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The influence of the spatial distribution of fixed reactive centers on the diffusion controlled 
kinetics of reagent particles is investigated on the basis of a mean-field method for the reaction 
rate. The reaction kinetics are analyzed in systems where the reactive centers are randomly 
distributed on the sphere, a line, an array of lines, and other geometrical structures imbedded 
in two and three dimensions. Finite-size effects influence the time dependence of the reaction 
rate on different time scales as a result of the competition for the diffusing particles by the fixed 
reactive centers. 

I. INTRODUCTION 
In this paper we analyze the kinetics of the reversible 

reaction 

A +$B (1) 

in space dimensions d = 2,3 when the reactive centers B are 
localized in particular geometric structures-a line or array 
of lines, a shell (ring), or a sphere (circle). We demonstrate 
how the time-dependent kinetics are determined by the com- 
petition between the different elements B for the flux of the 
diffusing substrate A. 

Our motivation in addressing this problem is to describe 
the time dependence of the rate coefficient that will be ob- 
served in systems where reaction takes place at inhomogeni- 
ties that may be present in materials either by design or natu- 
rally. 

The diffusion of the A particles is described by 

$ (r,t) = DV’p(r,t), (2) 

where p (r,t) is the local concentration and D the diffusion 
coefficient. At the boundaries of the N fixed spherical reac- 
tion centers B located at position CR,}, one has the boundary 
conditions: 

( 
S’d’D + ar+kp-k- 

> 
=O, i=l,..., N. 

lr - Rij = a 

(3) 
Here a = R, + R, where R, and R, are the radii of the 

particles A and B, 
Scd’ = 2#‘2ad- ‘r- ‘(d/2) 

is the surface area of a d-dimensional spherical region, and 
I(x) is the gamma function. 

The macroscopic rate equation for reaction scheme ( 1) 
is of the form 

aP -= (4) 
at 

- kob”(t)p(t)n + k”b”(t)n, 

with 

kob”(t)/kobs(t) = k/k- (5) 
and n is the average density of fixed B centers. We seek ex- 
plicit expressions for k Obs( t) for various geometries of inter- 
est. 

II. MODEL DESCRIPTION 

Several researchers have addressed this problem.1-15 
Our work extends previous efforts by (i) examining the time 
dependence of the macroscopic rate coefficient explicitly, 
(ii) including the influence of reverse reaction, and (iii) ana- 
lyzing a wider range of topological shapes. Our approach is 
similar to the approach adopted by previous 
workers 2,7.11,13-15 

After Laplace transformation 

c(r,z) = 
s 

m 
p(r,t)e-“dt, (6) 

0 

Eqs. (4) and (5) take the form 

DV2b(r,z) = zj?(r,z) --po, (7) 
where p. is the initial concentration which we assume to be 
uniform, and 

S ‘d’D 3 (r z) 
ar ’ 

+ klj(r,z) - (k-/z) 
> , -R, = = 0, i= l,...,N. (8) 

= t = 
We seek a solution to Eq. (7) in the form 
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jXr,z) =$ + i ciG(r - R,;z), 
i= 1 

(9) 

where G( ri,z) = G( r) is the Green’s function solution to the 
equation 

$G(r) - V’G(r) = (S’d’/ad-‘)6(r), q2 = (z/D). 
(10) 

The explicit expressions for G(r) are 

G(r)=r-‘exp( -qr), d=3 

G(r) = K, (qr), d = 2 (11) 
where K, (qr) is the modified Bessel function of zeroth or- 
der. For small x 

K, (x) = - In x + const. (12) 
The coefficients ci are determined from the boundary 

conditions Eq. (8). We determine the boundary condition 
approximately and accordingly incur an error in the treat- 
ment. We assert the boundary condition as an average over 
the surface of the reaction centers. This is valid to order 
(a/R,, ). The flux terms forj# i vanish, as can be verified by 
application of Gauss’ theorem neglecting terms of order #G. 

The result one obtains is the system of linear equations 

Go (z)ci + 2 G,(z)cj = b, i - l,..., N, (13) 
(i#i) 

where 

b = [(k- /k) -po]z- ‘, (14) 

S ‘d’D 
Go(z) = G(a) +-, 

kad-’ 
(15) 

and 

G,(z) =G(IRi -Rjl;z)=G(Ri -Rj). 
The total flux j(z) is equal to 

j(z) = - Scd’D 2 
i= I 

When this is evaluated approximately by averaging over the 
sink surface and employing Gauss theorem one finds 

S cd)D j(z) = -- 
ad- 1 

(17) 

neglecting additional terms of order q2. 
pf course both the substrate density ,5(z) and the total 

flux J(z) depend upon the position of the N reactive centers 
through the coefficients {ci}. In order to obtain the appro- 
priate macroscopic equations one must average these expres- 
sions over the spatial positions of the reactive centers. 

Ill. THE AVERAGE EQUATIONS 

We express the discrete set of equations ( 13) in contin- 
uous form as 

Go (z)c(r)n(r) + dr’G(r - r’)P(r,r’)c(r’) = bn(r), 

(18) 

where 

n(r) = 2 6(r - ri), 
i= 1 

c(r)n(r) = i c&r-r,), 
i= 1 

and 

P(r,r’) = i C S(r - r,)6(r - rj). 
i= 1 j(#i) 

(19) 

In this continuous representation 

p(r,z) =e + 
I 

dr’G(r - r’)c(r’)n(r’) 
Z 

and the flux 2 is given by 

(20) 

j(z) = 
- ,‘j- ‘d’D 

ad-l s 
dr c(r)n(r). 
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(21) 

The quantities c(r), n(r), and P(r,r’) depend implicitly 
on the positions of the reactive centers. We next average over 
the positions of the reactive centers in the geometric region 
R which they occupy. This average will involve products of 
the dynamical quantities but we shall make a mean-jield ap- 
proximation and break these averages of products into prod- 
ucts of averages. The result is 

Go (z)Z(r) + 
s 

dr’G(r - r’)P(r’Ir)?(r’) = b, (22) 

where 

F(r’lr) =F(r’,r)/E(r’). (23) 
In general, F(r’ jr) will reflect correlations in the location of 
particles at position r’ given a particle is present at position r. 
We shall restrict attention to uniform distribution of the re- 
active centers in the region R so that Eq. (22) becomes 

Go (z)W) + n s dr’G(r - r’)?(r’) = b (24) n 
and the flux 

L (2) = 
- S (d)D 

=d-I 
n 

s 
dr%( r). 

n 
(25) 

In general, it is not possible to determine F(r) explicitly 
from the integral equation (24). However, a rough approxi- 
mation that will incur some error is given by 

s Z(r)dr = 
bS1 

R 
1 Go (z> + n r drG( r) 1 

(26) 

1 JCI J 

and, hence, for the flux 

L(z) = 
- s ‘d’D 

ad- 1 N( -b) (Go(z) +nldrG(r)). 

(27) 
If the value of the integral in the denominator of Eq. (27) 
does not depend on the origin (as is the case for the spherical 
shell or ring), Eqs. (26) and (27 ) provide an exact solution 
of Eq. (24). We evaluate Eq. (26) by placing the origin at 
the center of mass of CI and, hence, incur an underestimate of 
the flux. 

From Eqs. (14) and (27) we find that the Laplace 
transform of the steady-state average flux is proportional to 
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k”“(t) = ksCK exp[ - k,,nt 1. (34) 
This corresponds to each reactive center acting independent- 
ly. 

For (qR) (1, i.e., tSrR, the integral I(q) +2?rR 2, 

. 
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the factor [pO - (k _ /k) ] N under circumstances when 
the density of reacting species is kept constant at large dis- 
tances from the reactive sinks. Strictly speaking we cannot 
make an identification with the time-dependent rate coeffi- 
cient as exhibited in Eq. (4). The difficulties that are en- 
countered in making this identification have been discussed 
by Bixon and Zwanzig. l6 Nevertheless, we believe that a 
reasonable argument can be made from noting that the aver- 
age flux can be put in the form 

J,,(t) = --8”‘(t)(,q, -+)N. 
The macroscopic rate equation Eq. (4) at a large distance 
from the region Cl which contains the reactive sinks will have 
the form 

L” (z) = km k 
kscu + k, 

N$ [PO - (k-/k)], (35) 

where k, = (2.D /nR ‘). In this limit k, should equal 
(30 /nR 2, so the factor (2/3) provides an indication of the 
magnitude of the error incurred in the approximation lead- 
ing to Eq. (26). For this case, the reactive centers effectively 
act as a single reactive sphere of radius R and one finds 

k&c kc, k 
k ’ SCK +kn 

(36) 

It is possible to solve the mean-field equation exactly for 
the case of the sphere and a few other geometries of interest. 
In the Appendix we compare the exact mean-field solution 
for the sphere with the results obtained here in order to give a 
better basis for assessing the consequence of the approxima- 
tion made in passing to Eq. (27). 

&= -k”+=(t) at 
where use has been made of Eq. (5) 

We assert that the time-dependent rate coefficients for 
the case of uniform substrate density will be the same as for 
the case of time-dependent substrate density. Thus, we make 
the identification i Ob( t) = k Ob”( t) while acknowledging 
the possibility that differences may exist between these two 
coefficients as suggested by the analysis in Ref. 16. 

IV. RESULTS FOR THREE DIMENSIONS 
For three-dimensional systems, according to Eqs. ( 15) 

and (ll), 

j,, (z) = 
47rDN( - 6) 

[(eeqa/a) + (4rD/k) + d(q)1 ’ 
(28) 

where 

I(q) = f dr(ewqr/r). 
Jf-i 

(29) 

We will consistently assume t s t, = u’/D, so that (qu) < 1. 
This leads to 

j BY (z) = kc,N [po - (k- /k) I 
z + nk,,, (ti/Wl(q) ’ 

(30) 

where k,,, is the Smoluchowski-Collins-Kimball rate co- 
efficient, ’ 

k 4rDak 
SCK= k+Lt?rDa * 

(31) 

We proceed to evaluate j,” (z) for several three-dimensional 
geometries of interest. 

A. The sphere 
For this geometry 

I(q) = (47r/qZ)[l- (1 +qRkeqRl. (32) 

In the limit (qR) ) 1, i.e., t4rR = R ‘/D, the integral 
I(q) -+ (47r/$) and, hence, 

j a” (=I = ksc,N [PO - (k- /k) 1 , N = 47rR 3n/3. 
z + nkscK 

(33) 
The resulting rate coefficient is 

B. Particles on a line 
If the reactive sinks are uniformly distributed on a line 

of length L (and radius a), the screening integral I(q) is 

I 

(L/2) e - qr 
I(q) = 2 -&= 2[E, (qua) -4 W)] 

(-L/Z) r 

I 

- 2ln(qu) if qu41, q&l 
= 2ln(L/u) if (qL) 

(37) 

Here E, (x) is the exponential integral function. 
For times t ( (L ‘/D) = r, , the finite length of the line of 

traps is not apparent and Eq. (28) for the flux becomes 

?a, (z) = k,,N [PC, - (km /k) ] 
z[ 1 - 2n(k,,/hD) ln(qu)] 

, N=nL. 

(38) 

For short times (k,,/2?rD)n ln(qa)2( 1, i.e., 
t -c ral exp [ 2?rD /nks,-, ] = rl, the flux describes reaction to 
N-independent sinks. For times t > r1 (if rr < rr. ) there is 
competition between the sinks. The forward time-dependent 
rate coefficient is approximately 

k”‘=(t) = hD 
n In(Dt/u’) ’ 

(39) 

which is similar to the Smoluchowski solution for diffusion 
of particles to a perfect cylindrical trap. 

For times t s rL , the kinetics reflects the finite size of the 
line and will again exhibit steady-state behavior. In this limit 
the rate coefficient becomes 

k oba 2rrD 
=n ln(L/a) ’ 

(JQ) 

C. An array of lines 
We next imagine that the N traps are distributed uni- 

formly on lines of length L and that lines of these traps are 
uniformly distributed parallel to an axis. This system will 
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exhibit the following sequence of behavior: independent re- 
active centers, a single line, an array of lines, and finally the 
cluster of lines. 

We assume that each line of length L contains n reactive 
center per unit length and that there are u such lines per unit 
area arranged in a finite cluster of area A = TTL 2. Thus, the 
total number of reactive sinks is N = mrL ‘nL. 

The shielding integral I(q) equals the sum of the single 
line contribution in Eq. (37) and a term I, (q) arising from 
the neighboring lines, 

12(q) = Ziis~drr’~exp] ---.+:)“” &. 

(41) 
This integral has the following limits: 

I2 + 4nu/q2, qa41, qL%l, 
I, -+8naL2, qL(1. 

For times t-g r,, the flux has the form 
(42) 

k” (z) = ksc,N [po - (km. /k)] 
ksckan + z[ 1 - 2ks,, (n/4rD) ln(qq)] ’ 

(43) 
For short times t < 8, , leads to a forward rate reflecting inde- 
pendent sinks 

k”&(t) = k,,, exp( - ksCKont). (4) 
This expression is of the same form as Eq. (34) but with a 
different effective concentration. 

For times r, < t < r,, the flux takes the form 

n 4?rDN [po - (k- /k)] 
Jay(z) = n In[ 1/(qa)2] z + {(047rD> ln[ 1/(qa)2]) ’ 

(45) 
which leads to a forward rate coefficient of the form 

k”‘=(t) = 47rD 4nuDt 
n In [ Dt /a21 > ln(Dt/a’) . 

(46) 

For long time t > rL, a steady state is approached. It is 
easy to determine this rate to be 

k oh = &ax kn 
k ’ SCK + k 

where 

k, = 2~D 
n[47mL2+In(L/a)] ’ 

(47) 

For low density of lines, k Ohs = k,,, . For high n and low 
density of lines [ ln( L /a) ) 47~uL ‘1 the observed rate 
(k ObsN) will approach the value for ( TL ‘a) independent 
lines each contributing [ 27rDL /ln( L /a) ] to the rate coeffi- 
cient. For a high density of lines, ( kobsN) approaches the 
value expected for diffusion to a single massive array that 
appears as an ideal spherical trap of size R = L /8. The nu- 
merical value (l/8) is approximate. 

D. Other three dimensional geometries 

Other geometries may be analyzed in a similar fashion. 
In all cases, the following behavior is found. For short time, 
t < rl, the rate is described by independent sinks; for inter- 
mediate times r1 < t < rL the rate coefficient is time depen- 
dent reflecting competition among the sinks; for long times 
t > rL a steady state is approached. For this steady state, at 
high trap density, the total rate coefficient (Nk Ohs) will have 
the form of the rate for a single ideal spherical trap with an 
effective radius R,, . The numerical value determined for 
R,, is only approximate. Table I presents results for three 
other geometries of traps: a plane, a spherical shell, and a 
ring. 

V. RESULTS FOR TWO DIMENSIONS 

The story for reactive centers in two dimensions is very 
similar to d = 3 except that no steady state is attained. We 
offer an explicit analysis for the case of a circle and simply 
present results for several other cases. 

According to Eq. (27) one finds, for the flux in d = 2, 

L(z) = 2rDkN(p, - k _ /k) ( l/z) 
27~D - k ln(aq) + nM(q)k ’ 

where (aq) << 1 and M(q) is the screening integral 

M(q) = dr& (qr). 
s 

For the circle, the screening integral is 

(48) 

(49) 

TABLE I. Results for the screening integral and the rate coefficient in different time regimes in three dimensions for various geometries of reactive centers. 

kob‘(t) k otn k Ob’N /47rD = R eff 
Screening integral Z(q) 7, <t<rL Steady state n-cc 

L 
2R dr exp( - qr) 

Plane 

k,,, 11 + (nk,,, L 120) 

Spherical shell 

27rR’ 
f 

ud8 exp[ - 2qRsin(8/2)] 
2R sin( 8/2) 

kc,/1 + (&,,R/D) 
0 

L /2n 

R 

2R dd exp[ - 2qR sin(qV2) 1 
2R sin(&2) 

Ring 

&,A + [nk,,, ln(2R/a)/rD] rrR/nln(2R/a) 
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M(q) = 27T 
s 

rdrrKo(qr) 
0 

=2dq2[quKo(qu) -qRKJ(qR)]. 
For short times ( qR ) b 1, and the screening integral ap- 

proaches M(q) + (2?r/$) so that 

x,, (z) = 
k 

nk + z{l - [k In(aq)/2?rD ]] 
N(p, -k-/k). 

(50) 
For times r, -C t < r, exp(4rD /k) ~-7~) the observable 

forward rate is 

kob”(t) = k exp( - knt) (51) 
again reflecting independent action of the sinks. 

For times r2 .C t c rr. we find an approximate expres- 
sion, for the flux 

APPENDIX 

j,” (z) = 
4?rD 

n4qD - z ln(aq)’ 
N(po - k-/k), (52) 

of the form 

controlled reaction is a signature for the geometry of the 
locations of the fixed reactive centers where reaction takes 
place. For short times, the reaction time dependence reflects 
independent centers. At long times, the kinetics eventually 
follows the time evolution appropriate to a single reactive 
center with a geometrical factor that depends upon the shape 
of the localized region that contains the reactive centers. At 
intermediate times, a particular time dependence arises that 
reflects the competition between the fixed reactive centers. 
The inverse problem is also of interest: How to design the 
geometry of a catalytic region in order to obtain a desired 
time dependence for the course of a chemical reaction. 

In this Appendix we calculate the exact mean-field reac- 
tive flux for the sphere in order to provide a basis for assess- 
ing the approximation introduced in Eq. (26). 

In differential form, the mean-field equation for a sphere 
of reactive centers is [ Eq. (2b), Ref. 141, 

kobs(t) = k(t) exp[ -n ldrk(r)], 

where k(t) has the form of a single d = 2 trap, 

(53) 

k(t) = 477D 
ln(Dt/u’) . 

(54) 

In the long time limit t > rr. or (qR) 4 1, the screening 
integral approaches the value [ - TR, In( qR ) 1. Accord- 
ingly, the forward rate may be estimated to behave like, 

kob”(t) = 2?rDk 
2?rD + k(mr/2)R2 ln(Dt/R ‘) ’ 

(55) 

If the density of sinks in the circle is high then the quantity 
Nk Ohs ( t ) approaches 

kob”(t)N+4rrD/ln(Dt/R2), (56) 
which exactly coincides with the Smoluchowski solution for 
a single reactive center of radius R in the plane. 

A similar analysis can be carried out for other geome- 
tries of reactive centers in d = 2. Table II presents results for 
the forward rate k Obs( t) for reactive centers arranged in a 
line, an array of lines, and a ring. 

VI. CONCLUDING REMARKS 
The point of this work is to demonstrate that the time 

dependence of the observed rate coefficient of a diffusion 

TABLE II. Results for the forward observed rate coefficient in two dimen- 
sions when reactive centers are arranged in the pattern shown. The results 
are in the limit t, ~~ = (L ‘/D) . 
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ap(r,O -=D$$r’$p(r,t) -knp(r,t), 
at 

r-cR, 

dp(r,t) -=D-+$r’$p(r,t), 
at 

r>R, 

t-41) 

where we have neglected the reverse reaction and k = 4rrDu 
is the rate coefficient for diffusion to the N reactive sites of 
radius a that are distributed with uniform density 
n = N/(4?rR 3/3) in the sphere. These equations must be 
solved with the boundary conditions that the concentration 
is finite at the origin of the sphere and approaches p. at a 
large distance from the sphere. The concentration and its 
first derivative are continuous at r = R. The initial condition 
is that the concentration is uniform outside the sphere with a 
value p. . 

the equations become 

In terms of the Laplace transform 

s 

m 
jXr,z) = dt exp( - zt)p(r,t), 

0 
(AZ) 

lL?r22jj(r,z) _ z+kn- 
r2& Jr 

-p(r,z) = 0, r-c& 
D 

-Po -+$r’-$@(r,z) -Ep(r,z) =-, 
D 

r>R. 

C-43) 

The solution to these equations are 

Arrangement of 
reactive centers 

Line 
Array of lines 

Ring 

2rD/k”“Yt) 

2?rD+ nkL ln(Dt/L’) 
2rrD + nkL( 1 + 47rc7L) In 

2?rD-+- nkRrrln(Dt/R2) 

p(r,z) = (a/&A) (po/@)Il,2 W 
h/2 (sR 1 

, r<R, 

p(r,z) = Cn/fiA) 
(pos/qDK,,, (p-1 p. 

k/2 ( qR 1 
+G, n-R. 

(A4) 
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Here $ = (z/D), ? = [ $ + (kn/D) 1, and I,,, and K,,2 
are modified Bessel functions of fractional order. 

The quantity A is 

+--l-J-‘]. (A5) 

The flux entering the spherical region of reactive sinks is 

= 4rrR ‘p. (s/q) + (A6) 

and the reactive flux is 

f 

R 

I,,, (z) = 4rrkn dr r ‘jXr,z) - 
4?rknR ‘p. 

(A7) 
0 sqDA * 

These are the exact mean-field results for a spherical 
region of reactive traps. We compare these exact results with 
the approximate results presented in Sec. IV A. 

First, we consider the limit of dense traps n -+ CO which 
means s--r CO. In this case, all the reaction takes place at the 
surface of the spherical region. The external flux in this limit 
approaches 

S(z) = 4?rR Dpo 
(1 +@I, 

Z 

which is the result one expects for reaction with a single 
sphere of reactive sphere of radius R. As discussed in text, 
the result from our approximate method Eq. (35) differs by 
a factor of (2/3). 

Next, we consider the reactive flux term Eq. (A7). In 
the limit n+ CO, s-r CO we obtain the result Eq. (A8) as ex- 
pected. In the opposite limit n 40, the reactive centers are 
dilute. For long times q,s+O, one obtains the result 

Y,,,(z) = LfL 1 
z l+ [(z+kn)R2/3D] * 

(A9) 

In this limit, the diffusing particles have penetrated the 
spherical trap region and the reactive flux arises from N- 
independent sinks. The leading behavior is identical to Eq. 
(33) but the corrections differ. This occurs because the ap- 
proximation Eq. (26) does not accurately describe the diffu- 
sion through the reactive sphere. 
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