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Theory of Shape Transitions of Two-Dtmensional Domains 

J. M. Deutch**ti* and F. E. Lowt,% 
Department of Chemistry and Department of Physics, Massachusetts Institute of Technology, Cambridge, 
Massachusetts 021 39 (Received: January 31, 1992) 

A theory is presented to describe the instability in the circular shape of a two-dimensional domain of particles that experience 
repulsive and surface tension forces. The treatment is motivated by and extends the work of H. M. McConnell ( J .  Phys. 
Chem. 1990,94,4728-4731). We present exact results for the case where the repulsion arises from electrostatic dipoldpole 
interaction. We show how to determine the critical radius R, at which the circular domain becomes unstable to harmonic 
perturbations in shape of order n. An analysis is given of the case of general repulsive interactions. 

I. Introduction 
McConnell and collaborators have presented a number of 

theoretical studies of the shape transition of finite lipid monolayer 
domains located at the air-water interface.'-I2 Recently, 
McConnell has reviewed the subject." The& lipid domains exhibit 
surprisingly rich phase behavior that can be observed with 
fluorescence mi~roscopy.'~ The theoretical analysis of the phase 
transition in these systems is based on a model of molecular dipoles 
oriented vertically to the two-dimensional domain. The phase 
transition arises from a competition between the repulsive di- 
pole-dipole interaction that tends to spread the dipoles and the 
surface tension force that tends to minimize the perimeter. 

In a recent paper,Is McConnell analyzed the stability of a 
circular two-dimensional domain to harmonic perturbations in 
its shape. In arriving at the limits to stability of the circular region, 
MdOMell introduced several approximations. Our purpose here 
is to present an exact solution to the stability problem posed by 
McConnell. Moreover, the method we develop permits the 
treatment of a wide range of surface stability problems. 

11. Method and Analysis 
We assume that the two-dimensional dipolar region is defined 

by a boundary R(0). The free energy of the domain F[R(e)] is 
composed of two contributions. The first contribution is the bulk 
energy w[R(e)l 

where p is the dipole density of the surface, a is a cutoff distance 
of closest approach of the two molecules, and A is the domain 
area enclosed by the closed curve R(0) 

A[R(t9)] = L2T dt9 R(t9)2 ( 2 )  

The second contribution is the line energy which is proportional 
to the perimeter times the line tension A 

FA[R(8)]  = AS" dt9 1 R(t9)2 + ( ( 3 )  
0 

Our problem is to minimize the total free energy F[R] 

subject to maintaining the area A constant. 
We consider a perturbation 6R(B) about a reference shape R. 

The reference shape we select is a circle, although the method 
we introduce is appropriate for more complex reference shapes. 
For the circle, of radius R, perturbations in shape lead to per- 
turbations in area according to 
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6A = A [ R  + 6R(t9)] - A [ R ]  s 

We consider successive orders of shape perturbation according 
to 

6R(t9) = 6Ro(t9) + 6RI(t9) + ... (6) 
so that 

6A = R S 2 =  0 dt9 6Ro(t9) + R 1 2 "  0 dt9 

( 7 )  
For the lowest perturbation we choose 

1'" dt9 6Ro(t9) = 0 

Then, in order for 6A to equal zero, the first-order perturbation 
must locally satisfy16 

(9)  

A. Evaluation of Line Tension Contribution. For the circle 
6RA = FA[R + 6R] - Fx[R] = AS2" dt9 6R(t9) + &&" dt9 (7) d6 R(t9) (10) 

0 

which reduces to 

with use of eqs 8 and 9. 
We adopt a harmonic form for the shape perturbation 

6&(t9) = C r ,  exp(int9) (12 )  
n # O  

which satisfies the lowest order condition in eq 8. Substitution 
of eq 12 into eq 1 1  leads to the same result as obtained by 
McConnelll' 

In eqs 12 and 13 the sum is over all positive and negative n except 
n = 0. The term n = 1 does not contribute because it corresponds 
to a degenerate rotation of the reference circle. 
B. Evflurtiba of tbe Bulk Ewgy coaMbotioa To second order 

the variation in the bulk energy about a circular shape is 

The linear term is 
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L ” r ’  dr’B(R,r’,w)BR(d)I (15) 

where 

B(r,r’,u) = [$ + r R  - 2rr’cos (8 - 9’) + a2]-3/2 (16) 

and w = 0 - 8’. The quadradic term is 

. .. 

arB( r,r ’,w) 
6 R ( ~ 9 ) ~  + 6R(9)6R(9’)R2B(R,R) ( ar )r=R 

We evaluate the linear term eq 15 by introducing eq 6 for 
6R. Use of eqs 8 and 9 yields a contribution quadradic in 6Ro. 
When this term is combined with eq 17 for adz), one obtains the 
following expression for the variation in the bulk energy: 

(18) 

The first term on the right-hand side of eq 18 is easily evaluated 

r2  
6W = -(GI + G2) 

2 

GI = L z * d 9  S 2 = d 8 ‘  SRo(9)SRo(9’)R2B(R,R,~) = 
0 

when the lowest order variation 6Ro, eq 12 is introduced. Here 
B, is the integral defined by 

1 

The second term on the right-hand side of eq 18 can be written 
as 

dB(r,r’,w) 
G2 = L2* d 9  12‘d9‘  6Ro(9’)2R2 S R r  dr[ arf ] 

Z=R 0 0 

In Appendix A, we show that G2 can be transformed to 
Ga = 

1 
[2RZ(1 - COS 9 )  + a2I3I2 

-1’” d9’ SRo(9’)zR2 L2= d9  

and this expression is easily evaluated with use of eq 12 

Combining these results leads to the following expression for the 
bulk energy variation: 

This result should be compared with the expansion obtained by 
McConne1l.l’ 

In. Results and Discussion 

zeroth-order free energy 
A. Tbe Unperturbed Free Energy. We begin by evaluating the 

( 2 5 )  PO) = + WO) 

where the quantities are to be evaluated for the circle. One finds 
immediately 

FA(’) = 2nRX ( 2 6 )  

The evaluation of the bulk dipolar energy term 

r2 
WR(S)] = ~ L d r S d r ‘  (Ir - r‘I2 + a2)-3/2 (27)  

A 

over the area A = *R2 is complicated. Unlike McConnell, we 
attack the integral directly and obtain, in the limit of small a, 
the result 

W(O)(R) = 

( rR2) (  $) - 2 a R r 2  In (”) + terms of order Ro (28) 
ae  

The procedure we follow to evaluate wo) is described in the 
Appendix B. 

McConnell employs a different approach to evaluate wCo) that 
leads to the value (4R/aez) for the argument of the logarithm. 
The difference that arises from this procedure employed by 
McConnell means that we cannot expect numerical agreement 
between our results when the cutoff appears. However, McConnell 
has recently demonstrated1* that when corrections are included, 
identical results to those given here are obtained. 

B.lkSeooab(hderFreeEwrgyandSQMlityCoaditioo.The 
entire second-order term for the free energy is obtained from eqs 
4, 13, and 24 

where B, is given by eq 20. 

instability arises when the inequality 
Stability requires that 6F be positive. Therefore, the point of 

X(n2 - 1) - 2rZ(B, - B,) L 0 (30) 

is violated. The key quantity that must be evaluated is 

where & = (a/R)  and C,(cos e) = cos (ne) is the Chebyshev 
polynomial of order n. It is convenient to rewrite eq 3 1 in terms 
of the variable y = sin (0/2) 

Here T,@) = C,(1 - 2y2). 
This integral has unpleasant behavior near y = 0. Accordingly, 

it is helpful to split off the small y asymptotic behavior of T,@) 

(33) T,O@) = 1 - 2n2y2 

that permits eq 32 to be written as 

So far the expression is exact for the dipolar case and the un- 
pleasant behavior at small y has been segregated in the first 
integral on the right-hand side of eq 34. 

We wish to evaluate these integrals in the limit of small a. For 
small a, the major contribution to the first integral occurs for small 
y. Accordingly, the expression can be approximated, to order a, 
by 
2r2[B, -B, ]  = 
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The first two integrals on the right-hand side of eq 35 can easily 
be evaluated so one obtains for the stability condition stated in 
eq 30 

This stability condition can be put in the suggestive form 

(37) 

where R, is the critical radius for distortion into harmonic shape 
n. This critical radius can be expressed as 

where the critical parameter for transition is defined by 

(39) 
The critical radii R, are increasing functions of n. Thus if the 

physical size R of a circular lipid domain exceeds the critical radius 
for a particular mode no, all modes with n > n, will be unstable. 

The procedure for computing the Z, is straightforward. First, 
one computes the Chebyshev polynomials C,(m 0) according to 
the recursion relation 

c,,,, = 2 cos e c, - c,, (40) 
with Co = 1 and C1 = cos 0 

One then forms T,Q) = C,(1 - 2y2) and with use of eq 33 per- 
forms the indicated integration. One finds: Z2 = 713, Z, = 813, 
Z, = 13/25, etc. 

C. Compahn with McCoanen’s Results. How do these results 
compare to those of McC~nnel l?’~ We do not expect precise 
numerical agreement because of the difference in the treatment 
of the cutoff.18 However we should expect agreement for physical 
quantities that do not depend on the cutoff parameter. Accord- 
ingly, we investigate the ratio of the critical radii R,: to the 
equilibrium radius R,  defined by McConnell as the radius that 
minimizes the total free energy, F,,, when the number and radius 
of unperturbed circular domains is permitted to vary at constant 
overall area, A,,, 

F,,, = ( 4 0 , / ~ R 2 ) f i o ’ ( R )  (41) 
Minimization of F,,, with use of eqs 25 and 28 leads immediately 
to the result 

ae2 
8 R,  = - exp(h/p2) 

If we form the ratio R,/%g, dependence on the cutoff disappears 
and thus we expect that the result (Z, - 2 )  will agree precisely 
with the ratio determined by McConnell. As expected we find 
agreement 

As McConnell has pointed out, the numerical values for Z, are 
in good agreement with the computer calculations of Vanderlick 
and.M~hwald.’~ 

D. Stability at Short Wavelengths. It is tempting to look for 
a limit for the critical radius R, as n - w. However, this limit 
is complicated because we do not expect the model to remain valid 
when the length scale of the boundary variation is comparable 
to the cutoff. Thus, our treatment will break down when j3 = 
n(a /R)  becomes large. 

It is possible to seek a limit for short wavelength n - m, small 
cutoff a! - 0, and 6 finite and small. This limiting procedure 

assures that all wavelengths considered will be large compared 
to the cutoff. 

In order to examine this limit, we consider the stability condition 
in its original form in eqs 30 and 31 with the change of variable 
x = e / n .  In the limit of large n, one has 

h nr cos (x/n) - cos x 
- L 2 J  dx 
P 2  

(44) 

One can show that in the limit of large n this integral is ap- 
proximated by 

[2n2(1 -cos (x/n)) + j32]3/2 

that can be evaluated to yield 
r 

(45) 

Here, KO(@) is the modified Bessel function that has an expansion 
for small j3 
KO@) = 

-[ln ( 6 / 2 )  - r l [ l  + (j3/2)21 + (1/4)02 + 484 In j3, 841 
(47) 

In this expression y is Euler’s constant. Carrying out the indicated 
operations in eq 46 leads to the following stability condition in 
the limit of small ,8 and large n 

(48) 
an 
2 where RM(n) = - exp[y - ( 1 / 2 )  + ( x / p 2 ) ]  

This condition determines a wavelength nM, for fixed R and a, 
from the condition R,(nM) = R. All wavelengths above this value 
of n M  are inadmissable. 

IV. More General Interactions 
The method we have developed can easily be extended to any 

interaction of the form ( 1 / 2 ) u ( p )  where p = r - r’. The result 
one obtains is exactly of the same form as eq 26 

(49) 
h 
-(n2 - 1 )  - 2R2[B1(t9) -B,(O)] L 0 R 

with B,, of the form 

B , ( I ~ )  = J*d9 u[R(1 - cos t9)] cos ( n o )  (50) 0 

The limits of stability from the reference circular shape can be 
investigated for any particular repulsive interaction. Here we 
present two examples. 

A. Coulomb Interactions. For a Coulomb interaction between 
the particles on the surface u(p)  = ( q 2 / p )  with p = [$ + r R  - 
2rr’cos (0)]1/2. For this interaction a cutoff does not need to be 
introduced. 

One finds from eq 50 that 
cos 9 - cos (n9) 

2R3[B1(19) - B,(8)] = 2’/2q2R21rdS (51) ( 1  - cos I 9 ) 1 / 2  

The substitution x = cos 0 leads to the result 

For the particular case of distortion to ellipsoidal shape n = 2, 
T2(x) = (2x2 - l ) ,  and eq ( 5 2 )  takes the simple form 

1 2 x + 1  
A 3  L 2 ’ / 2 q 2 R 2 1 1  dx 

( 1  + x)1/2 

This leads to the following result for the critical radius 

(53) 
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( 5 4 )  

which is identical to the result of Keller, Korb, and McConnellZ0 
for Coulomb interactions. No discrepency is found in numerical 
values because a cutoff is not needed. 

B. Exponential Interactions. For the case of exponential in- 
teractions between the particles on the surface, one has u(p)  = 
g exp[-p/61 
X(n2 - 1 )  I 

2 R 3 g S *  dt9 exp[-f ( 2 ( 1  - cos 9) )1 /2  [cos 9 - cos (na)] 

(55) 

Since (R /b )  >> 1 ,  the principal contribution from this integral 
occurs for small 8. Therefore, the right-hand side of eq 55 can 
be approximated as 

0 1 

X(n2 - 1) 1 (n2  - 1)R'gShlP 0 exp[-$?]J2 (56) 

which is easily evaluated to be 

X(n2 - 1 )  2 (n2 - l ) a 3 g S m  dx exp[-x]x2 = (n2 - l ) a 3  2g 
0 

(57) 

In this case the stability condition is independent of the harmonic 
order n. This is a general result for all interactions u that are 
of short range. For these interactions the line energy contribution 
is local and can be included as a contribution to X. 

V. Concluding Remark 
We have given an exact analysis of the stability in shape 

fluctuations of a circular dipolar region where the dipoles are 
oriented perpendicular to the surface. Our method is easily 
generalized to more general reference shapes and dipole orien- 
tations. We demonstrate how the method applies to different 
interactions. 

Future work will be directed to three-dimensional drops, 
bubbles, and bilayers. Our method should also prove useful for 
the analysis of fluctuations in the elastic energy of vesicles which 
involves volume and surface area  constraint^.^'-^^ 
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Appendix A Proof of Equation 22 
Equation 21 for G2 can be written as 

G2 = x2'd9 '  6Ro(9')2R2g(9') 

The integral g(8') is 

1 (-3)(R - r cos 9 )  

( [ R 2  + r2 - 2rR cos (9  - 991 + a2]5/2 
x 2 ' d 9 x R r  dr [ 

(A.2) 
If we assume r' is along the x axis and switch from polar coor- 
dinates to Cartesian coordinates in eq A.2 one finds 

g ( 9 1  = 

( '4 .3 )  

This expression when re-expressed in polar coordinates after in- 
tegration with respect to x, becomes 

g(9') = -RS"/'dS ( u 2 R ( 1  -cos a ) ]  - u2R(1  + cos a ) ] )  

with 

-r/2 

64 .4 )  

1 
[2R(1 - cos 9 )  + a2]3/2 

V[2R(1 - COS 9 ) ]  = ('4.5) 

Equation A.4 can be simplified to 

g(8 ' )  = - R S 2 * d 9  0 V[2R(1 - cos lP)] (A.6) 

which when placed into eq A. 1 leads to the expression for G2 stated 
in eq 22. 

Appendix B: Evaluation of the Integral W(O) 
We wish to evaluate the integral wo) ( R ) ,  eq 27, in the limit 

of small a. It is most convenient to begin by examining the 
derivative d P o )  ( R ) / d R  
ddo)(R)/dR = 

r 
[$ - 2rR cos 19 + (Rz + a2)I3l2 

2rp2R S '*d 9 Rdr ( B .  1 )  
0 0 

This integral is elementary and one obtains 

where the integral H(R) is 
H(R) = . .  

1 (1 - cos 9 )  + h2 
( 2 ( 1  - cos 9 )  + & 2 ) 1 / 2  

( 1  + &2)'/2 - 
I ' d 9  1 

2 0 sin2 8 + &2 

(B.3)  

or in terms of the variable y = sin ( 8 / 2 )  

Here & = (a /R) .  
We divide the integral into two parts, H = HI + H2, in order 

to isolate the small a behavior of the integral into HI.  The integral 
H, is 

which can be evaluated to yield 

The integral H2 is 
HZ(R) = 

This integral is well behaved in the limit that h knds to zero. Since 
we only require the small h behavior, we evaluate the integral 
H2(R) in this limit. One finds 
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that yields the result 
1 

H2(R) = -[2 - In 21 
4 

Thus, in the limit of small &, we have 

H(R) = - uR - - - - ‘In(:) 
4a 4 4 

(B.9) 

(B.lO) 

dWO)(R)/dR = 2 r p 2 [  f - 1 - In (E)]  (B.ll)  

This expression when integrated with respect to R is identical to 
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Note on the Theory of the Sizes and Shapes of Lipid Domains in Monolayers 
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A detailed analysis is given for the application of Green’s theorem to the calculation of the dipolar electrostatic energies 
of lipid domains at the air-water interface. This theorem enables an area integration of a f 3  dipole-dipole interaction to 
be represented by a double line integral involving r-I, substantially simplifying the calculation of the electrostatic energy. 
When a cutoff A is introduced in the expression for the dipoltdipole interaction so as to avoid the divergence at r = 0, a 
multipole correction term needs to be included in the Green’s theorem formulation of the electrostatic energy. The present 
work provides an exact expression for this correction term and shows that it scales like a line tension energy, independent 
of A when A is small compared to the dimensions of the domain. For two liquid phases this electrostatic contribution to 
the line tension is simply -cc2, where p is the difference in the dipole density in two adjoining phases. 

Introduction 
A number of experimental and theoretical studies have been 

made of the sizes and shapes of lipid domains observed at the 
air-water interface using fluorescence The theo- 
retical picture involves a competition between line tension and 
electrostatic dipoldipole interactions. Large line tension favors 
large domains with compact shapes, whereas large dipole-dipole 
repulsion forces favor small domains and/or domains with ex- 
tended shapes. The equilibrium shapes are then determined 
theoretically by variational calculations, allowing domain shapes 
and sizes to change in fmding a free energy minimum. The largest 
obstacle to such calculations is the evaluation of the electrostatic 
dipole-dipole energy for various domain shapes. To simplify these 
calculations, we have in previous work employed Green’s theorem 
to convert area integrals of dipolar energies to line integrals around 
domain  perimeter^.^ In such calculations it is necessary to in- 
troduce a cutoff A to avoid the divergence in the r-’ dipole-dipole 
energy. As has been noted recently by Deutch and Low, the 
validity of this application of Green’s theorem’is not obvious; in 
a recent study of harmonic distortions of circular domains, they 
have circumvented this issue by a direct attack on the area in- 
t e g r a l ~ . ~  
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The purpose of the present note is to show that Green’s theorem 
can be applied rigorously to these problems and to show that our 
previous results concerning domain sizes and shapes are strictly 
correct providing the line tension includes an electrostatic con- 
tribution. In this case the published formulas for domain sizes 
and shapes require no modification. 

Analysis 
As in previous work, the electrostatic dipoldipole free energy 

of an isolated lipid domain of area A is given by the expression 

where c is the electrostatic energy per unit area for a domain of 
infinite size witbdipole density p and the area integral gives the 
dipole repulsion between all dipoles within the area A and all 
virtual dipoles exterior to it in area A’. If the domain of area A 
is surrounded by a second lipid region A’ with different dipole 
density, then p is the difference in dipole densities in regions A 
and A’. Thus, the area integral in eq 1 gives the shape dependence 
of the dipolar energy of the domain of area A. See Figure 1. This 
simple expression for the electrostatic energy of course applies 
only to dipoles oriented perpendicular to the plane of the mono- 
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