free volume theory but poorly by excluded
volume. The value of the entropy of condensation for water is predicted
poorly (greater than 30% error) by both methods.

(24) Eyring, H.; Hirschfelder, J. O. J. Phys. Chem. 1937, 41, 249-
258.

(25) Kirkwood, J. G. J. Chem. Phys. 1950, 18, 380-382.

Vfree ) Cfree(x3 ( 1027[X]No
) - x3Vmolec)3; Cfree )

8 for hard cubes (5)
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flects its translational freedom is not 1 mol per L but 1
mol per 7.5 mL ) 134 mol/L. Using eq 2 without a
correction, we calculate the translational entropy of 1 mol
of methanol dissolved in 1 L of chloroform as Strans-

(MeOH) ) 125 J mol-1 K-1. Using the value of Vfree for
chloroform, we calculate Strans(MeOH) ) 84.6 J mol-1 K-1,
a substantially lower number than that produced by eq
2. Interestingly, the difference between these two values
is the difference between ∆cond

o calculated using the
Sackur-Tetrode equation and the experimental value of
∆Scond

o . We will return to this connection in the next
section. The effective concentrations (that is, based on
the free volume rather than the apparent volume) can
be much higher than the apparent concentration (e.g. 134
M compared with 1 M in the example with methanol).
Analogously, the concentrations of species during in-
tramolecular reactions can also be very high, and much
higher than is apparently possible (up to 108 M). The
important statement is that this free volume model, and
the corresponding high concentrations in solution, brings
the calculated values of ∆Scond

o close to the observed
thermodynamic values.
We propose two levels of correction to the estimate of

translational entropy using eq 2. The zeroth-order
correction is theoretical and uses eq 5 to predict Vfree

based on the calculated values of Vmolec and the experi-
mental values of [X]liq. The next level of correction is
more empirical, but more accurate, than the first and
based completely on the experimental value of ∆Scond

o

for the solvent of interest.26 Equations 6a and 6b are two
modifications of eq 2 that use these two levels of correc-
tion. Equation 6a contains the experimental concentra-
tion of analyte, [analyte] (mol/L), and the free volume of
the solvent Vfree

solvent (L). Equation 6b contains the ex-
perimental value for the entropy of condensation,
∆Scond,exp

solvent (J mol-1 K-1), and the value calculated by eq 2,
∆Scond,eq2

solvent (J mol-1 K-1). We use the more accurate eq 6b

in this study. For chloroform, the value of Strans using
eq 6a is within 2% of the value calculated using eq 6b.
This interpretation of free volume has not previously, to
our knowledge, been used to correct the translational
entropy of solutions of molecules.
In summary, the problems of predicting the entropy

of association for rigid particles are in predicting its four
components: translational, rotational, vibrational, and
conformational entropies. The translational entropy is
accurately predicted in the gas phase using the Sackur-
Tetrode equation. The translational entropy in con-
densed phases (liquid, solution) can be estimated by using

the value calculated in the gas phase (at the appropriate
concentration) and then correcting this value using free
volume theory and its extension. The rotational entropy
for molecules in solution is predicted reasonably ac-
curately using an existing model based on statistical
mechanics. The change in vibrational entropy upon
assembly is probably small, and we ignore it for this
study. The change in conformational entropy for rigid
particles is, by definition, zero. Figure 5 illustrates our
model by predicting the difference in the entropy of
association between aggregates 1 and 3. As expected,
the aggregate containing the larger number of particles
(1) assembles at greated entropic cost. From NMR
titration and competition experiments reported previ-
ously, we estimate that the difference in ∆G of assembly
between 1 and 3 is approximately 100 kJ/mol, which is
consistent with the theoretical estimate here.27,28

Entropy of Association for an Aggregate of
Flexible Particles

We classify molecular linkers that are comprised
mostly (>75%) of single bonds as “flexible”. In order to
estimate the impact of conformational entropy of multi-
particle assembly, we consider a simple model (the BRS
model): the interacting (e.g. hydrogen bonding) molecules
are balls; these balls may be free, attached to each other
by strings (completely flexible molecular linkers), or
attached to each other by rods (completely rigid molecular
linkers). There are, in reality, degrees of flexibility, and
this model replaces real linking groups with two limiting
models for them.

(26) Values of the entropies of condensation are tabulated for a wide
range of organic colvents in the CRC Handbook for Chemistry and
Physics.

(27) Simanek, E. E.; Mammen, M.; Gordon, D. M.; Chin, D.; Mathias,
J. P.; Seto, C. T.; Whitesides, G. M. Tetrahedron 1995, 51, 607-619.

(28) Mammen, M.; Simanek, E. E.; Whitesides, G. M. J. Am. Chem.
Soc. 1996, 118, 12614-12623.

Strans
analyte ) R ln[(10-15/2 Vfree

solvent

No
4[analyte] )(2πMRTe5/3

h2 )3/2] )

11.1 + 12.5 ln(T) + 12.5 ln(M) + 8.3 ln Vfree
solvent (6a)

Strans
analyte ) R ln[( 10-15/2

No
4[analyte])(2πMRTe5/3

h2 )3/2] +

[∆Scond,exp
solvent - ∆Scond,eq2

solvent ] ) 11.1 + 12.5 ln(T) +

12.5 ln(M) + [δScond,exp
solvent - ∆Scond,eq2

solvent ] (6b)

Figure 5. Difference between the entropies of association for
the 6-particle aggregate 1 and the 4-particle aggregate 3. These
two aggregates and their components are approximated as
balls attached by rods and strings. The changes in entropy
upon assembly are calculated using eqs 1, 3c, and 6b.
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Intramolecular motions are of two sorts: those that
occur at high frequency and can be modeled accurately
as harmonic oscillations and those that occur at low
frequency and cannot. First, high-frequency, harmonic
motions occur with well-defined maximum and minimum
spatial distortions about a single equilibrium position and
are characterized accurately by spring constants. Scher-
aga has previously described these types of motions as
‘hard′ vibrations.29 These true vibrational motions in-
clude bond stretches, wags, bends, and other motions that
correspond to the peaks of a typical infrared spectrum
(100-4000 cm-1). Second, most low frequency (<100
cm-1) vibrations are modeled poorly as harmonic oscil-
lations either because the atoms move in highly asym-
metric energy wells or move frequently from well to well
(and “escape” the restoring force that is characteristic of
a vibration). Scheraga has previously called such low-
frequency motions “soft” vibrations, and the major con-
tributions to this class of motion are the torsions about
single bonds.29 We define the entropy arising from these
soft vibrations as conformational entropy, ∆Sconf.
In this simple model, we assume that all accessible

conformational space has the same potential energy; that
is, the potential energy E (J/mol) is completely indepen-
dent of the conformation (defined by the coordinates r,
θ, and φ) of the molecule. Since potential energy can be
defined with respect to the energy of the global minimum,
it follows that E ) constant ) 0. The classical (nonquan-
tum mechanical) definition of the partition function for
conformational entropy, qconf (eq 7), for a ball then
simplifies and is the conformational volume, Vconf (Å3),
available to the ball (relative to its own volume, Vball (Å3))
as it moves while all other balls are fixed in space.30 The
partition function is unitless. The form of eq 7 is

consistent with the notion that qconf ) 1 for a ball that is
unable to move (i.e., it is rigidly connected to the rest of
the molecule). This model is a simplification: it permits
us, however, to estimate the maximum impact of confor-
mational entropy on self-assembly. The conformational
entropy, Sconf (J mol-1 K-1) is derived from its partition
function and is given by eq 8.

In this next section, we illustrate the use of eq 8 using
an example based on the 4-particle flexible assembly
flex(M)3 (2) and the 4-particle rigid assembly hub(M)3 (3)
(Figure 6). The three M components of flex(M)3 (repre-
sented by white balls with volume VM) are connected by
three strings of length rflex to a central point. The
conformational volume accessible to one ball is ap-

proximated by the volume of a sphere of radius rflex: Vflex

) (4/3)πrflex
3 . Since all three balls are equivalent, the

total conformational entropy is given by Sconf,flex ) 3R
ln(Vflex/VM) (eq 8). The conformational volume accessible
to one unit of M in rigid hub(M)3 is given by the volume
of the ball itself, VM: that is, Vhub ) VM and Sconf ) 3R
ln(VM/VM) ) 0. That is, by definition, the conformational
entropy of the completely rigid hub(M)3 is zero.
Upon complexation with three components of CA

(represented by black balls), we have two choices on how
to model the conformational entropy of flex(M)3 in the
complex.
Method I. If the length of the strings is just sufficient

to bridge all the M and CA components together, then
there is (in one limit) no extra conformational volume
accessible to the balls of 2 other than the volume of the
balls themselves. In such a case, Sconf,2 ) 3R ln(VM/VM)
) 0. The total change in conformational entropy for the
assembly of flex(M)3 and 3CA is then ∆Sconf,2

assoc ) -3R
ln(Vflex/VM). From realistic values of VM (80 Å3) and Vflex

(6000 Å3), we calculate that the value of ∆Sconf,flex
assoc )

-110 J mol-1 K-1 (∼32 kJ/mol at 25 °C).31
Method II. If the length of the strings is much longer

than is required to bridge all the M and CA components
together, then there is conformational volume available
to the balls of 2. This extra volume accounts for any
residual entropy due to motions in the aggregate. The
total accessible volume in the complexed flex(M)3 can be
crudely approximated as the same as for one M in the
uncomplexed flex(M)3. That is, we assume that the
motions of the three M components in uncomplexed
flex(M)3 occur independently, but the motion in the
aggregate is coupled. The volume of the complex of 3
balls that move as a single unit is 3VM. The total
conformational entropy in the complexed flex(M)3:3CA is
then ∆Sconf,flex:3CA

assoc ) -3R ln(Vflex/VM) + R ln(Vflex/3VM).
From realistic values of VM (80 Å3) and Vflex (6000 Å3),
we calculate that the value of ∆Sconf,flex

assoc ) -80 J mol-1
K-1 (∼24 kJ/mol at 25 °C). We believe that this second
method more closely represents reality than the first
method. From NMR titration and competition experi-
ments reported previously, we estimate that the differ-
ence in ∆G of assembly between 2 and 3 is greater than
10-15 kJ/mol, which is consistent with the theoretical
estimate here.27
Figure 6 illustrates the calculations of all entropic

contributions to the assembly of 2 and 3. In addition to
the values of conformational entropies just estimated, we
use the expressions derived earlier for the corrected
translational entropy (eq 6b) and the rotational entropy
(eq 3c). In summary, the difference in the value of
∆Stotal

assoc between 2 and 3 is due to differences in ∆Sconf
assoc

and equals ∼24 kJ/mol at 25 °C (∼6 kcal/mol). This
estimate further accounts for the significant residual

(29) Go, N.; Scheraga, H. A. Macromolecules 1981, 9, 535.
(30) Formally, the partition function should be an integral over

momenta as well potential energy. Since the temperature in our system
is assumed to be constant, the kinetic energy component (momenta)
of the partition function will be constant and is therefore ignored in
our analysis.

(31) As a very rough check on this estimate, we employ a simple
rule of thumb regarding the restriction of torsional motion around a
single bond. If a single bond has three equal torsional energetic minima
available to it prior to complexation, and one torsional minimum
afterward, then the cost of restricting that torsional motion is ap-
proximately R ln(3/1) ) 9 J mol-1 K-1. There are 8 unrestricted single
bonds on each of the arms of hub(M)3 that become (in one extreme
case) restricted on complexation with 3CA. The total change in
conformational entropy on complexation can be crudely estimated by
the total number of bonds that become restricted. There are 3 equal
arms on hub(M)3, with 8 torsions per arm, giving 24 torsions. The total
entropic cost of complexation is therefore estimated using this crude
treatment to be 24 × R ln(3) ) 220 J mol-1 K-1. This value is twice
that predicted by the B-R&S model.

qconf )
qfree
qfixed

)
∫∫∫e-E(r,θ,φ)/kTdr dθ dφ

Vball
)

∫∫∫dr dθ dφ

Vball
)
Vconf

Vball
(7)

Sconf ) R ln(Vconf

Vball
) (8)
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entropy (∼8 kJ/mol to ∼2 kcal/mol) due to internal
motions in the formed aggregate 2; that is, the (BRS)
model does not have to assume that all intramolecular
motions stop on complexation.

Conclusions

The existing theoretical models for estimating enthal-
pies of assembly for noncovalent aggregates are growing
in accuracy.6 Furthermore, the collective intuition of
chemists about enthalpy is strong. Entropy is as impor-
tant in noncovalent assembly as enthalpy; models for
predicting its various components are highly inaccurate
or do not exist. Furthermore, intuition is weak regarding
when and to what degree changes in entropy are impor-
tant. This work outlines a useful, if semiquantitative,
model for estimating the changes in all components of
entropy during multiparticle assembly. The new contri-
butions of this work are methods for estimating trans-
lational and conformational entropy of multiparticle
assembly; we believe that these methods will be valuable
to the community involved with molecular recognition.
The correction to the Sackur-Tetrode equation to

estimate translational entropy in solution using free
volume theory is an extension of the previously described
model for free volume. The free volume model is not,
however, broadly employed. Both it and its extension
described here may be useful to those estimating trans-
lational entropy in a condensed phase. This correction
is approximate, but useful and easy to use. This model
provides a significantly improved and physically more

reasonable estimate of translational entropy in solution
than does the Sackur-Tetrode equation, which has been
used in uncorrected form in all estimations of molecular
recognition in solution of which we are aware.7,8 Cor-
rections to the Sackur-Tetrode equation based on free
volumes of irregularly shaped molecules may represent
second-order solutions to the problem of estimating
translational entropy in solution.
The BRS model for estimating changes in conforma-

tional entropy is also approximate and is a limiting
model; that is, it generally overpredicts the difference in
entropy between two aggregates. The BRS model is,
however, readily applied (it is based on determining
volumes of simple geometric shapes) and might find use
mainly due to the lack of existing models for this
important component of the total entropic cost of multi-
particle assembly.
The models presented here may be collectively useful

in designing molecules that bind polyvalently to polyva-
lent targetssfor example, pharmaceuticals presenting
multiple ligands and intended to bind to cellular surfaces
containing multiple receptors.32-35 The strategy of poly-
valency works only if the total entropy of binding a
polyvalent molecule containing N ligand groups to ag-
gregate of N receptors is greater than the entropy of

(32) Haywood, A. M. J. Virol. 1994, 68, 1-5.
(33) Lentz, T. L. J. Gen. Virol. 1990, 71, 751-766.
(34) Albelda, S. M.; Smith, C. W.; Ward, P. A. Faseb J. 1994, 8, 504-

512.
(35) Mammen, M.; Dahmann, G.; Whitesides, G. M. J. Med. Chem.

1995, 38, 4179-4190.

Figure 6. Entropy of association of the flexible 4-particle aggregate 2 and the rigid 4-particle aggregate 3. These two aggregates
and their components are approximated as balls attached by rods and strings. The changes in entropy upon assembly are calculated
using eqs 1, 3c, 6b, and 8.
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binding N individual ligands to the same aggregate of N
receptors. Physical tethering of the ligands reduces the
translational and rotational entropies of binding but,
depending on the nature of the tethers (rigid or flexible),
introduces conformational entropy. Whether a polyva-
lent design is successful or not depends on the delicate
balance between the conformational entropy added and
the sum of translational and rotational entropies re-
moved. This work provides semiquantitative and con-
ceptual models for both sides of this balance. Incomplete
understanding of entropy in the design of polyvalent
inhibitors has resulted in many synthetic polyvalent
molecules that are only marginally more effective than
their monovalent counterparts. Bivalent systems joined
by flexible linkers (e.g. oligoethyleneglycol or polymeth-
ylene)36 provide examples of systems that can almost be
guaranteed to fail for entropic reasons.

Some of the ideas outlined here have been described
earlier in pieces, often separated by decades in the
literature; others (including the extension of translational
entropy to solutions and the BRS model for conforma-
tional entropy) are new. We have applied the model to
a systemsstructures based on CA‚Msthat we are famil-
iar with, and the estimates are consistent with experi-
ment.28 The model should prove useful both numerically
and conceptually to the community interested in molec-
ular recognition.
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