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We show rigorously in a causal theory that a gaussian wave packet, incident from the left
on a potential barrier, turns up on the right side of the barrier at an earlier time than would
appear to be allowed by causal propagation. A sufficient set of conditions on the wave packet
and barrier parameters for this phenomenon to take place is given. These conditions are quite
restrictive but may not all be necessary. There is, of course, only an apparent violation of
causality.  © 1993 Academic Press, Inc.

I. INTRODUCTION

It has been known for many years that a straightforward application of conven-
tional wave packet theory to barrier penetration predicts that a wave packet takes
zero additional time! to traverse the barrier [1, 2].

In quantum theory, the natural question to ask is whether one can actually
measure an anomalously high velocity (or short transition time). The answer, given
by Mende and Low [3], is that one cannot. The key is the word “additional” in the
preceding paragraph. That is, it turns out that the total time taken by a wave
packet to traverse a distance L + b, with b the barrier width, is

T=L/V,, (1)

where V, is the free space group velocity of the wave packet. However, it is shown
in Ref. [3] that for the measurement to make sense, L must be so large that the
average velocity,

I7=-————-—-=

L+b
T

b
1+Z> Vo (2)

is only slightly larger than V.

* Present address: Office of the Under Secretary of Defense, The Pentagon, Room 3E933,
Washington, DC 20301-3010.
' This does not count small end effects which are independent of the width of the barrier.
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An entirely different situation arises in a relativistic theory, where the free space
velocity is the velocity of light (here taken to be 1),

Vo=1. (3)

In that case, it would seem not to be permissible for ¥ to be given by Eq. (2) and
thus be greater than one. However, we shall here show rigorously that it is
permissible for this to happen in a causal model.

There are two realistic situations where this effect can occur. The first consists of
a wave guide with cutoff frequency w, into which is inserted a wave guide with a
higher cutoff frequency, w,. A wave with frequency between w, and w, will see the
narrower (higher cutoff frequency) wave guide as a barrier. We do not consider this
example further, since the problem of the joining regions of the wave guides does
not easily lend itself to rigorously controllable approximation.

The second is the case investigated by Landauer and Martin [2]. An
electromagnetic wave is excited in a wave-guide with cutoff frequency w,. With
dielectric constant ¢, the dispersion relation relating propagation constant x and
frequency w is

e’ =K+ g, (4)
Therefore a wave excited in region I with £¢> 1 and therefore with
K2=ew?—wy>0 (5)
would find, on entering region Il with e=1,
Ki=w’—w;. (6)

If k2 is less than zero, then region II is a barrier, and the wave will decay. Landauer
and Martin showed with this system that the center of gravity of the wave arrives
in a third region (with the same diclectric constant as in region I) as if it took zero
time to cross the barrier.

This system is amenable to rigorous analysis, but our goal here is more
ambitious than that of the cited authors. We wish to calculate the entire transmitted
wave form, not only the center of mass location; we wish to calculate an upper limit
to the error in our result; and, we wish to exhibit explicitly the apparent super-
luminal velocity in a causal theory. All of these goals can, in fact, be carried out for
the first system described above. However, the calculations involve some subtle
issues and are substantially more complicated than the ones we will carry out in a
simple but physically plausible model which we propose below.

Our causal model consists of a classical field y(x, ¢) satisfying a one-dimensional
Klein-Gordon equation with variable potential

62‘1[/ 82
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where
Vix)=0 x<0
Vix)=m? O<x<b (8)
Vix)=0 x>b.

We choose ¥(x, 0)=f(x), a given function, and

oy _
Txn| =g ©)

=0
This model has the causal property that if

g(x)=0, x>a,
and
f(x)=0, x> a,
and x> a, then
Yix,1)=0 for t<x—a (11)

That is, the propagation of the wave front is bounded by light velocity.
Similarly, if

g(x) and f(x)=0, x<a,
and x < a, then
Yix,1)=0 for t<a—x. (12)

Our actual calculation will be carried out with f(x) and g(x) gaussian centered
at a large negative coordinate x,, and with a mean frequency w,:

f(x) — eing e‘((.’(fxg)/d.‘()z. (13)

We let g(x)= — df(x)/0x, so that our initial wave packet is moving to the right

with velocity v=c=1. We shall show that for x> b, that is, to the right of the
barrier,  is substantially proportional to f(x — x,—t — b),

Yof(x —xo—t—b); (14)

that is, the wave arrives at x at a time

I x—Xo—b (15)
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which is earlier than the minimum time ¢,, allowed by light propagation,
t,=X—Xq. (16}

However, for this solution to be demonstrably accurate, we shail have to require
that the tunneling amplitude be very small, that is, that the exponential

"l (17)

e*i("m) b_ e\b(m:—mg
Here iz(w,) is the (imaginary) wave-number inside the barrier at frequency w,. It
may be that our conditions are more stringent than necessary; there is some
experimental evidence for this [4].

The rest of this paper will be devoted to a mathematical derivation of the result.
However, before proceeding to that task, we must comment on the consistency of
the apparent superluminal propagation, Eq. (15), with the underlying exact causal
propagation, Eqgs. (11) and (12). Some insight into the strangeness of this result can
be obtained by imagining that the field ¢ also carries two spin components, 2, and
&5, so that

p=a,0,+0o,¢,, (18)
whereas the scalar ¢ is the «, + a, component of ¢:
Y=(t+az, ¢)=¢,+ ¢, (19)
Now suppose that ¢, + ¢, correctly compose the gaussian (13), but that
9, =0, X > Xg, (20)
¢,=0, X< Xq.

Thus the right half of the original gaussian peak (x> x,) consists only of spin «,,
and the left half (x < x,) of spin «,.

Clearly, neither ¢, nor ¢, will propagate simply (note the discontinuity of each
at x = x,), although Y = ¢, + ¢, will, as we shall show, propagate simply. If we ask
for the spin in the left half of the transmitted peak, but ahead of the light arrival
time, i.e.,

Xo+i1<x<xy+t+b, (21)

we will find only the ¢, spin component, although the left half of the original wave
is given completely by ¢,. This is illustrated in Fig. 1.

That is, the entire advanced gaussian, including most of the left half, comes from
the forward tail of the original gaussian. The remarkable circumstance is that the
left half of the advanced gaussian duplicates so precisely the left half of the original
gaussian, although the two halves are not point to point causally related. This
behavior is so strange that we have made a special effort to maintain actual mathe-
matical rigor. This results in unavoidable algebraic complications, for which we
apologize, in what follows.
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original gaussian transmitted gaussian

FIGuRre 1

II. THE TIME DEPENDENT PROBLEM

We solve the time dependent equation (7) by Laplace transform. With

Vo) =] " eyt 1) de (22)
and Im w >0, we have, for >0,
1o |
o= | L dwe (x), (23)

From Eq. (7) we find

T W
( w ax2+m )‘/jm_ @t (xa t)

—iwy(x, 0) (24)

t=0

or, for our case, with (Qy/dt)(x, t)|,_o= — 8f/dx and ¥(x, 0) =f(x),
(‘“’2‘5(1—2”’2) = _,-wf_g=F(x). (25)

We construct the Green’s function for (25) with two solutions of the
homogeneous equation

2 62 2
—0’—=5+m’)$,=0. (26)

We choose these for ¢‘*’ such that
¢|+)=eiw.\'+R(w)e7iwx, xSO,
¢(+):Aeih‘x+Be -—ikx, 0<X<b, (27)

¢(+)= Teimx’ .’(Zb,



BARRIER PENETRATION 189

and for ¢~ such that

¢( - —_ EA"UX + Rieiwx’ x 2 b,
¢\ =A'e ™ 4 Ble™, 0<x<b, (28)
¢ ) =T'e ", x<0.

Here k = (w?—m?)""? is chosen to be analytic in the upper half w plane. This
requires, for almost real w,

K=/ w*—m? w=m>0,

K=1./m —*, —m<w<sm, (29)
K= —Jw?—m? w< —m,

where the positive square root is always taken.
A standard calculation requiring continuity of ¢ and its first derivative at the
discontinuities of V(x) yields

- (wZ_h_Z)(l __EZIKb)

R 3
D

T 4wk il — )b
D

’

20(w + k)
A==
D
__2 g 2ixbh
B olw—kK)e ,
. D
with
D=(w+k)’ —(w—k)*e*™;
ereflimbR,
A:=€i(x—m)bA (30)
BI=€fi(w+K)bB
T'=T.

We note the upper half plane analyticity of R, 7, A, B, D, and A’ and of ¢** R’
and ¢**B'; we also note the absence of upper half plane zeros of D. These condi-
tions are sufficient to guarantee causal propagation from f to y. There is a zero of
D as x — 0 which we must treat at the appropriate time.

The constant Wronskian W(¢*,¢ ) of ¢' 7’ and ¢!,

-0~
ox

a¢(+l
Ox

Wig*. ¢ )= ¢ ¢, (31)
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is
Wi, ¢ )=2iwT. (32)

We can then construct a solution of the inhomogeneous equation (25) as
Yolx)=— f ¢ )F(-’C')dX’+m r ¢ (x") F(x")dx'.  (33)
@ 2 a)T 2ioT J,

Note that, as x —» + o0 and @ in the upper half plane, ¥, is well behaved. In
contrast, no solution of the homogeneous equation is well behaved at both ends,
so that (33) is the unique allowable solution of (25).

The solution of the time dependent problem is thus

— 1 o=+ )
Yix, t)=— f doe "'

2r -+ e

It is straightforward but tedious to verify, using the analyticity properties given by
Eq. (30), that ¥ in Eq. (34) has the causality properties of Eq. (11) and (12).

We now wish to consider propagation from the original functions f and g
through the barrier to the region with x> b. Since F(x') is centered at a point x,
to the left of zero, it is intuitively clear that for sufficiently large |x,|/4x we can
replace ¢ —(x') (in Eq. (34)) by its value for x’ <0 and extend the integral over all
x. For the same reason we can drop the second integral in (34). Although this is
almost obvious, we insist on actually calculating explicit limits for the neglected
terms since we wish to be sure, in light of our surprising result, that there is no
possibility of error. These terms are all calculated in the Appendix, where we show
that each of them is bounded by e ~*¥4*" times a function mf(mb) of m and b. The
function f is finite for all finite values of m and b, and hence we can make the
correction as small as we wish by taking |x,|/4x sufficiently large.” Thus Eq. (34)
can now be written

— it

l/](x’ l): _ 1 Jw+i5 dow e

XN .,
I —-———) dx’.

e T(w) foo T(w)e ™ (—iwf(x’) a0

— x4 2le(Q)) —
(35)

2 Note that as |x,| becomes larger, the average velocity ¥ = (x — x,)/(x — x, — b) becomes closer to one,

o~

P—1_ b 1 %o
AV = ‘c—xo—b bAx{(x —xo—b)? " Ax

becomes larger, so that the anomalous behavior is accentuated.
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An integration by parts shows that the two terms in (35) contribute equally, leading
to a final answer

U(x, z):ijmm =1 goy T(w)rg e~ f(x') dx". (36)

Pk AN —x

It is interesting that, despite all the butchering we have carried out, y(x, r) still
has two desirable exact properties:

First, for T=1, y(x, ) =f(x— 1), as it should.

Second, and most important, ¥ is causally related to f for propagation to the
right. Thus, suppose f{x")=0, x >a. Then (36) becomes

oG A e

g _ “
Wix, 1) =— j do T(w)e"“"‘*'*“'J e @ (Y dx' (37)
2 4.

- o0 + I —

The integral over x’ is analytic in the upper half @ plane and goes to zero for
w — oo at least as fast as 1/w; T(w) is also analytic in the upper half w plane and
goes to a constant (one) as w — oo. Therefore, for x—t—a >0, or t <x—a, the w
contour can be closed above, and  =0. Thus the propagation is causal for any
sufficiently convergent f and for any T that has upper half plane analyticity.

III. THE SIMPLEST MODEL SOLUTION

We can exhibit the anomalous barrier penetration time with a simplified
transmission amplitude

Tzeih(x—m) (38)
and an initial function with wy=0,

f:ef(xgxu)z/‘(d.rlz‘ (39)

Note that 7 in Eq. (38) has the required upper half plane analyticity.
We first carry out the integral over x’ in (36):

J dxl effwx‘f(xl) — \/; Ax e#mz/(dw]2 e*iw.\‘g’ (40)

where

Aw - Ax = 2. (41)

395228113
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Equation (36) becomes

Y = *2/—5 Ax f B e L A ()] (42)

- 20

The usual way of treating Eq.(42) in the quantum theory of scattering is to
expand 7T(w) about w, (here zero), and keep only the zeroth term, ie., set
T(w) = T(w,). This is valid when

do <o,
or

Ax> L. =1/w,, (43)

where L, is the characteristic length of the scatterer; here, L.~ b. No measurement
of penetration time is then possible. In our case, where we explicitly wish to
measure a time difference b, we must have 4x < b, and we must keep more terms
in the expansion of T(w,) about w,. If we can limit this expansion to a small
enough number of terms, we can, at least formally, obtain a closed expression for
the transmitted wave for a wide class of functions £ falling off rapidly in both x and
w. However, the use of the gaussian for f permits us to give rigorous bounds to the
neglected terms in our approximations.

We proceed as follows: we wish to expand x(w) (as given by Eq. (29)) near o =0
in powers of w. Clearly, this cannot be valid in Eq. (42) for the entire range of w.
Therefore, we divide the calculation into three parts. First, we require that there
exist an m, such that the contributions to (42) for |w| > m, are negligible, and such
that for w <m, the expansion can stop after the first two terms. Having done that,
we go back to the infinite integral by adding back the (still) negligible contributions
from values of |w| > m,.

The contribution §y . from |w| > m, can (since |T| < 1) be bounded by

Ax =,
|5n//>|<7ij o doo (44)
T vm
<249 s (45)

\/;ml

Next we expand k =i /m? — w? about w =0,

. w_z _ci 2—-1/2w? (2—-1/2)(3-1/2) *
K——l(m-— e ;<l+ 3 ;1—2+ 3 p ;—ﬁ-)) (46)
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where the parenthesis multiplying w?*/8m* is bounded by 1/(1 — w?/m?). Therefore,
we can rewrite (42) as

l i fm{x —t —xg-—- b) mhf(ul"(dm')2
Y= Ax doy et W0 e :

2/nom

4 . 2 ! 4 4
x[{<exp[-§%<1+2 31/2%+...>]_1>/g_23}.%+1], (47)

S (48)

where

Clearly, a condition here is that 1/(4w’)? > 0.

The “1” term in (47) is almost our final result, that is, a propagated gaussian with
width dw’, but it is incomplete, since it is only integrated between +m,. The
correction term 8y . is bounded by

3 b bm? 1 bm?
5 Tl ’ ; na =~ —mb __1 o - l / 1. 49
o | < 64 Ao’ Ax(40') ¢ [exp <8m3 1 —mf/m‘) ], 8m? (49)

This makes &y _ negligible when the exponent in (49) is of order unity, as we shall
see shortly.
Finally, we extend the integral (47) from +m, to =+ oo, this time with an error

1 dw’ 2y g2
‘5[#;'<___wefmbefm|f(dw)~. (50)

\/;ml

We find for ,

Adw’ . .
ll/= o e—mhe\((_\—t—xo-h)mx )2’ (51)

where
Ax' Ao’ =2. (52)

Our condition on the validity of the result (51) for y must be that all the di’s
which we have estimated are much smaller than our result (51). To study this ques-
tion we note first that x, can be made as large as we wish without affecting the
result (51) or the approximations made for &y ., oy ., and oy, . Therefore we may
simply take |x,| large enough to give validity (to whatever accuracy we choose) to
Eq. (35).
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The other conditions are

(1)

i) i'n_al)e : m%/(dw>2<%e7mh (53)

(iii) ",fab@ (54)
Am—a:’e"’"f"“‘“)z<j—a;’- (55)

In addition, we want the time displacement 4 to be significantly outside of 4x,
so we must have

b
(iv) —z=bhbdw=1. (56)
Ax

Finally, we must verify that m /m is not too close to one, and that

1 1 b
———— = —> 57
(dw'y?  (dw)® 2m (57)
and is the same order as (1/4dw)>.

We anticipate the result by ignoring non-exponential factors. Thus, with
m,/Adw ==z, mb=y and m,/m=u, we must have

from (53), z°»y; (58)
from (54), u'y<1; (59)
yu

and from (56), —=>=1. (60)

“

From (60), as z — oo, so must y (since u < 1), and from (59) u — 0. Clearly (57)
is automatically satisfied. Furthermore, (4w)?b/m = u’y/z?, and since z?» y and
1? <1, we have

(dw)? b do’

0 d — 1.
m - an Aw—’

The conditions (58)-(60) are compatible; let y =z", u=1/z*. Then,
from (58), 2>n; (61)
from (59), n<d4p; (62)
and from (60), n>=1+p. (63)
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Since 4p=zn>=1+pand n<2,

1>p>; (64)
and

250>, (65)

Thus, our approximations require large m, /4w, large mb, and small m, /m.

To conclude this section, we return briefly to discuss the apparent violation of
causal propagation by our solution, Eq.(51). In particular, the amplitude at
X =Xq+ t+ b must come in the underlying integral (36) from values of x’ for which
causal propagation to that point is possible, that is,

x> xo+ b. (66)

That means that we can replace the lower limit of the integral over dx’ by x4+ .
Equation (36) then becomes

" do T(w) e 0 [ T e f(x) . (67)

xo+ b

Y(x, t)=21—n fT

— o+ e

This way of writing y» shows how the front tail of the gaussian gets over the barrier;
it jumps over it, since in (67) the integral over x' is like 1/w as w — oo, not like
e~ ¥4\ In particular, if we consider the contribution ¥, of large w to (67), we set
T=1 and find, for y,

Y =0x—1—x,—b)f(x—1) (68)

The first term in (68) is non-zero for all 1 < x— (x,+ b), as we would expect; its
magnitude |, | is given by

I‘/Il | = e*(.\‘fr—xo)zf(dxiz’ (69)
and for x —txx,+ b,
[, | & e Ptox), (70)
Recall that
bZ ,2,,2
= b (dw)? =1 (71)
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which is smaller than sm =y, since
2
yu
—2—2—< 1. (72)

Therefore there is enough strength in the nearby forward field of the gaussian wave-
packet to produce the advanced transmission.

1V. THE FuLL MoODEL

We return now to the original barrier problem, with a transmission amplitude
given by Eq. (30) as
4(1)K eilewib

T=(w+rc)2——(a)—1c)2 Fa (73)

As in Eq. (36), we have

vx=o- [ dwe 0 Tw) [ e fx) (74)

27'[ -~ oG + 1€ — 0
Our initial amplitude f(x) will now include a mean frequency, w,, so that

S(x) = s = x - x40 (75)

and

J.% e*iw()x‘f(xl) dx: =\/;Axe—iwxo~-(wfwoiz/(dw)2+ixow(). (76)

— o

As before, 4w Ax=2.

We now proceed as in Section III, noting that |T| <1 for real w, so that, as
before, we can restrict the « integration in (74) to the range —m, <w <m,. The
limit on the error so incurred is the same as before, Eq. (45):

2 4 ‘
00 | <= =2 g e, (77)

\/7;”11

We choose m, sufficiently small so that we can break off the expansion of = k/i
after the first two terms. Thus, as before,

( w2><m_‘,‘ ! (78)
O A R R —mi/m* '
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Since u=m,/m <1, and w<m,, we can ignore the contribution of w?/2m in (78)
except in the exponential. Thus, T becomes

T= 4wmzl o= mb+ Wb/ 2m — iwb (79 )

(im

plus corrections which can be explicitly calculated and which are bounded by m, /m.
We now have

— 45 ny
l//= Ax ( 4l>j wdﬂ) eiw(xflfxofb)efmh ewzb/‘ZmA(mfwo)z/lAw)z' (80)
—my

zﬁ—m—

The next step is to rearrange the exponent of (80). The relevant identity is

@’ (w—wy)? wib 1 5
— = - — 81
(Ao} am(l=(de)l bam) (o) @O (8D
where
1 1 b
= 82
(dw'y?  (dw)* 2m (82)
and
- A_a)’ 2____&__ (83)
P1=Po\ 4o ) T —(dw)* b/2m’
We see that
1 (l_(dw)2b>
(do')? (dw)? 2m
and that
(dw)* b yu?
Z-T 1’
m z
so that Aw/4w’ =~ 1 and w,/wex 1.
Our wave function ¥ becomes
Ax m 4iw
v = ——dw
2 ﬁ J*"11 m
w?b (w—w,;)?
jo(x—t—xy—b)— . - . 84
X eXp (zw(r t—xq—b) mb+2m(1—(Aw)2 ) (A ) (84)
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In order to obtain a single closed form for the answer, we extend the integral (84)
to +oo. The difference is

, Ax > 4w wib 1 (@~ w)?
W>|<\/EL. m e"p{‘m’”zmu—b(Aw)z/m)_<(Aw')2) } o

12
P G0 TR P o
m 2 m,—w,

> e~ (mi—@nY(dw)?. (85)

In (85) we have neglected the term (w(b/2m)- ((dw)? b/2m) = (wi/m?) - (y2u?/z?)
whose value depends on our choice of w2/m?, which must be less than one, but is
otherwise free.

The final expression for ¥ is

X—t—xo—b
(Axl)z

e~ (x— 1= xo—b)(4x)?

4

) —mb(1 — tug;’2m2l+img(x7/7.tg~b) .
(86)

which is the predicted answer.

APPENDIX: DerivaTION OF EQ. (35)

We start from Eq. (34)

o +ie - lwt x 0
ven==]"" et e (- Lowr)ar
oo 2
+¢‘(x)f ¢+(x’)(—£—iwf)dx’]. (A1)

The df/0x term can be integrated by parts to give

wn=["" e [ B -2 2w

— o0+ i 2rnT iw ox’

[¢*(x’) L 6"“()‘/)] dx']. (A2)

i Ox'

g0 [ L)

X
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The last term in (A.2) is zero since x > b. The first integral must be decomposed
into the contributions of the three regions. With x > b, this gives

pen=]""" d_wei(“’w[T[o e f(x')

o tis 2T —x
b ’ ’ A K —ixx’ E __K_ ixx'
+J‘0 dxf(x)[;(l-k;)e +2(1—w)e ]
+ LX dx’ f(x')(e"w-"')]. (A.3)

We arrive at Eq. (35) by dropping

ot dey ©
5¢=J. . ?T;ezw(.\r)li_TL e X f(x)
— G + IE
b A’ K .. B K\ . .. x .
d“ + ; t _ ] —_ — KX —_ — IKX d 4 + — WX .
+L rf(r)[z( +w>e +2(1 w)e ]+L x' f(x') e ]

(A4)

Since f(x') is a gaussian centered at x,, where x, is large and negative, all the
integrals on the right go gaussianly to zero as x, — —oc. However, proceeding in
this way leads to a subsequent divergent integral over w. We are thus led to a more
complicated method: interchanging the order of integration over » and x’. In order
to do this, we must make two subtractions from the T and A’ terms. The B’ term
is already sufficiently convergent.

We thus write

T=T—1—i(k—w)b+1+ik—w)b. (A.5)
To order 1/w?,
miw

O K= T T o)

(A.6)

where the m? in the denominator has been added to provide an absolutely
convergent integral over the real axis. Similarly, from Eq. (30),

i(l-*-i e—ixx'zA(1+K/w)e—i(ux'ei(mfxl(x'Ab)
2 w 2

and

. (1 + K/(U) ei(x—w)(bfx’)
2

=4 .Meim—wnu—x')_ 1 im’w(b —x') _imw(b—x')
2 2(m? + w?) 2(m* +w?)

A

(A7)
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The two subtractions can be integrated exactly; the remainders are absolutely
convergent and can be simply bounded. We first take the “1” terms

< dwo . © L b ) x o
_ S piwle—1y ) r L, —iwx ’ ’ ’ —iwx’ ', —lwx ’
(wl_L = { L dx’ e f(x )+def(x Ye +L dx’ e~ f(x )}
(A8)
or
» dw , o
lpl:_JL Z[_et(u(xfl)j e—:wxf(xr)
=—0(x—t—x)f(x—1)
=0 for ¢>0. (A.9)

Note that the separate integrals contributing to (A.8) are not zero and have
various ghost like contributions; for example, the first term in (A.8) gives a con-
tribution —@(x — ) f(x — ¢), which does not correspond to a physical propagation.

The next subtracted term gives

os =3 jdwewnw[%;{)j dx' e =¥ f(x')
imz(b—x')w b ' —iwx’ ’
Sy [ e | (410

The w integrals are now sufficiently convergent to exchange integration orders. The
w integral is, with x — ¢ — x' =y,

; m2 ivew @
I(w)=—lba‘j‘dw€ m
2
=2 e a(y), (A11)
We can now bound dy,. Since h—x' < b,
bm?
o, <= [ 1l

2
bm (Ax) ¢~ (x0/dx)?

A.12
4 Txol (A.12)
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We finally turn to the convergent residues in (A.4):

1 = . im2wb w
5 - w{x ~ 1) _ _ — jwx 3 ' '
¥ o ji‘x}dwe [ T+1 ——2(m2+w2):| L e Sf(x') dx
1 = o TA(l + k@) e
_ d iw(x - 1) ik —w)b—x')
+27r f_ _ w e jo {[—2 €

4 im*w(b— x’)] o i 4 B'(1 —x/w)

The first integral in (A.13), oy, is bounded by

imwb
2(m? + w?)

(4x)?
X

o e (VAT (AL14)
0

1 o=
) — dw | — 1
| l//31|<2nJLI a)’ T+

The integral over w is a finite function of m and b; we call it mf(mb), where

f0)=0
and

xlog x

+ O(x) as X — oo. (A.15)
2

fx)=

The second integral has two subtle points. First, the 4 and B terms cannot be
separated, since they both have a singularity at k =0 which cancel against each
other. Second, the integration parameter x’ appears explicitly (and not as a phase)
in the integral. We proceed as follows:

b
16y 32 | <J dx’ e~ (¥ — x0)¥(4x)?
0

* do|[A(1+K/0) W 0
X {J'x o [ > e 1
im*w(b —x') . B(l—k/w) . .
— X IKX . A- 1 6
2m + 0 ] tT ¢ } (A.16)

The integral over w is a function of m, b, and x’, with 0 < x’<b. We maximize
this function over x’, to obtain a second function of m and b, mg(mb). The bound
on dy,, is then given by

(4x)°

|03z <mg(mb)ﬁef(x0"ﬂx)z- (A.17)
Xo



202 DEUTCH AND LOW

The function g(mb) has the values

g(0)=0
and
x1
g =T52540(x)  as x— . (A.18)
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