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Effective molarities for diffusion-controlled reactions between spherical reactants with reactive patches are calculated analytically 
and by Brownian dynamics simulations. Unimolecular reaction systems with internal translational motion in one, two, and 
three dimensions are investigated and compared with bimolecular reactions in three dimensions. Rotational diffusion is included 
in all cases in which a reactant particle is anisotropically reactive. Effective molarities are established by calculating the 
ratio kUni/kbi.  Large rate enhancements are seen when restrictive translational constraints are imposed on the unimolecular 
reaction. Additional rate enhancements occur when a reduction in dimensionality accompanies the translational constraint. 
I f  the reactants are anisotropically reactive, the effective molarity is further increased if the geometric constraints in the 
unimolecular system keep the reactive surfaces in a proper orientation for reaction. The presence of an attractive potential 
designed to represent the relief of strain in the unimolecular system also leads to rate enhancements. The results are compared 
with those obtained for simple models of activated (non-diffusion-controlled) reactions. Overall, these simulation results 
indicate that highly elevated values of effective molarity are not likely to arise from mass transport considerations alone. 

Introduction 
In many chemical systems, a rate enhancement is seen when 

an intramolecular reaction replaces its intermolecular analogue, 
that is, when the two reactive species are part of the same molecule 
rather than separate molecules or atoms. Of course, any such 
comparison between different reactions assumes that the two 
reactions proceed through the same transition state. A quantity 
has been defined to measure this rate enhancement, namely, the 
effective molarity (EM). This is defined as the ratio of the 
intramolecular rate constant to the intermolecular rate 

Consider the rate equation for an elementary bimolecular re- 
action: 

(1) A + B - products 

The relative rate of disappearance of A is 

In the elementary unimolecular reaction 

A - products (3) 
the relative rate of disappearance of A is 

(4) 

The concentration of reactant B necessary for the two relative 
rates to be equal 

kbi[Bl = kuni (5) 

[B] = kuni/kbi E EM (6) 
The range of effective molarities seen in experiments extends 

from less than 1 M to greater than los M.2 A number of theo- 
retical models have been advanced to rationalize the observed 
E M s . ~  Different theories have attributed high effective molarities 

is the effective molarity of the unimolecular reaction: 

to proximity, steric, or strain effects. Depending on the theory 
and the particular system under study, maximum rate enhance- 
ments ranging from 5 M to greater than I O 8  M have been pre- 
d i ~ t e d . ~ - ~  

In the present work, we explore the variation in EM obtained 
for simple theoretical models in which both the intermolecular 
and intramolecular reactions are diffusion controlled. In these 
models, the reactants are spherical particles that are allowed to 
diffuse in either an unbounded or a bounded region of space so 
as to simulate a bimolecular reaction or a unimolecular reaction, 
respectively. The particles have reactive patches on their surfaces. 
A collision between the diffusing particles results in a reaction 
if the two reactive surfaces come into contact; otherwise, the 
particles reflect and diffuse apart. The model systems are chosen 
to allow us to explore how variations in the flexibility of the linking 
group influence the intramolecular reaction rate and corresponding 
effective molarity. The contribution to the effective molarity due 
to rotational mobility is also studied. Finally, the effects of an 
attractive potential intended to represent steric effects in the 
unimolecular system are also investigated. 

One major objective of the work is to inquire if (or under what 
circumstances) very large values of EM can be attributed entirely 
to proximity (that is, to a favorable configurational entropy re- 
flecting the restriction in relative position and orientation of the 
reactants in space to regions favoring reaction) and to what extent 
enthalpic terms must be considered. Restricting the treatment 
to diffusion-controlled reactions does not limit its scope in con- 
siderations of entropy. Thus this treatment provides an accurate 
(within the limits of the analysis) discussion of the maximum 
contribution to EM from proximity. Its conclusion-that prox- 
imity alone cannot account for values of EM larger than ap- 
proximately 103-104 M-is not an artifact of a treatment con- 
sidering only diffusion-controlled reactions. 

Theory 
Model System. The reactant particles in this work are spheres 

of 1-8, diameter. This size was chosen arbitrarily; with appropriate 

( 1 )  Mandolini, L. Adu. Phys. Org. Chem. 1986, 22, 1 .  
(2) Kirby, A. J.  Adu. Phys. Org. Chem. 1980, 17, 183 
(3) Menger, F. M. Acc. Chem. Res. 1985, 18, 128. 

(4) Dafforn, A.; Koshland, D. E. Proc. Narl. Acad. Sci. U.S.A. 1971,68, 

( 5 )  Bruice, T. C.; Pandit, U. K. J .  Am. Chem. SOC. 1960,82, 5858. 
2463. 
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Figure 1. Model of reactive spheres of radius r with reactive patch angle 
of 0 around the symmetry axis vector B. 

scaling, the results presented here are generally applicable. The 
spheres can either be uniformly reactive or can possess an axially 
symmetric reactive zone. The angular size of the reactive patch 
measured from its axis of symmetry is denoted by 0 (see Figure 
1). The two reaction partners diffuse in a liquid with the viscosity 
of water at 300 K. There are no forces of interaction between 
the reactive particles in most of the calculations. In one calcu- 
lation, a harmonic interparticle potential is used to model the relief 
of strain upon reaction in a unimolecular system.* In all calcu- 
lations, hydrodynamic interactions are ignored. 

The bimolecular reaction 

A + B - A B  ( 7 )  

occurs instantly when the two particles, diffusing in an infinite 
domain, collide on their reactive surfaces a t  a center-to-center 
separation a = 1 A. The unimolecular reaction 

A B - AuB 
U 

is identical with the bimolecular reaction except that the two 
spheres are connected by a flexible chain or tether. There is 
therefore a maximum center-to-center separation R, which we 
take to be IO A in most of these discussions (changes in the length 
of the tether are treated explicitly in the last section of the paper). 

Three different types of molecular connectors will be considered 
for the unimolecular case. The most flexible connector allows 
the reactive spheres to move freely relative to each other in three 
dimensions. Two less flexible connectors allow relative motion 
in only two or one dimension; these connectors are idealized models 
for molecules in which reactive groups are attached to semirigid 
frames. 

Calculating kbi. Northrup et al. have developed and extended 
a method for calculating the rate of a bimolecular diffusion- 
controlled reaction via Brownian dynamics trajectory simula- 
t i o n ~ . ~ . ~  The simulation is performed in a bounded domain and 
then corrected for the infinite domain of the physical system. The 
formalism of Northrup et al. is general and can account for 
interparticle forces and for hydrodynamic interactions, although 
the latter are not included in the numerical evaluations of EMS 
in  the present work. 

The model system for the bimolecular reaction is one in which 
one member of the reacting pair (A) is centered at the origin and 
the other (B) is allowed to diffuse with a relative diffusion constant 
equal to the sum of the individual diffusion constants: 

(9) 

We use a treatment based on the following simple model. The 

space around A is divided into two regions. For values of the 
interparticle center-to-center separation r > b, we assume that 
the interparticle potential u(r)  = 0. Thus, the rate constant for 
diffusing B particles to arrive at r = b is given by a simple analytic 
expression (see below). The subsequent fates of B particles that 
have reached r = b is determined by Brownian dynamics trajectory 
calculations. This allows for the computation of reaction prob- 
abilities when the geometric requirements for reaction do not admit 
analytic calculation. Any trajectory is terminated either by re- 
action (when B collides with A at r = a and the reactive patches 
of A and B are properly oriented for reaction) or by truncation 
(when the B particle moves to a distance r = q, where q > 6 ) .  
As is described below in greater detail, the overall bimolecular 
rate constant kbi is a simple function of the rate constant kD(b) 
for arrival at r = b, the probability p of subsequent reaction rather 
than truncation, and a factor Q that corrects for the fact that the 
truncated trajectories, had they been continued, might have led 
to reaction rather than escape of the reactants to infinite sepa- 
ration. 

The basic relation used to calculate kbi 

Here, kD(b)  is the rate constant for the bimolecular reaction 
between the diffusing particle and an isotropically reactive target 
of radius 6. This rate constant is given by the Smoluchowski 
expression* 

The quantity p is the probability that a particle that starts at b 
will eventually react rather than diffuse to infinite separation. This 
quantity is calculated indirectly by carrying out Brownian dy- 
namics simulations of reactant B in a finite region around the 
target A. A truncation sphere is established beyond b at  r = q. 
When a particle reaches q its trajectory is terminated. The 
probability that a particle that starts at b will react rather than 
diffuse to r = q is termed 0. In our calculations, b and q are taken 
to be 4 and I O  A, respectively. The prob$bilityp can be expressed 
in terms of the computed probability 0 by6 

p = 8/(1 - ( 1  - B ) Q )  (12) 

The quantity Q is the probability that a particle at q in an infinite 
domain will return to r = b rather than diffuse to infinite sepa- 
ration. I t  can be expressed analytically as9 

which for systems without interparticle forces (u(r)  = 0) integrates 
to 

R = b / q  (14) 

In  summary, the rate constant for bimolecular reactions of 
particles with perfectly reactive patches but that have no inter- 
particle or hydrodynamic interactions is6 

6 is calculated by determining the ensemble probability that a 
particle starting at a random point on surface 6 (4 A) will react 
with a second particle anchored at the origin rather than diffuse 
to surface 4 ( I O  A ) .  

Calculating kuni. General Systems, via Computer Simulation. 
The rate constant for a unimolecular reaction is the reciprocal 
of the average reaction time (or mean first passage time) T.'*'* 

(6) Northrup, S. H.; Allison, S. A.; McCammon, J .  A. J .  Chem. Phys. 

( 7 )  Allison, S. A.; Northrup, S. H.; McCammon, J. A. J .  Chem. Phys. 
1984,80, 1517.  

1985, 83, 2849. 

( 8 )  Smoluchowski, M. V.  Phys. Z .  1916, 17, 557.  
(9) Northrup, S. H.; Hynes, J .  T. J .  Chem. Phys. 1979, 71, 871. 
( I O )  Szabo, A.; Schulten, K.; Schulten, Z. J .  Chem. Phys. 1980, 72,4350. 
( 1  1 )  Weiss, G .  H. Adv. Chem. Phys. 1967, 13, I .  
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In our model, T will be calculated in the various unimolecular 
systems discussed above by determining the ensemble average time 
necessary for a particle starting at  a random point within the 
diffusion region (all points greater than 1 A from the origin and 
less than IO A from the origin) to react with a particle located 
at the origin. All attempts to diffuse to a separation greater than 
10 A are reflected back into the diffusing region to continue the 
trajectory until reaction occurs. 

Isotropically Reactive Spheres, via Analytical Formulation. 
For the case of uniformly reactive spheres, the unimolecular 
diffusion-controlled reaction rate can be obtained analytically as 
the inverse of a mean first passage time. These times have been 
obtained by Adam and Delbruck using series solutions,I2 in closed 
form by Szabo et al. using operator methods,I0 and by Deutch 
using direct integration.I3 Here, we give a straightforward de- 
rivation using Laplace transforms. 

The rate of change of the distribution function of the trapped 
particle, P(r,t), can be expressed in terms of the diffusion equation 

dP(r,t)/dt = DV.[VP(r,t) + @(Vu(r))P(r,t)] (16) 

where D is the diffusion constant, u(r) is the potential felt by the 
particle, and p is the reciprocal of the product of Boltzmann’s 
constant and absolute temperature. The boundary condition at 
the reflective surface R is 

(17) -D[VP(r,t) + @ ( V ~ ( r ) ) P ( r , t ) ] , = ~  = 0 

This is equivalent to the particle flux at  R being zero. The 
boundary condition at  the reactive surface a is 

P(r,t),=, = 0 (18) 

The initial distribution P(r,t=O) is VI, where Vis the volume of 
the system. 

The diffusion equation is simplified by taking the Laplace 
transform 

(19) z&r,z) - VI = DV.[Vb(r,z) + @(Vu(r))&r,z)] 

where 

i)(r,z) = l m e - z f P ( r , t )  0 dt 

The mean first passage time T can be expressed as 

T = L m d t  l d r  P(r,t) = l d r  &r,z)l,,o (20) 

where the integration over time is included in the Laplace 
transform of P(r,r) with z = 0. 

Inserting P(r,z=O) into eq 19 yields 

where d is the dimensionality of the system. 
Integration and application of the boundary condition at R yield 

+ @(- u(r)P(r,z=O) = 
dP(r,z=O) d L. 

dr  dr  

The left-hand side of eq 22 is equal to 

A second integration yields 

Application of eq 20 gives a general expression for the mean first 
passage time: 

(12) Adam, G.; Delbruck, M. Structural Chemistry and Molecular Bi- 
ology; Rich, A., Davidson, N., Eds.; Freeman: San Francisco, 1968; pp 

(13) Deutch, J. M. J. Chem. Phys. 1980, 78,  4700 
198-2 1 5. 
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where A ,  = 1, A2 = 2a, and A3 = 4a. 
When u(r) = 0, eq 24 can be integrated analytically. Ex- 

pressions for the mean first passage times with no interparticle 
forces are given in eqs 25-27, where y = R/a.  

a 2 [ y  - 112 
3 0  

d = 1  r l =  

d = 2  7 2 =  [ y2 In y - p2 3 + I - 
2D(y2 - 1) 

Computational Methods 
Brownian Dynamics. Translational Motion. The stochastic 

translational motion of the diffusing particle is simulated by using 
the algorithm of Ermak and McCammon.I4 The displacement 
of the particle along each Cartesian axis is given by an equation 
of the form 

x(t + A t )  = x(t) + S (28) 

where At is the dynamics time step. S is a Gaussian random 
number with a mean of zero and a variance 

(S’ )  = 2D,,,At (29) 

which mathematically represents the stochastic forces imparted 
to the particle by the solvent. The random numbers S are gen- 
erated for the simulation by the IMSL Library GGNML subrou- 
tine.I5 As stated above, the relative diffusion constant is the sum 
of the individual diffusion constants, which can be calculated by 
the Stokes-Einstein law of diffusion: 

The absolute temperature, T, is 300 K and the solvent viscosity, 
7, is 1 cP. The particle diameter, a, is 1 A for both the target 
and the diffusing particle. The time step, At, is 5.69 fs and was 
arrived at  through system parameters: 

It represents one-hundredth of the time step necessary for the 
variance of S to be the square of the particle radius. 

Rotational Diffusion. The equation of motion for the direction 
vector representing the axis of symmetry of the reactive patch is 

(32) 

where M,, My, and MI are rotation matrices corresponding to 
rotation around the x, y ,  and z axes by random angles cyl,  cy2, and 
a3. The average of ai is zero and the variance is 

B(t + AtR) = B(t).M,.M,.M, 

(a:) = 2ARAtR (33) 

where DR is the Stokes’ law rotational diffusion constant 

The random numbers ai are generated by the IMSL Library 
G G N M L . ’ ~  The time step for rotation, AtR, is 10 times as large 
as At, the time step for translation, but rotations are performed 

(14)  Ermak, D. L.; McCammon, J. A. J .  Chem. Phys. 1978, 69, 1352. 
( 1 5 )  IMSL Library Edition 9.2 (IMSL LIB-0009, Houston, TX 1984). 
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once every I O  translational steps. 
Time-Step Variation. To save computation time, the time step, 

and thus the variance of the random number in the equation of 
motion, was varied according to the position of the diffusing 
particle relative to the target. In the bimolecular system with a 
reactive surface at a ( r  = 1 A) and a truncation surface at q ( r  
= 10 A),  the intervening region was divided into seven shells of 
equal width. The two zones closest to the target had time-step 
values as stated above, the third zone had a time step I O  times 
larger, and the remaining four zones had time steps 20 times larger 
than the minimum value. In all cases the rotational time step was 
IO times the translational time step. The trajectory initiation 
surface b ( r  = 4 A) was inside of the third zone. 

In  the unimolecular system, the region between the reaction 
surface at a ( r  = 1 A) and the reflective surface ( r  = I O  A) was 
also divided into seven regions, with the regional time steps sym- 
metric about zone 4. Zones 1 and 7 had the minimum time step 
as calculated above, and zones 2 and 6 had time steps I O  times 
larger. The time steps for zones 3 and 5 were 25 times larger than 
the minimum, and that for zone 4 was 50 times larger than the 
minimum. 

These particular time-step distributions were experimentally 
arrived at so as to reproduce the results of a uniform time-step 
distribution corresponding to the minimum value throughout the 
interval. The values used in all cases were derived from the 
three-dimensional systems that were the most sensitive to the 
time-step distribution. 

Boundary Conditions. Starting Positions. In the calculation 
of the bimolecular rate constant, the diffusing particle was started 
at random locations on the surface b (4 A). The simulation used 
the IMSL Library G G S P H ' ~  subroutine for this purpose. 

In  the calculation of the unimolecular rate constant, the dif- 
fusing particle was started at random locations in the diffusion 
region by using IMSL Library G G U B F S . ~ ~  This results in an 
ensemble average uniform distribution of starting positions, as 
required in calculations of mean first passage times.1° 

Reaction. In  both the unimolecular and bimolecular models, 
reaction occurs on contact between the reactive portions of the 
particles. Computationally, three criteria must be met. First, 
the center-to-center displacement must be less than or equal to 
the sum of the radii of the particles. If the target is anisotropically 
reactive, a puncture point is calculated. This point is defined as 
the point on the target surface that the diffusing molecule would 
have passed through if a straight line between the last point on 
the trajectory and the present point were assumed. The second 
requirement for reaction is that the angle of the puncture point 
relative to the symmetry axis of the target must be less than or 
equal to 0, the angle that defines the target's reactive patch. The 
third criterion is evaluated if the diffusing particle has anisotropic 
reactivity. The line from the center of the target to the center 
of the diffusing molecule, if it were touching at the puncture point. 
is calculated; the angle between this line and the symmetry axis 
of the diffusing particle's reactive patch must be less than or equal 
to the angle d 2  that defines the reactive patch on the diffusing 
particle. 

When the conditions for reaction are achieved in the bimolecular 
case, the counters corresponding to the number of reactions and 
the number of runs (NRXN and NR-UN, respectively) are both 
incremented by 1. The probability p is calculated as NRXN/ 
NRUN when NRUN is equal to 4000. 

In the unimolecular simuiations, the reaction time t, for a given 
run is t + At, where t was the lifetime of the reactants on the last 
step prior to reaction. The mean first passage time i s  then simply 
the ensemhle average of the reaction times. 

Reflection. I n  the calculation of the probability p in  the bi- 
molecular simulation, the diffusing molecule may attempt a step 
through a reflective boundary on the anisotropic particle. If this 
occurs, the position at t + At is equated with the position at t and 
a new Brownian step is performed. The unimolecular model treats 
reflection in a similar manner, both for collisions of the reactants 
and for dis lacements of the reactants beyond the allowed max- 
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TABLE I: Effective Molarities (M) for Different Combinations of 
Unimolecular Reactions (Columns) end Bimolecular Reactions 
(RowsPb 

unimolecular reactions 
bimolecular 3DC 3D 3D 3D 

reactions I D  2D 3D 90:180 45:180 30:180 30:30 
3D 5.17 1.63 0.470 
3D 
90:180 6.85 2.16 0.623 0.448 
3D 
45:180 13.82 4.36 1.26 0.904 0.402 
3D 
30:180 22.81 7.19 2.08 1.49 0.664 0.411 
3D 
30:30 208.1 65.62 18.9 13.6 6.06 3.76 0.356 

"These results are based on computer simulations. The reaction 
distance a = 1 A and the reflection distance R = I O  A in all cases. 
bThe uncertainties range from 4% to 10% with the average being 6%. 
These are obtained by propagating the standard deviation of the mean 
unimolecular and bimolecular rate constants from eight batches of 500 
trajectories each. Reactive patch on target (0 in degrees):reactive 
patch on diffusing particle (0, i n  degrees). 

I I 

0.0 I I I I 

0.0 0.2 0.4 0.6 0.8 1.0 

Patch Size (6 /n)  

Figure 2. Effect of target reactive patch size 0 on bimolecular rate 
constant. k* is the bimolecular rate constant divided by the Smolu- 
chowski result (4rDrela), where a is the sum of the radii. The solid line 
corresponds to the analytical results of Shoup et a1.I6 Points correspond 
to the simulation results. Crosses corrrespond to the error range obtained 
by propagating the standard deviation of the mean bimolecular rate 
constants from eight batches of 500 trajectories each. 

at t ,  At is added to the lifetime of the reactant, and the Brownian 
dynamics trajectory is resumed. 

Truncation. In the bimolecular simulation, trajectories are 
truncated when the interparticle separation is greater than q ( I O  
A). The value of NRUN is then incremented while the value for 
NRXN remains the same, and a new trajectory is started. 

Results and Discussion 
Unimolecular rate constants were calculated for one-, two- and 

three-dimensional systems in which both particles were isotrop- 
ically reactive (that is, the reactive patch size is 360'). In addition, 
in the three-dimensional systems the target particle was assigned 
three different reactive patch sizes: 90, 45, and 30". One ad- 
ditional case was investigated, that in which both the target and 
diffusing molecule had a 30' reactive patch. The same systems 
were also investigated in the bimolecular case, which allowed us 
to evaluate the effects of spatial constraint on each system. The 
results can be found in Table I. 

Shoup and SzaboI6 derived an approximate analytical expression 
for the rate constant of a bimolecular reaction when one of the 

(16) Shoup, D.; Lipari, G.; Szabo, A. Biophys. J .  1981, 36, 697. 
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TABLE 11: Effective Molarities (M) for Uniformly Reactive Spheres" 
re1 EM 

1D/2D 1D/3D 2D/3D 
reactant dimens EM 

ab Rb R - a  R/a I D  2D 3D 
0.5 2.5 2.0 5 .O 198 
0.5 1.25 0.75 2.5 1410 
0.5 0.55 0.05 I . I  3 17000 
I .o 10.0 9.0 10.1 4.89 
1 .o 2.5 1.5 2.5 I76 
I .o 1.25 0.25 1.25 6340 
2.0 5.0 3.0 2.5 22.0 
2.0 4.0 2.0 2.0 49.5 
2.0 2.25 0.25 1.12 3170 

90.3 
888 

302000 

I l l  
5670 

1.67 

13.9 
34.9 

2990 

38.8 
554 

288000 
0.482 

69.2 
5060 

8.65 
24.4 

2820 

2.19 
1.59 
1.05 
2.92 
1.59 
1.12 
1.58 
1.42 
1.06 

5.10 
2.55 
1.10 

2.55 
1.25 
2.55 
2.03 
1.12 

10.1 

2.32 
1.60 
1.05 
3.47 
1.60 
1.12 
1.60 
1.43 
1.06 

"The bimolecular reactions are all in  three dimensions, and the unimolecular reactions are in one, two, or three dimensions. These results are based 
on analytical formulas, Le., the unimolecular rate constants (in units of s-l) are reciprocals of the mean first passage times given in eqs 25-27, and 
the bimolecular rate constants are aiven bv the familiar Smoluchowski equation* (in units of M-I s-I). b a  = reaction distance (A), R = reflection - 
distance (A).  

species is anisotropically reactive. Comparing the rate constants 
for the bimolecular simulations with their results reveals close 
agreement (see Figure 2 ) .  

The effective molarity in systems where the unimolecular re- 
action is exactly the same as the bimolecular reaction except for 
the translational constraint is seen to be less than 1 for all cases 
(see Table I ) .  This result indicates that proximity alone is not 
solely responsible for the rate enhancements seen in the unimo- 
IecuIar 

The maximum effective molarity in the absence of interparticle 
potentials occurs when the three-dimensional bimolecular reaction 
is between particles with relatively small reactive regions, and the 
corresponding unimolecular reaction is between reactive groups 
that are pointed toward each other with all motion confined to 
the line separating the two groups. 

When the reactive species are isotropically reactive, effective 
molarities can be calculated analytically. Using the formalism 
outlined above, the rate constants for the unimolecular reactions 
can be calculated. An interesting result that is immediately 
apparent is that, because kuk and kbi are both inversely proportional 
to the diffusion constant, the effective molarity is independent of 
the viscosity. The effective molarities calculated analytically are 
in good agreement with those obtained from the simulations 
(compare Table I row 1 with Table 11 row 4 ) .  Analytic effective 
molarities for a wider variety of isotropically reactive systems 
without interparticle forces are compared in Table 11. In this table, 
a is the reaction distance and R is the reflection distance. In all 
cases, the bimolecular rate constant is the Smoluchowski result, 
kbi = 477Dr,,a for diffusion in three dimensions. 

Three general effects can be discerned from the data. First, 
as the value of R - a decreases, corresponding to restricting the 
reactive species to a smaller and smaller region, the effective 
molarity increases dramatically. Using the analytic formulas in 
eqs 25-27 one can obtain expressions for the limiting behavior 
of the effective molarity. For example, for the three-dimensional 
bimolecular reaction and one-dimensional unimolecular reaction, 
kUni and the effective molarity approach infinity as ( R  - a)-, as 
R approaches a. Second, as the ratio R / a  of the reflective distance 
to the reactive distance goes from >> 1 to = 1, the increases seen 
in reducing the dimensionality of the unimolecular system drop 
markedly. In  three dimensions, the diffusing particle is nearly 
restricted to the surface of the target particle when R / a  1 1. In 
this case, the diffusing particle will react before it has been able 
to move an appreciable distance over this surface. The effective 
motion is essentially one-dimensional, which explains the con- 
vergence of the effective molarities for different dimensionalities 
of unimolecular motion as R / a  - 1. Also of interest is the fact 
that the rate increase in reducing the dimensionality by 1 unit 
is similar regardless of whether one starts in three or two di- 
mensions. 

When an attractive interparticle potential is applied in the 
unimolecular case, the effective molarities increase dramatically, 

(17) Menger, F. M.;  Venkataram, U. V. J .  Am.  Chem. SOC. 1985, 107, 
4706. 

TABLE 111: Effective Molarities (M) for Uniformly Reactive 
Spheres with an Interparticle Potential in the Unimolecular Case of 
the Form" 

effective molarity 
dimensionalityb f =  1.0 f =  1.0 X 10) f =  1.0 X IO6 

1 8.00 1460 9.34 x 105 
2 3.17 1280 9.18 x 105 

1 I80 9.14 x 105 3 1.07 

"The Smoluchowski result for the bimolecular case kbi = 4sDa is 
used in all examples. These results are based on numerical integration 
of eq 24. a = 1.0 (A), R = 10.0 (A). Units offare kcalmol-I. In- 
tegration was performed using the IMSL library DTWODQ." 

as seen in Table 111. As the force constant f increases, the 
advantage of the unimolecular reactions of lower dimensionality 
is lost. This is due to the very strong potential forcing the particles 
to move straight toward each other regardless of the dimensionality 
of the space available for diffusion. The attractive potential here 
is intended to model the relief of strain in the case of reactants 
fused to a common molecular framework. Such relief of strain 
has long been thought to be an important factor in reactions that 
display large effective molarities;I.* the present results support 
this view. 

The results for diffusion-controlled reactions without inter- 
particle forces can also be compared to results for models in which 
the reaction is activated rather than diffusion controlled but in 
which all other features are unchanged. Consider the reaction 

Dimensionality of unimolecular reaction. 

k k l  
A + B & X - products 

k-1 
(35) 

and let k ,  >> k2  so that the reaction is not diffusion controlled; 
rather, the rate is limited by the activated process corresponding 
to k,. The usual steady-state a n a l y ~ i s l * , ~ ~  yields 

k = Kk,  (36) 
where K = k , / k - ,  is an equilibrium constant for the formation 
of the encounter complex X. If A and B are distinct molecules, 
the reaction is bimolecular andZo 

(37) 
where L is Avogadro's number and u is the volume in liters 
available for relative translation of A and B in the encounter 
complex X .  If, however, A and B are fragments of the same 
molecule, the reaction is unimolecular andZo 

(18) Calef, D. F.; Deutch, J. J .  Annu. Rev. Phys. Chem. 1983, 34. 493. 
(19) McCammon, J .  A.; Northrup, S. H.; Allison, S. A. J .  Phys. Chem. 

(20 )  McQuarrie, D. M .  Sfatistical Mechanics; Harper & Row: New 
1986, 90, 3901. 

York, 1976. 
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where c is as defined above and Vis the volume in liters available 
for relative translation of A and B excluding the reactive volume 
c. Then the effective molarity is 

(39) 

For the three systems in the rows 4-6 of Table 11, and 3D uni- 
molecular reactions, the activated (diffusional) effective molarities 
are, respectively, 0.40 (0.48 M), 27 (69 M), and 416 M (5060 
M). These three systems differ only in the volume Vavailable 
for unimolecular fragment diffusion outside the reactive volume 
L’; the bimolecular reactions are the same for the three systems. 
The rate constant k,,, and the EM of the diffusion-controlled 
reactions increase more rapidly with decreasing V than do those 
of the activated reactions. This is due to the nonuniform dis- 
tribution of reaction partners in the (nonequilibrium) diffusion- 
controlled reaction. 

Conclusion 
Simple diffusion-controlled reactions between spherical, iso- 

tropically reactive groups can display large rate enhancements 
when restrictive translational constraints are imposed on the 

EM = K, , ,k2 /Kb,k ,  = (LV)-l  

unimolecular reaction. Additional rate enhancements occur when 
a reduction in dimensionality accompanies the translational 
constraint unless the latter is very restrictive. If the reactants are 
not isotropically reactive, the effective molarity will be further 
increased if the geometric constraints in the unimolecular system 
keep the reactive surfaces in a proper orientation for reaction. Very 
large rate enhancements can occur when an attractive potential 
operates between the reactive groups in the unimolecular system, 
corresponding to some form of internal strain relief upon reaction. 

These simulation results indicate that highly elevated values 
of effective molarity are not likely to arise from mass transport 
considerations alone. To reach effective molarities greater than 
about lo3,  it is necessary to have favorable energetics, modeled 
here by an attractive intramolecular potential, or geometries so 
constrained that the concept of reactants separated by a tether 
becomes questionable. 
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Electric Field Effect on the Chemical Activation Processes of 
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The electric field effect on the decomposition and energy-transfer process of chemically activated 1,1,2,2-tetrafluorocyclopropane 
is studied. The apparent unimolecular rate constant is measured as a function of the electric field strength in the range 
0-7.2 kV/cm. A significant dependence of the experimental constant on the electric field was observed u p  to a saturation 
value. Several explanations for this behavior are analyzed. 

Introduction 
I n  recent years there has been great theoretical and experi- 

mental interest in the influence of electric and magnetic fields 
on transport properties,’ energy absorption,2 radiative and non- 
radiative p r o c e s ~ e s , ~ - ~  and reaction mechanism5p6 of gases, mi- 
croemulsions,’-iO and crystals.6*i’J2 Unfortunately, many questions 
remain unsolved, mainly those concerned with highly excited 
polyatomic systems. I n  previous  paper^'^-'^ we have studied the 
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decomposition and deactivation of highly vibrationally excited 
1,1,2,2-tetrafluorocyclopropane. We now report the character- 
ization of this process in a dc electric field. The data show a strong 
dependence of the unimolecular rate constants with the electric 
field strength. The results are discussed in terms of the current 
understanding of unimolecular processes. 

Experimental Section 
Reactants were obtained and purified as described previous- 

ly.13J4 The samples were photolyzed with the unfiltered light of 
an OSRAM 500-W high-pressure mercury lamp, in cylindrical 
Pyrex vessels of diameter as small as possible compared with that 
of the electrodes. The diameter of the cell was typically 1-2 cm. 
In each experiment the cell was placed between two parallel 
circular plate electrodes made of polished aluminum, of 30 cm 
diameter, which were spaced 3 cm apart. The electrodes were 
connected to a HV power supply, which provided voltage in the 
range 0-30 kV, controlled to better than 5%. From the config- 
uration used in this work, the dc electric field strength in the cell 
( E )  can be related to the unperturbed field strength far from the 
Pyrex cell (E,)  by E - 0.9E0. In calculating this relation, using 
a similar formulation to that of Gozel and van den Bergh? it has 

(15) Boaglio, D. G.; Arbilla, G.; Ferrerro. J. C.; Staricco, E. H. Inf.  J .  
Chem. Kinet., 1989, 21 ,  1003. 
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